A Novel Mutation in the GJA1 Gene in a Family with Oculodentodigital Dysplasia

Total Page:16

File Type:pdf, Size:1020Kb

A Novel Mutation in the GJA1 Gene in a Family with Oculodentodigital Dysplasia OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: JANEY L. WIGGS, MD, PhD A Novel Mutation in the GJA1 Gene in a Family With Oculodentodigital Dysplasia José P. C. Vasconcellos, MD, PhD; Mônica B. Melo, PhD; Rui B. Schimiti, MD, PhD; Norisvaldo C. Bressanim, MD; Fernando F. Costa, MD, PhD; Vital P. Costa, MD, PhD Objectives: To describe a Brazilian family with oculo- closure glaucoma, and 1 had open-angle glaucoma. A new dentodigital dysplasia (ODDD) and to screen for muta- mutation in the GJA1 gene was identified, consisting of tions in the gap junction protein alpha 1 (GJA1) gene in a change from proline to histidine at codon 59. This mu- this family. tation segregated through members with the ODDD phe- notype. Analysis of the control group by means of re- Methods: Twelve members of a 3-generation family with striction fragment length polymorphism (MvaI enzyme) ODDD underwent screening for mutations of the GJA1 gene did not disclose this mutation. and a comprehensive ophthalmic examination. We defined ODDD on the basis of clinical characteristics described in Conclusion: Our results demonstrate a new mutation this syndrome (microdontia, caries, enamel hypoplasia, thin (P59H) in the GJ1A gene, identified in a family with nose,andsyndactyly)andeyeabnormalitiessuchasmicroph- ODDD syndrome. thalmos, iris atrophy, and glaucoma. Direct sequencing of the GJA1 gene was performed using DNA collected from Clinical Relevance: The presence of different forms peripheral blood. A control group of 60 healthy individu- of glaucoma in families with ODDD may indicate a new als underwent evaluation by means of enzyme digestion. mutation in the GJA1 gene. Results: Among the 8 members of this family who were characterized as having ODDD, 2 showed chronic angle- Arch Ophthalmol. 2005;123:1422-1426 CULODENTODIGITAL DYS- fourth and fifth fingers and/or the third or plasia (ODDD) is a syn- fourth toes, camptodactyly of the fifth fin- drome characterized by ger, midphalangeal hypoplasia or aplasia of malformations that in- 1 or more digits or toes, and other abnor- volve the face, eyes, teeth, malities such as a mandible with a wide al- Oand bones and by neurological alterations.1 veolar ridge and broad tubular bones.13 Neu- Although sporadic cases are reported in the rological deficits have been reported in a few literature (most of them involving elderly studies, including spastic paraparesis, qua- parents), ODDD is inherited in an autoso- driparesis, gait disturbance, neurogenic mal dominant pattern with high penetrance bladder disturbances, ataxia, hearing loss, andvariableexpression.2 Thisconditionwas dysarthria, and seizures.4 Magnetic reso- first described in 1920 by Lohmann3 in 2 nance imaging shows diffuse abnormali- Author Affiliations: patients with bilateral camptodactyly of the ties of the subcortical cerebral white mat- Departments of Ophthalmology fifth finger and microphthalmos.4 In 1957, ter that have been suggested as the cause of (Drs Vasconcellos, Schimiti, and 5 4,14 V. P.Costa) and Clinical Meyer-Schwickerath et al introduced the neurological manifestations. Other char- Medicine–Hemocentro term ODDD to describe 2 patients with mal- acteristics that may be found in ODDD are (Dr F.F.Costa), State University formations in the eyes, including bilateral depressed nasal bridge, thin nose with hy- of Campinas, Campinas, Brazil; microphthalmoswithglaucomaandanoma- poplastic alae nasi, small anteverted nares, Department of Physiological lies of the iris, nose, teeth, and bones, and cleft palate.13 Sciences, Santa Casa de São whereas in 1963, Gorlin et al6 subsequently The ocular manifestations of ODDD Paulo, São Paulo, Brazil