How Developers Engage with Static Analysis Tools in Different Contexts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Command Line Interface
Command Line Interface Squore 21.0.2 Last updated 2021-08-19 Table of Contents Preface. 1 Foreword. 1 Licence. 1 Warranty . 1 Responsabilities . 2 Contacting Vector Informatik GmbH Product Support. 2 Getting the Latest Version of this Manual . 2 1. Introduction . 3 2. Installing Squore Agent . 4 Prerequisites . 4 Download . 4 Upgrade . 4 Uninstall . 5 3. Using Squore Agent . 6 Command Line Structure . 6 Command Line Reference . 6 Squore Agent Options. 6 Project Build Parameters . 7 Exit Codes. 13 4. Managing Credentials . 14 Saving Credentials . 14 Encrypting Credentials . 15 Migrating Old Credentials Format . 16 5. Advanced Configuration . 17 Defining Server Dependencies . 17 Adding config.xml File . 17 Using Java System Properties. 18 Setting up HTTPS . 18 Appendix A: Repository Connectors . 19 ClearCase . 19 CVS . 19 Folder Path . 20 Folder (use GNATHub). 21 Git. 21 Perforce . 23 PTC Integrity . 25 SVN . 26 Synergy. 28 TFS . 30 Zip Upload . 32 Using Multiple Nodes . 32 Appendix B: Data Providers . 34 AntiC . 34 Automotive Coverage Import . 34 Automotive Tag Import. 35 Axivion. 35 BullseyeCoverage Code Coverage Analyzer. 36 CANoe. 36 Cantata . 38 CheckStyle. .. -
Undefined Behaviour in the C Language
FAKULTA INFORMATIKY, MASARYKOVA UNIVERZITA Undefined Behaviour in the C Language BAKALÁŘSKÁ PRÁCE Tobiáš Kamenický Brno, květen 2015 Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Vedoucí práce: RNDr. Adam Rambousek ii Acknowledgements I am very grateful to my supervisor Miroslav Franc for his guidance, invaluable help and feedback throughout the work on this thesis. iii Summary This bachelor’s thesis deals with the concept of undefined behavior and its aspects. It explains some specific undefined behaviors extracted from the C standard and provides each with a detailed description from the view of a programmer and a tester. It summarizes the possibilities to prevent and to test these undefined behaviors. To achieve that, some compilers and tools are introduced and further described. The thesis contains a set of example programs to ease the understanding of the discussed undefined behaviors. Keywords undefined behavior, C, testing, detection, secure coding, analysis tools, standard, programming language iv Table of Contents Declaration ................................................................................................................................ ii Acknowledgements .................................................................................................................. iii Summary ................................................................................................................................. -
Avatud Lähtekoodiga Vahendite Kohandamine Microsoft Visual C++ Tarkvaralahenduste Kvaliteedi Analüüsiks Sonarqube Serveris
TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Tarkvarateaduse instituut Anton Ašot Roolaid 980774IAPB AVATUD LÄHTEKOODIGA VAHENDITE KOHANDAMINE MICROSOFT VISUAL C++ TARKVARALAHENDUSTE KVALITEEDI ANALÜÜSIKS SONARQUBE SERVERIS Bakalaureusetöö Juhendaja: Juhan-Peep Ernits PhD Tallinn 2019 Autorideklaratsioon Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud. Autor: Anton Ašot Roolaid 21.05.2019 2 Annotatsioon Käesolevas bakalaureusetöös uuritakse, kuidas on võimalik saavutada suure hulga C++ lähtekoodi kvaliteedi paranemist, kui ettevõttes kasutatakse arenduseks Microsoft Visual Studiot ning koodikaetuse ja staatilise analüüsi ülevaate saamiseks SonarQube serverit (Community Edition). Seejuures SonarSource'i poolt pakutava tasulise SonarCFamily for C/C++ analüsaatori (mille eelduseks on SonarQube serveri Developer Edition) asemel kasutatakse tasuta ja vaba alternatiivi: SonarQube C++ Community pluginat. Analüüsivahenditena eelistatakse avatud lähtekoodiga vabu tarkvaravahendeid. Valituks osutuvad koodi kaetuse analüüsi utiliit OpenCppCoverage ja staatilise analüüsi utiliit Cppcheck. Siiski selgub, et nende utiliitide töö korraldamiseks ja väljundi sobitamiseks SonarQube Scanneri vajadustega tuleb kirjutada paar skripti: üks PowerShellis ja teine Windowsi pakkfailina. Regulaarselt ajastatud analüüside käivitamist tagab QuickBuild, -
