Nber Working Paper Series Decentralized Mining In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crypto Research Report ‒ April 2019 Edition
April 2019 Edition VI. “When the Tide Goes Out…” Investments: Gold and Bitcoin, Stronger Together Technical Analysis: Spring Awakening? Cryptocurrency Mining in Theory and Practice Demelza Kelso Hays Mark J. Valek We would like to express our profound gratitude to our premium partners for supporting the Crypto Research Report: www.cryptofunds.li Contents Editorial ............................................................................................................................................... 4 In Case You Were Sleeping: When the Tide Goes Out…............................................................... 5 Back to the Roots ............................................................................................................................................. 6 How Long Will This Bear Market Last .............................................................................................................. 7 A Tragic Story Traverses the World ................................................................................................................. 9 When the tide goes out… ............................................................................................................................... 10 A State Cryptocurrency? ................................................................................................................................ 12 Support is Increasing ..................................................................................................................................... 14 -
Bitcoin: Technology, Economics and Business Ethics
Bitcoin: Technology, Economics and Business Ethics By Azizah Aljohani A thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfilment of the degree requirements of MASTER OF SCIENCE IN SYSTEM SCIENCE FACULTY OF ENGINEERING University of Ottawa Ottawa, Ontario, Canada August 2017 © Azizah Aljohani, Ottawa, Canada, 2017 KEYWORDS: Virtual currencies, cryptocurrencies, blockchain, Bitcoin, GARCH model ABSTRACT The rapid advancement in encryption and network computing gave birth to new tools and products that have influenced the local and global economy alike. One recent and notable example is the emergence of virtual currencies, also known as cryptocurrencies or digital currencies. Virtual currencies, such as Bitcoin, introduced a fundamental transformation that affected the way goods, services, and assets are exchanged. As a result of its distributed ledgers based on blockchain, cryptocurrencies not only offer some unique advantages to the economy, investors, and consumers, but also pose considerable risks to users and challenges for regulators when fitting the new technology into the old legal framework. This paper attempts to model the volatility of bitcoin using 5 variants of the GARCH model namely: GARCH(1,1), EGARCH(1,1) IGARCH(1,1) TGARCH(1,1) and GJR-GARCH(1,1). Once the best model is selected, an OLS regression was ran on the volatility series to measure the day of the week the effect. The results indicate that the TGARCH (1,1) model best fits the volatility price for the data. Moreover, Sunday appears as the most significant day in the week. A nontechnical discussion of several aspects and features of virtual currencies and a glimpse at what the future may hold for these decentralized currencies is also presented. -
Cryptocurrency: the Economics of Money and Selected Policy Issues
Cryptocurrency: The Economics of Money and Selected Policy Issues Updated April 9, 2020 Congressional Research Service https://crsreports.congress.gov R45427 SUMMARY R45427 Cryptocurrency: The Economics of Money and April 9, 2020 Selected Policy Issues David W. Perkins Cryptocurrencies are digital money in electronic payment systems that generally do not require Specialist in government backing or the involvement of an intermediary, such as a bank. Instead, users of the Macroeconomic Policy system validate payments using certain protocols. Since the 2008 invention of the first cryptocurrency, Bitcoin, cryptocurrencies have proliferated. In recent years, they experienced a rapid increase and subsequent decrease in value. One estimate found that, as of March 2020, there were more than 5,100 different cryptocurrencies worth about $231 billion. Given this rapid growth and volatility, cryptocurrencies have drawn the attention of the public and policymakers. A particularly notable feature of cryptocurrencies is their potential to act as an alternative form of money. Historically, money has either had intrinsic value or derived value from government decree. Using money electronically generally has involved using the private ledgers and systems of at least one trusted intermediary. Cryptocurrencies, by contrast, generally employ user agreement, a network of users, and cryptographic protocols to achieve valid transfers of value. Cryptocurrency users typically use a pseudonymous address to identify each other and a passcode or private key to make changes to a public ledger in order to transfer value between accounts. Other computers in the network validate these transfers. Through this use of blockchain technology, cryptocurrency systems protect their public ledgers of accounts against manipulation, so that users can only send cryptocurrency to which they have access, thus allowing users to make valid transfers without a centralized, trusted intermediary. -