defined it as a syndrome. Since then, sev- may involvetheentireocularglobe(microph- (Dr Melo); Cascavel University eral authors reported this condition in more thalmos), associated with anterior segment Hospital, UNIOESTE (State than 240 individuals.4,7-13 dysgenesis.7,8 Otherwise,theaxiallengthmea- University of the West of Paraná), Cascavel, Brazil The teeth anomalies observed in ODDD surementsmaybenormalandtheabnormali- (Dr Bressanim); and include microdontia, caries, enamel hypo- ties restricted to the anterior segment (iris Department of Ophthalmology, plasia, and partial anodontia. The skeletal atrophy, remnants of the pupillary mem- University of São Paulo, São malformations occur mainly in the extremi- brane, iridoschisis, and cataract).9 Posteri- Paulo, Brazil (Dr V. P.Costa). ties and consist of syndactyly involving the or segment abnormalities include remnants (REPRINTED) ARCH OPHTHALMOL / VOL 123, OCT 2005 WWW.ARCHOPHTHALMOL.COM 1422 ©2005 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/23/2021 of the hyaloid artery and an increased number of retinal 9 vessels at the optic disc. Other less frequent ocular I Individuals Without ODDD features of ODDD are nystagmus, palpebral fissure hy- 12 8 Individuals poplasia, epicanthal folds, and convergent strabismus. With ODDD Glaucoma is one of the causes of visual loss in ODDD. Open-angle and angle-closure glaucomas have been re- ported in eyes with ODDD, as well as goniodysgenesis.8-13 II 14 12 3 456 In 1997, Gladwin et al evaluated ODDD in 6 fami- 44/+ 42/+ 37/+ lies (autosomal dominant pattern) using linkage analy- sis. The authors identified the locus associated with ODDD III 1 2 3 4 5 at chromosome 6q22-q24 in a 28-centimorgan (cM) re- 22/− 16/− 19/− 16/− 8/− gion, delimited by markers D6S474 proximally and D6S292 distally. Boyadjiev et al2 performed 2-point link- Figure 1. Pedigree of a family with oculodentodigital dsyplasia (ODDD) age analysis in 7 families with ODDD and significantly syndrome harboring the proline→histidine mutation at codon 59. The age at reduced the size of the critical region (11 cM in male and last examination is shown by each symbol. Individual I:1 died with a history 15 of glaucoma and blindness. Circle indicates female family member; square, 20 cM in female subjects). Subsequently, Paznekas et al ϩ identified structural changes in the gene responsible for male family member; −, absence of glaucoma; and , presence of glaucoma. synthesis of connexin 43 (Cx43), the gap junction pro- tein alpha 1 (GJA1) gene, in all 17 families with ODDD autosomal dominant inheritance pattern (Figure 1). The who underwent screening for mutations in this gene. affected individuals had the classical characteristics de- The goals of this study were to describe a Brazilian fam- scribed in ODDD, including microdontia, caries, enamel ily with ODDD and to screen for mutations in the GJA1 hypoplasia, syndactyly involving the second and third toes, gene in this family. and mild clinodactyly (Figure 2). These individuals also had a thin nose due to a hypoplastic alae nasi. METHODS The only member of the family who was not exam- ined was individual I:1, described by relatives as having Twelve members of a family with ODDD from Cascavel, Bra- clinical characteristics typical of ODDD, who died at 63 zil, underwent screening for mutations in the GJA1 gene and a years of age, blind due to glaucoma. The Table gives the comprehensive ophthalmic examination. We defined ODDD ocular findings of all family members. Among the 8 af- on the basis of clinical characteristics described in the litera- fected individuals who were examined, all had micro- ture. Informed consent was obtained from the members of the family. Ophthalmic examination included intraocular pres- cornea (corneal diameters, 8-9 mm) and peripupillary iris sure measurement by means of applanation