Write Your Own Rules and Enforce Them Continuously
Ultimate Architecture Enforcement Write Your Own Rules and Enforce Them Continuously SATURN May 2017 Paulo Merson Brazilian Federal Court of Accounts Agenda Architecture conformance Custom checks lab Sonarqube Custom checks at TCU Lessons learned 2 Exercise 0 – setup Open www.dontpad.com/saturn17 Follow the steps for “Exercise 0” Pre-requisites for all exercises: • JDK 1.7+ • Java IDE of your choice • maven 3 Consequences of lack of conformance Lower maintainability, mainly because of undesired dependencies • Code becomes brittle, hard to understand and change Possible negative effect • on reliability, portability, performance, interoperability, security, and other qualities • caused by deviation from design decisions that addressed these quality requirements 4 Factors that influence architecture conformance How effective the architecture documentation is Turnover among developers Haste to fix bugs or implement features Size of the system Distributed teams (outsourcing, offshoring) Accountability for violating design constraints 5 How to avoid code and architecture disparity? 1) Communicate the architecture to developers • Create multiple views • Structural diagrams + behavior diagrams • Capture rationale Not the focus of this tutorial 6 How to avoid code and architecture disparity? 2) Automate architecture conformance analysis • Often done with static analysis tools 7 Built-in checks and custom checks Static analysis tools come with many built-in checks • They are useful to spot bugs and improve your overall code quality • But they’re -
Codesonar the SAST Platform for Devsecops
DATASHEET CodeSonar The SAST Platform for DevSecOps Accelerate Application Security Software teams are under constant pressure to deliver more content with higher complexity, in shorter timeframes, with increased quality and security. Static Application Security Testing is a proven best practice to help software teams deliver the best code in the shortest timeframe. GrammaTech has been a leader in this field for over 15 years with CodeSonar delivering multi-language SAST capabilities for enterprises where software quality and software security matter. DevSecOps - Speed and Scale Language Support Software developers need rapid feedback on security CodeSonar supports many popular languages, including vulnerabilities in their code. CodeSonar can be integrated into C/C++, Java, C# and Android, as well as support for native software development environments, works unobtrusively to binaries in Intel, Arm and PowerPC instruction set architectures. the developer and provides rapid feedback. CodeSonar also supports OASIS SARIF, for exchange of information with other tools in the DevSecOps environment. Examples of Defects Detected • Buffer over- and underruns • Cast and conversion problems • Command injection • Copy-paste error • Concurrency • Ignored return value • Memory leak • Tainted data • Null pointer dereference • Dangerous function • Unused parameter / value And hundreds more Security Quality Privacy Broad coverage of security vulnerabilities, Integration into DevSecOps to improve Checkers that detect performance including OWASP Top10, SANS/CWE 25. quality of the code and developer impacts such as unnecessary test for Support for third party applications efficiency. Find code quality and nullness, creation of redundant objects or through byte code analysis. performance issues at speed. superfluous memory writes. Team Support Built In CodeSonar is designed to support large teams. -
Grammatech Codesonar Product Datasheet