Cryptocurrencies As an Alternative to Fiat Monetary Systems David A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Commons at Buffalo State State University of New York College at Buffalo - Buffalo State College Digital Commons at Buffalo State Applied Economics Theses Economics and Finance 5-2018 Cryptocurrencies as an Alternative to Fiat Monetary Systems David A. Georgeson State University of New York College at Buffalo - Buffalo State College, [email protected] Advisor Tae-Hee Jo, Ph.D., Associate Professor of Economics & Finance First Reader Tae-Hee Jo, Ph.D., Associate Professor of Economics & Finance Second Reader Victor Kasper Jr., Ph.D., Associate Professor of Economics & Finance Third Reader Ted P. Schmidt, Ph.D., Professor of Economics & Finance Department Chair Frederick G. Floss, Ph.D., Chair and Professor of Economics & Finance To learn more about the Economics and Finance Department and its educational programs, research, and resources, go to http://economics.buffalostate.edu. Recommended Citation Georgeson, David A., "Cryptocurrencies as an Alternative to Fiat Monetary Systems" (2018). Applied Economics Theses. 35. http://digitalcommons.buffalostate.edu/economics_theses/35 Follow this and additional works at: http://digitalcommons.buffalostate.edu/economics_theses Part of the Economic Theory Commons, Finance Commons, and the Other Economics Commons Cryptocurrencies as an Alternative to Fiat Monetary Systems By David A. Georgeson An Abstract of a Thesis In Applied Economics Submitted in Partial Fulfillment Of the Requirements For the Degree of Master of Arts May 2018 State University of New York Buffalo State Department of Economics and Finance ABSTRACT OF THESIS Cryptocurrencies as an Alternative to Fiat Monetary Systems The recent popularity of cryptocurrencies is largely associated with a particular application referred to as Bitcoin. -
Bypassing Non-Outsourceable Proof-Of-Work Schemes Using Collateralized Smart Contracts
Bypassing Non-Outsourceable Proof-of-Work Schemes Using Collateralized Smart Contracts Alexander Chepurnoy1;2, Amitabh Saxena1 1 Ergo Platform [email protected], [email protected] 2 IOHK Research [email protected] Abstract. Centralized pools and renting of mining power are considered as sources of possible censorship threats and even 51% attacks for de- centralized cryptocurrencies. Non-outsourceable Proof-of-Work schemes have been proposed to tackle these issues. However, tenets in the folk- lore say that such schemes could potentially be bypassed by using es- crow mechanisms. In this work, we propose a concrete example of such a mechanism which is using collateralized smart contracts. Our approach allows miners to bypass non-outsourceable Proof-of-Work schemes if the underlying blockchain platform supports smart contracts in a sufficiently advanced language. In particular, the language should allow access to the PoW solution. At a high level, our approach requires the miner to lock collateral covering the reward amount and protected by a smart contract that acts as an escrow. The smart contract has logic that allows the pool to collect the collateral as soon as the miner collects any block reward. We propose two variants of the approach depending on when the collat- eral is bound to the block solution. Using this, we show how to bypass previously proposed non-outsourceable Proof-of-Work schemes (with the notable exception for strong non-outsourceable schemes) and show how to build mining pools for such schemes. 1 Introduction Security of Bitcoin and many other cryptocurrencies relies on so called Proof-of- Work (PoW) schemes (also known as scratch-off puzzles), which are mechanisms to reach fast consensus and guarantee immutability of the ledger. -
The Economic Limits of Bitcoin and the Blockchain∗†
The Economic Limits of Bitcoin and the Blockchain∗† Eric Budish‡ June 5, 2018 Abstract The amount of computational power devoted to anonymous, decentralized blockchains such as Bitcoin’s must simultaneously satisfy two conditions in equilibrium: (1) a zero-profit condition among miners, who engage in a rent-seeking competition for the prize associated with adding the next block to the chain; and (2) an incentive compatibility condition on the system’s vulnerability to a “majority attack”, namely that the computational costs of such an attack must exceed the benefits. Together, these two equations imply that (3) the recurring, “flow”, payments to miners for running the blockchain must be large relative to the one-off, “stock”, benefits of attacking it. This is very expensive! The constraint is softer (i.e., stock versus stock) if both (i) the mining technology used to run the blockchain is both scarce and non-repurposable, and (ii) any majority attack is a “sabotage” in that it causes a collapse in the economic value of the blockchain; however, reliance on non-repurposable technology for security and vulnerability to sabotage each raise their own concerns, and point to specific collapse scenarios. In particular, the model suggests that Bitcoin would be majority attacked if it became sufficiently economically important — e.g., if it became a “store of value” akin to gold — which suggests that there are intrinsic economic limits to how economically important it can become in the first place. ∗Project start date: Feb 18, 2018. First public draft: May 3, 2018. For the record, the first large-stakes majority attack of a well-known cryptocurrency, the $18M attack on Bitcoin Gold, occurred a few weeks later in mid-May 2018 (Wilmoth, 2018; Wong, 2018). -