tonometry; slit- atrophy (Figure 3). Three (40%) of the affected indi- lamp biomicroscopy and gonioscopy; evaluation of the optic viduals, all of them belonging to the second generation, disc with a 78-diopter lens; automated perimetry (Humphrey had glaucoma. One of these was found to have open- System 24.2; Zeiss-Humphrey-Zeiss Systems, Dublin, Calif) in angle glaucoma and had undergone trabeculectomy individuals older than 15 years; measurements of the axial length in both eyes. In this individual, results of gonioscopy and corneal diameters and keratometry; and ocular history ob- disclosed a wide open angle, allowing the visualization tained by interview, including the age at diagnosis of glau- of the ciliary band. The other 2 family members had coma and clinical and surgical treatment. angle-closure glaucoma. Both had shallow anterior cham- Glaucoma was defined as the presence of at least 2 of the bers, and gonioscopy allowed the visualization of the following characteristics: (1) intraocular pressure above 24 mm Hg; (2) optic disc changes, including thinning of the neu- Schwalbe line. Results of indentation gonioscopy did not roretinal rim, hemorrhage, notch, cup-disc ratio greater than disclose peripheral anterior synechiae. 0.7, or asymmetry of cup-disc ratio greater than 0.2; and (3) The screening for mutations in the GJA1 gene iden- glaucomatous visual field defect, defined as a corrected pat- tified a new mutation at codon 59, changing a proline tern standard deviation outside the 95% normal limits or a glau- (CCT) for a histidine (CAT) in heterozygosis (P59H) coma hemifield test result outside the 99% limits. (Figure 4). This alteration segregated in members with We extracted DNA from peripheral blood and performed the ODDD phenotype (Figure 1). Results of analysis by direct sequencing of the GJA1 gene using fluorescent dideoxy- means of restriction fragment length polymorphism (MvaI nucleotides on an automated sequencer (ABI 310; Applied Bio- 15 enzyme) in the control group did not disclose this struc- systems, Foster City, Calif), according to Paznekas et al. Con- tural alteration. nexin amino-acid alignment was performed with the ClustalW program (http://www.ebi.ac.uk/clustalw/). Sequences were ob- tained from the Entrez-Protein Web site of the National Cen- COMMENT ter for Biotechnology Information (http://www.ncbi.nlm.nih .gov/entrez/). A control group of 60 healthy individuals This study described a Brazilian family with ODDD that underwent evaluation by means of digestion of the GJA1 gene carries a new mutation in the GJA1 gene. Among the ocu- PCR product with the MvaI enzyme.
Recommended publications
  • Post-Mortem Whole-Exome Analysis in a Large Sudden Infant Death Syndrome Cohort with a Focus on Cardiovascular and Metabolic Genetic Diseases
    European Journal of Human Genetics (2017) 25, 404–409 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg ARTICLE Post-mortem whole-exome analysis in a large sudden infant death syndrome cohort with a focus on cardiovascular and metabolic genetic diseases Jacqueline Neubauer*,1, Maria Rita Lecca2, Giancarlo Russo2, Christine Bartsch3, Argelia Medeiros-Domingo4, Wolfgang Berger5,6,7 and Cordula Haas1 Sudden infant death syndrome (SIDS) is described as the sudden and unexplained death of an apparently healthy infant younger than one year of age. Genetic studies indicate that up to 35% of SIDS cases might be explained by familial or genetic diseases such as cardiomyopathies, ion channelopathies or metabolic disorders that remained undetected during conventional forensic autopsy procedures. Post-mortem genetic testing by using massive parallel sequencing (MPS) approaches represents an efficient and rapid tool to further investigate unexplained death cases and might help to elucidate pathogenic genetic variants and mechanisms in cases without a conclusive cause of