GRAMMATECH CODESONAR PRODUCT DATASHEET Static Code Analysis and Static Application Security Testing Software Assurance Services Delivered by a senior software CodeSonar empowers teams to quickly analyze and validate the code – source and/or binary – engineer, the software assurance identifying serious defects or bugs that cause cyber vulnerabilities, system failures, poor services focus on automating reliability, or unsafe conditions. reporting on your software quality, creating an improvement plan and GrammaTech’s Software Assurance Services provide the benets of CodeSonar to your team in measuring your progress against that an accelerated timeline and ensures that you make the best use of SCA and SAST. plan. This provides your teams with reliable, fast, actionable data. GrammaTech will manage the static Enjoy the Benets of the Deepest Static Analysis analysis engine on your premises for you, such that your resources can Employ Sophisticated Algorithms Comply with Coding Standards focus on developing software. The following activities are covered: CodeSonar performs a unied dataow and CodeSonar supports compliance with standards symbolic execution analysis that examines the like MISRA C:2012, IS0-26262, DO-178B, Integration in your release process computation of the entire program. The US-CERT’s Build Security In, and MITRE’S CWE. Integration in check-in process approach does not rely on pattern matching or similar approximations. CodeSonar’s deeper Automatic assignment of defects analysis naturally nds defects with new or Reduction of parse errors unusual patterns. Review of warnings Analyze Millions of Lines of Code Optimization of conguration CodeSonar can perform a whole-program Improvement plan and tracking analysis on 10M+ lines of code. -
Inf 212 Analysis of Prog. Langs Elements of Imperative Programming Style
INF 212 ANALYSIS OF PROG. LANGS ELEMENTS OF IMPERATIVE PROGRAMMING STYLE Instructors: Kaj Dreef Copyright © Instructors. Objectives Level up on things that you may already know… ! Machine model of imperative programs ! Structured vs. unstructured control flow ! Assignment ! Variables and names ! Lexical scope and blocks ! Expressions and statements …so to understand existing languages better Imperative Programming 3 Oldest and most popular paradigm ! Fortran, Algol, C, Java … Mirrors computer architecture ! In a von Neumann machine, memory holds instructions and data Control-flow statements ! Conditional and unconditional (GO TO) branches, loops Key operation: assignment ! Side effect: updating state (i.e., memory) of the machine Simplified Machine Model 4 Registers Code Data Stack Program counter Environment Heap pointer Memory Management 5 Registers, Code segment, Program counter ! Ignore registers (for our purposes) and details of instruction set Data segment ! Stack contains data related to block entry/exit ! Heap contains data of varying lifetime ! Environment pointer points to current stack position ■ Block entry: add new activation record to stack ■ Block exit: remove most recent activation record Control Flow 6 Control flow in imperative languages is most often designed to be sequential ! Instructions executed in order they are written ! Some also support concurrent execution (Java) But… Goto in C # include <stdio.h> int main(){ float num,average,sum; int i,n; printf("Maximum no. of inputs: "); scanf("%d",&n); for(i=1;i<=n;++i){ -
Jalopy User's Guide V. 1.9.4
Jalopy - User’s Guide v. 1.9.4 Jalopy - User’s Guide v. 1.9.4 Copyright © 2003-2010 TRIEMAX Software Contents Acknowledgments . vii Introduction . ix PART I Core . 1 CHAPTER 1 Installation . 3 1.1 System requirements . 3 1.2 Prerequisites . 3 1.3 Wizard Installation . 4 1.3.1 Welcome . 4 1.3.2 License Agreement . 5 1.3.3 Installation Features . 5 1.3.4 Online Help System (optional) . 8 1.3.5 Settings Import (optional) . 9 1.3.6 Configure plug-in Defaults . 10 1.3.7 Confirmation . 11 1.3.8 Installation . 12 1.3.9 Finish . 13 1.4 Silent Installation . 14 1.5 Manual Installation . 16 CHAPTER 2 Configuration . 17 2.1 Overview . 17 2.1.1 Preferences GUI . 18 2.1.2 Settings files . 29 2.2 Global . 29 2.2.1 General . 29 2.2.2 Misc . 32 2.2.3 Auto . 35 2.3 File Types . 36 2.3.1 File types . 36 2.3.2 File extensions . 37 2.4 Environment . 38 2.4.1 Custom variables . 38 2.4.2 System variables . 40 2.4.3 Local variables . 41 2.4.4 Usage . 42 2.4.5 Date/Time . 44 2.5 Exclusions . 44 2.5.1 Exclusion patterns . 45 2.6 Messages . 46 2.6.1 Categories . 47 2.6.2 Logging . 48 2.6.3 Misc . 49 2.7 Repository . 49 2.7.1 Searching the repository . 50 2.7.2 Displaying info about the repository . 50 2.7.3 Adding libraries to the repository . 50 2.7.4 Removing the repository . -