death. In this study, we performed whole-exome sequencing (WES) in 161 European SIDS infants with focus on 192 genes associated with cardiovascular and metabolic diseases. Potentially causative variants were detected in 20% of the SIDS cases. The majority of infants had variants with likely functional effects in genes associated with channelopathies (9%), followed by cardiomyopathies (7%) and metabolic diseases (1%). Although lethal arrhythmia represents the most plausible and likely cause of death, the majority of SIDS cases still remains elusive and might be explained by a multifactorial etiology, triggered by a combination of different genetic and environmental risk factors.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Cardiomyopathy
    UNIVERSITY OF MINNESOTA PHYSICIANS OUTREACH LABS Submit this form along with the appropriate MOLECULAR DIAGNOSTICS (612) 273-8445 Molecular requisition (Molecular Diagnostics or DATE: TIME COLLECTED: PCU/CLINIC: Molecular NGS Oncology). AM PM PATIENT IDENTIFICATION DIAGNOSIS (Dx) / DIAGNOSIS CODES (ICD-9) - OUTPATIENTS ONLY SPECIMEN TYPE: o Blood (1) (2) (3) (4) PLEASE COLLECT 5-10CC IN ACD-A OR EDTA TUBE ORDERING PHYSICIAN NAME AND PHONE NUMBER: Tests can be ordered as a full panel, or by individual gene(s). Please contact the genetic counselor with any questions at 612-624-8948 or by pager at 612-899-3291. _______________________________________________ Test Ordered- EPIC: Next generation sequencing(Next Gen) Sunquest: NGS Brugada syndrome DMD Aortopathy Full panel DNAJC19 SCN5A DSP Full panel GPD1L Cardiomyopathy, familial MYH11 CACNA1C hypertrophic ACTA2 SCN1B Full panel MYLK KCNE3 ANKRD1 FBN2 SCN3B JPH2 SLC2A10 HCN4 PRKAG2 COL5A2 MYH7 COL5A1 MYL2 COL3A1 Cardiomyopathy ACTC1 CBS Cardiomyopathy, dilated CSRP3 SMAD3 Full panel TNNC1 TGFBR1 LDB3 MYH6 TGFBR2 LMNA VCL FBN1 ACTN2 MYOZ2 Arrhythmogenic right ventricular DSG2 PLN dysplasia NEXN CALR3 TNNT2 TNNT2 NEXN Full panel RBM20 TPM1 TGFB3 SCN5A MYBPC3 DSG2 MYH6 TNNI3 DSC2 TNNI3 MYL3 JUP TTN TTN RYR2 BAG3 MYLK2 TMEM43 DES Cardiomyopathy, familial DSP CRYAB EYA4 restrictive PKP2 Full panel Atrial fibrillation LAMA4 MYPN TNNI3 SGCD MYPN TNNT2 Full panel CSRP3 SCN5A MYBPC3 GJA5 TCAP ABCC9 ABCC9 SCN1B PLN SCN2B ACTC1 KCNQ1 MYH7 KCNE2 TMPO NPPA VCL NPPA TPM1 KCNA5 TNNC1 KCNJ2 GATAD1 4/1/2014
    [Show full text]
  • Minding the Calcium Store: Ryanodine Receptor Activation As a Convergent Mechanism of PCB Toxicity
    Pharmacology & Therapeutics 125 (2010) 260–285 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Associate Editor: Carey Pope Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity Isaac N. Pessah ⁎, Gennady Cherednichenko, Pamela J. Lein Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA article info abstract Keywords: Chronic low-level polychlorinated biphenyl (PCB) exposures remain a significant public health concern since Ryanodine receptor (RyR) results from epidemiological studies indicate that PCB burden is associated with immune system Calcium-induced calcium release dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various Calcium regulation adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in Polychlorinated biphenyls PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter Triclosan fi 2+ Bastadins the spatial and temporal delity of Ca signals through one or more receptor-mediated processes. This Polybrominated diphenylethers review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in Developmental neurotoxicity muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The Activity dependent plasticity molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed. © 2009 Elsevier Inc. All rights reserved. Contents 1. Introduction ............................................... 260 2. Ryanodine receptor macromolecular complexes: significance to polychlorinated biphenyl-mediated Ca2+ dysregulation .