C Style and Coding Standards
-- -- -1- C Style and Coding Standards Glenn Skinner Suryakanta Shah Bill Shannon AT&T Information System Sun Microsystems ABSTRACT This document describes a set of coding standards and recommendations for programs written in the C language at AT&T and Sun Microsystems. The purpose of having these standards is to facilitate sharing of each other’s code, as well as to enable construction of tools (e.g., editors, formatters). Through the use of these tools, programmers will be helped in the development of their programs. This document is based on a similar document written by L.W. Cannon, R.A. Elliott, L.W. Kirchhoff, J.H. Miller, J.M. Milner, R.W. Mitze, E.P. Schan, N.O. Whittington at Bell Labs. -- -- -2- C Style and Coding Standards Glenn Skinner Suryakanta Shah Bill Shannon AT&T Information System Sun Microsystems 1. Introduction The scope of this document is the coding style used at AT&T and Sun in writing C programs. A common coding style makes it easier for several people to cooperate in the development of the same program. Using uniform coding style to develop systems will improve readability and facilitate maintenance. In addition, it will enable the construction of tools that incorporate knowledge of these standards to help programmers in the development of programs. For certain style issues, such as the number of spaces used for indentation and the format of variable declarations, no clear consensus exists. In these cases, we have documented the various styles that are most frequently used. We strongly recommend, however, that within a particular project, and certainly within a package or module, only one style be employed. -
Codesonar for C# Datasheet
DATASHEET CodeSonar C# SAST when Safety and Security Matter Accelerate Application Security Software teams are under constant pressure to deliver more content with higher complexity, in shorter timeframes, with increased quality and security. Static Application Security Testing is a proven best practice to help software teams deliver the best code in the shortest timeframe. GrammaTech has been a leader in this field for over 15 years with CodeSonar delivering C# multi-language SAST capabilities for enterprises where software quality and software security matter. DevSecOps - Speed and Scale Abstract Interpretation Software developers need rapid feedback on security GrammaTech SAST tools use the concept of abstract vulnerabilities in their work artifacts. CodeSonar can be interpretation to statically examine all the paths through the integrated into software development environments, can work application and understand the values of variables and how they unobtrusively to the developer and provide rapid feedback. impact program state. Abstract interpretation gives CodeSonar for C# the highest scores in vulnerability benchmarks. Security Quality Privacy Broad coverage of security vulnerabilities, Integration into DevSecOps to improve Checkers that detect performance including OWASP Top10, SANS/CWE 25. quality of the code and developer impacts such as unnecessary test for Support for third party applications efficiency. Find code quality and nullness, creation of redundant objects or through byte code analysis. performance issues at speed. superfluous memory writes. Use Cases Enterprise customers are using C# in their internal applications, either in-house built, or built by a third-party. Static analysis is needed to to improve security and quality to drive business continuity. Mobile and Client customers are using C# on end-points, sometimes in an internet-of-things deployment, or to provide information to mobile users. -
Software Vulnerabilities Principles, Exploitability, Detection and Mitigation