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Next Generation Sequencing for Molecular Confirmation of Hereditary
    Arch Cardiol Mex. 2015;85(1):68---72 www.elsevier.com.mx SPECIAL ARTICLE Next generation sequencing for molecular confirmation of hereditary sudden cardiac death syndromes a,∗ b b b Manlio F. Márquez , David Cruz-Robles , Selene Ines-Real , Gilberto Vargas-Alarcón , a Manuel Cárdenas a Departamento de Electrofisiología, Instituto Nacional de Cardiología Ignacio Chávez, México, D.F., Mexico b Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, México, D.F., Mexico Received 26 March 2014; accepted 8 December 2014 KEYWORDS Abstract Hereditary sudden cardiac death syndromes comprise a wide range of diseases result- Arrhythmias; ing from alteration in cardiac ion channels. Genes involved in these syndromes represent diverse Hereditary sudden mutations that cause the altered encoding of the diverse proteins constituting these channels, cardiac death thus affecting directly the currents of the corresponding ions. In the present article we will syndromes; briefly review how to arrive to a clinical diagnosis and we will present the results of molecular Right ventricle genetic studies made in Mexican subjects attending the SCD Syndromes Clinic of the National arrhythmogenic Institute of Cardiology of Mexico City. cardiomyopathy; © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México Brugada syndrome S.A. All rights reserved. PALABRAS CLAVE Confirmación diagnóstica molecular mediante secuenciación masiva de nueva Arritmias; generación (‘‘next generation sequencing’’) en síndromes hereditarios de muerte Síndromes súbita cardíaca hereditarios de Resumen Los síndromes hereditarios de muerte súbita cardíaca comprenden una amplia gama muerte súbita; Displasia de enfermedades resultantes de la alteración en los canales iónicos cardíacos. Los genes implicados en estos síndromes presentan mutaciones que causan alteraciones de las diversas Arritmogénica del proteínas que constituyen estos canales y que, por lo tanto, afectan directamente a las difer- ventriculo derecho; entes corrientes iónicas.
    [Show full text]
  • Non-Coding Rnas in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases
    Review Non-Coding RNAs in the Cardiac Action Potential and Their Impact on Arrhythmogenic Cardiac Diseases Estefania Lozano-Velasco 1,2 , Amelia Aranega 1,2 and Diego Franco 1,2,* 1 Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; [email protected] (E.L.-V.); [email protected] (A.A.) 2 Fundación Medina, 18016 Granada, Spain * Correspondence: [email protected] Abstract: Cardiac arrhythmias are prevalent among humans across all age ranges, affecting millions of people worldwide. While cardiac arrhythmias vary widely in their clinical presentation, they possess shared complex electrophysiologic properties at cellular level that have not been fully studied. Over the last decade, our current understanding of the functional roles of non-coding RNAs have progressively increased. microRNAs represent the most studied type of small ncRNAs and it has been demonstrated that miRNAs play essential roles in multiple biological contexts, including normal development and diseases. In this review, we provide a comprehensive analysis of the functional contribution of non-coding RNAs, primarily microRNAs, to the normal configuration of the cardiac action potential, as well as their association to distinct types of arrhythmogenic cardiac diseases. Keywords: cardiac arrhythmia; microRNAs; lncRNAs; cardiac action potential Citation: Lozano-Velasco, E.; Aranega, A.; Franco, D. Non-Coding RNAs in the Cardiac Action Potential 1. The Electrical Components of the Adult Heart and Their Impact on Arrhythmogenic The adult heart is a four-chambered organ that propels oxygenated blood to the entire Cardiac Diseases. Hearts 2021, 2, body. It is composed of atrial and ventricular chambers, each of them with distinct left and 307–330.
    [Show full text]
  • Development of the Stria Vascularis and Potassium Regulation in the Human Fetal Cochlea: Insights Into Hereditary Sensorineural Hearing Loss
    Development of the Stria Vascularis and Potassium Regulation in the Human Fetal Cochlea: Insights into Hereditary Sensorineural Hearing Loss Heiko Locher,1,2 John C.M.J. de Groot,2 Liesbeth van Iperen,1 Margriet A. Huisman,2 Johan H.M. Frijns,2 Susana M. Chuva de Sousa Lopes1,3 1 Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands 2 Department of Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands 3 Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium Received 25 August 2014; revised 2 February 2015; accepted 2 February 2015 ABSTRACT: Sensorineural hearing loss (SNHL) is dynamics of key potassium-regulating proteins. At W12, one of the most common congenital disorders in humans, MITF1/SOX101/KIT1 neural-crest-derived melano- afflicting one in every thousand newborns. The majority cytes migrated into the cochlea and penetrated the base- is of heritable origin and can be divided in syndromic ment membrane of the lateral wall epithelium, and nonsyndromic forms. Knowledge of the expression developing into the intermediate cells of the stria vascula- profile of affected genes in the human fetal cochlea is lim- ris. These melanocytes tightly integrated with Na1/K1- ited, and as many of the gene mutations causing SNHL ATPase-positive marginal cells, which started to express likely affect the stria vascularis or cochlear potassium KCNQ1 in their apical membrane at W16. At W18, homeostasis (both essential to hearing), a better insight KCNJ10 and gap junction proteins GJB2/CX26 and into the embryological development of this organ is GJB6/CX30 were expressed in the cells in the outer sul- needed to understand SNHL etiologies.
    [Show full text]
  • Atrial Fibrillation (ATRIA) Study
    European Journal of Human Genetics (2014) 22, 297–306 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg REVIEW Atrial fibrillation: the role of common and rare genetic variants Morten S Olesen*,1,2,4, Morten W Nielsen1,2,4, Stig Haunsø1,2,3 and Jesper H Svendsen1,2,3 Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting 1–2% of the general population. A number of studies have demonstrated that AF, and in particular lone AF, has a substantial genetic component. Monogenic mutations in lone and familial AF, although rare, have been recognized for many years. Presently, mutations in 25 genes have been associated with AF. However, the complexity of monogenic AF is illustrated by the recent finding that both gain- and loss-of-function mutations in the same gene can cause AF. Genome-wide association studies (GWAS) have indicated that common single-nucleotide polymorphisms (SNPs) have a role in the development of AF. Following the first GWAS discovering the association between PITX2 and AF, several new GWAS reports have identified SNPs associated with susceptibility of AF. To date, nine SNPs have been associated with AF. The exact biological pathways involving these SNPs and the development of AF are now starting to be elucidated. Since the first GWAS, the number of papers concerning the genetic basis of AF has increased drastically and the majority of these papers are for the first time included in a review. In this review, we discuss the genetic basis of AF and the role of both common and rare genetic variants in the susceptibility of developing AF.
    [Show full text]
  • Human Gene Copy Number Spectra Analysis in Congenital Heart Malformations Aoy Tomita-Mitchell Medical College of Wisconsin
    CORE Metadata, citation and similar papers at core.ac.uk Provided by epublications@Marquette Marquette University e-Publications@Marquette Mathematics, Statistics and Computer Science Mathematics, Statistics and Computer Science, Faculty Research and Publications Department of 5-1-2012 Human gene copy number spectra analysis in congenital heart malformations Aoy Tomita-Mitchell Medical College of Wisconsin Donna K. Mahnke Medical College of Wisconsin Craig Struble Marquette University, [email protected] Maureen E. Tuffnell Marquette University Karl D. Stamm Marquette University See next page for additional authors Accepted version. Physiological Genomics, Vol. 44, No. 9 (May 2012): 518-541. DOI. © 2012 The American Physiological Society. Used with permission. Authors Aoy Tomita-Mitchell, Donna K. Mahnke, Craig Struble, Maureen E. Tuffnell, Karl D. Stamm, Mats Hidestrand, Susan Harris, Mary A. Goetsch, Pippa Simpson, David P. Bick, Ulrich Broeckel, Andrew N. Pelech, James S. Tweddell, and Michael Mitchell This article is available at e-Publications@Marquette: https://epublications.marquette.edu/mscs_fac/272 NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation at the bottom of the page. Human Gene Copy Number Spectra Analysis in Congenital Heart Malformations Aoy Tomita-Mitchell Department of Surgery, Division of Cardiothoracic Surgery; Biotechnology and Bioengineering Center; Human and Molecular Genetics Center; Medical College of Wisconsin; Milwaukee, WI Donna K. Mahnke Department of Surgery, Division of Cardiothoracic Surgery; Biotechnology and Bioengineering Center; Human and Molecular Genetics Center; Medical College of Wisconsin; Milwaukee, WI Craig A. Struble Department of Mathematics, Statistics and Computer Science; Marquette University; Milwaukee, WI Maureen E.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Transcriptomic Profiling of Ca Transport Systems During
    cells Article Transcriptomic Profiling of Ca2+ Transport Systems during the Formation of the Cerebral Cortex in Mice Alexandre Bouron Genetics and Chemogenomics Lab, Université Grenoble Alpes, CNRS, CEA, INSERM, Bâtiment C3, 17 rue des Martyrs, 38054 Grenoble, France; [email protected] Received: 29 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11–E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ “leak” channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels.
    [Show full text]