Software vulnerabilities principles, exploitability, detection and mitigation Laurent Mounier and Marie-Laure Potet Verimag/Université Grenoble Alpes GDR Sécurité – Cyber in Saclay (Winter School in CyberSecurity) February 2021 Software vulnerabilities . are everywhere . and keep going . 2 / 35 Outline Software vulnerabilities (what & why ?) Programming languages (security) issues Exploiting a sofwtare vulnerability Software vulnerabilities mitigation Conclusion Example 1: password authentication Is this code “secure” ? boolean verify (char[] input, char[] passwd , byte len) { // No more than triesLeft attempts if (triesLeft < 0) return false ; // no authentication // Main comparison for (short i=0; i <= len; i++) if (input[i] != passwd[i]) { triesLeft-- ; return false ; // no authentication } // Comparison is successful triesLeft = maxTries ; return true ; // authentication is successful } functional property: verify(input; passwd; len) , input[0::len] = passwd[0::len] What do we want to protect ? Against what ? I confidentiality of passwd, information leakage ? I control-flow integrity of the code I no unexpected runtime behaviour, etc. 3 / 35 Example 2: make ‘python -c ’print "A"*5000’‘ run make with a long argument crash (in recent Ubuntu versions) Why do we need to bother about crashes (wrt. security) ? crash = consequence of an unexpected run-time error not trapped/foreseen by the programmer, nor by the compiler/interpreter ) some part of the execution: I may take place outside the program scope/semantics I but can be controled/exploited by an attacker (∼ “weird machine”) out of scope execution runtime error crash normal execution possibly exploitable ... security breach ! ,! may break all security properties ... from simple denial-of-service to arbitrary code execution Rk: may also happen silently (without any crash !) 4 / 35 Back to the context: computer system security what does security mean ? I a set of general security properties: CIA Confidentiality, Integrity, Availability (+ Non Repudiation + Anonymity + . -
Ics-Fd-Qa Project • Objective • Present Scope • QA Calling Sequence • Present Status & Tools • Integration Into Projects & Kobe • Some Issues • Conclusion
ics-fd-qa project • Objective • Present scope • QA calling sequence • Present status & tools • Integration into projects & kobe • Some issues • Conclusion • Your input, discussion Objective • Provide integrated code quality assessment • Standard analysis method, but ignore coding styles a.f.a.p. • High quality code scans, try to find “fishy” pieces automatically • Report only false-true, keep noise down • Graphical output with sonarqube, fancy, motivating • Support and encourage easy documentation writing (sphinx, …) • Provide clear code fix proposals if available • Provide q.a. history • Have minimal impact on projects • Existing build chains are sacred • Be able to digest lots of legacy code and give orientation for “hot spots” Present Scope • ICS-FD section internal • C/C++ code, no java, no control+ • Cmake build chain ( qmake/Qt/bear come later ) • Static code analysis: clang-tidy, cppcheck (more tools can be easily added, but clang-tidy is the upshot) • Push results to tmp-sonarqube, will have own fd instance later (dixit ics- in) • Integrated with docker, gitlab-CI and uses a bit of nexus • Therefore is kobe-compatible , see later • Can update existing sphinx-doc “almost for free”: tools are included in the docker image QA Sonarqube Ics-fd-qa (gitlab, nexus) Ics-fd qa webpage Sonar-scanner transmission Docker: clang 7.0.1 Calling • Code issues Python 3, Sphinx, • Proposed corrections Doxygen, Breathe, sequence • Statistics Trigger with payload Sonar-scanner, break, • Graphs • Artifact URL cmake 3, … • Project name stages: Push new sources • Control flags 1. Fetch sources URL & unpack 2. analysis: clang-tidy, cppcheck, aux results, output & logs artifacts C/C++ 3. Push to sonarqube Trigger project using sonar-scanner Pipeline Build: ADDED stage: • gitlab • all sources • Pull qa scripts from nexus • cmake are available • Analyze json-db for full • Produce a source dependencies build • Pack sources into artifact Nexus command (URL) Temp json-db • Trigger with payload repo QA calling sequence • works mostly blind.