Creation and Resilience of Decentralized Brands: Bitcoin & The
Creation and Resilience of Decentralized Brands: Bitcoin & the Blockchain Syeda Mariam Humayun A dissertation submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Administration Schulich School of Business York University Toronto, Ontario March 2019 © Syeda Mariam Humayun 2019 Abstract: This dissertation is based on a longitudinal ethnographic and netnographic study of the Bitcoin and broader Blockchain community. The data is drawn from 38 in-depth interviews and 200+ informal interviews, plus archival news media sources, netnography, and participant observation conducted in multiple cities: Toronto, Amsterdam, Berlin, Miami, New York, Prague, San Francisco, Cancun, Boston/Cambridge, and Tokyo. Participation at Bitcoin/Blockchain conferences included: Consensus Conference New York, North American Bitcoin Conference, Satoshi Roundtable Cancun, MIT Business of Blockchain, and Scaling Bitcoin Tokyo. The research fieldwork was conducted between 2014-2018. The dissertation is structured as three papers: - “Satoshi is Dead. Long Live Satoshi.” The Curious Case of Bitcoin: This paper focuses on the myth of anonymity and how by remaining anonymous, Satoshi Nakamoto, was able to leave his creation open to widespread adoption. - Tracing the United Nodes of Bitcoin: This paper examines the intersection of religiosity, technology, and money in the Bitcoin community. - Our Brand Is Crisis: Creation and Resilience of Decentralized Brands – Bitcoin & the Blockchain: Drawing on ecological resilience framework as a conceptual metaphor this paper maps how various stabilizing and destabilizing forces in the Bitcoin ecosystem helped in the evolution of a decentralized brand and promulgated more mainstreaming of the Bitcoin brand. ii Dedication: To my younger brother, Umer. -
Regulating the Bitcoin Ecosystem
Regulating The Bitcoin Ecosystem Master Thesis Rishabh Kapoor (4184009) Engineering and Policy Analysis Faculty of Technology Policy Management Delft University of Technology February, 2016 1 Title Regulating The Bitcoin Ecosystem Author Rishabh Kapoor Date February 1st, 2016 Email [email protected] University Delft University of Technology Faculty of Technology, Policy & Management Program Engineering and Policy Analysis Section Economics of Innovation Graduation Committee Chairman: Prof. Cees van Beers [Economics of Innovation] First Supervisor: Dr. Servaas Storm [Economics of Innovation] Second Supervisor: Dr. Filippo Santoni De Sio [Philosophy of Technology] 2 Acknowledgement This thesis is the final submission of my master studies which started in September 2011 as part of the Engineering and Policy Analysis program at Faculty of Technology, Policy & Management, TU Delft. My most sincere gratitude goes to my graduation committee. I'd like to thank Dr. Servaas Storm who guided and helped me during the whole graduation process and was kind enough to allow me the freedom to explore a new innovative theme. I really appreciate, that you helped me screen the papers which directly guided me to an in-depth research across disciplines. I gained a lot, from the efficient discussion each time as well. Also, Dr. Filippo Santoni De Sio, was very kind to give his valuable feedback in arranging the philosophy section better. Finally, Prof. Cees van Beers was helpful in his remarks for the practical applicability of the thesis. I also would like to thank Satoshi Nakomoto (Founder, Bitcoin) whoever he is for having the courage to give to the world this new financial model for us to think and rethink about society fundamentally and move towards balanced technology decentralization. -
Liquidity Or Leakage Plumbing Problems with Cryptocurrencies
Liquidity Or Leakage Plumbing Problems With Cryptocurrencies March 2018 Liquidity Or Leakage - Plumbing Problems With Cryptocurrencies Liquidity Or Leakage Plumbing Problems With Cryptocurrencies Rodney Greene Quantitative Risk Professional Advisor to Z/Yen Group Bob McDowall Advisor to Cardano Foundation Distributed Futures 1/60 © Z/Yen Group, 2018 Liquidity Or Leakage - Plumbing Problems With Cryptocurrencies Foreword Liquidity is the probability that an asset can be converted into an expected amount of value within an expected amount of time. Any token claiming to be ‘money’ should be very liquid. Cryptocurrencies often exhibit high price volatility and wide spreads between their buy and sell prices into fiat currencies. In other markets, such high volatility and wide spreads might indicate low liquidity, i.e. it is difficult to turn an asset into cash. Normal price falls do not increase the number of sellers but should increase the number of buyers. A liquidity hole is where price falls do not bring out buyers, but rather generate even more sellers. If cryptocurrencies fail to provide easy liquidity, then they fail as mediums of exchange, one of the principal roles of money. However, there are a number of ways of assembling a cryptocurrency and a number of parameters, such as the timing of trades, the money supply algorithm, and the assembling of blocks, that might be done in better ways to improve liquidity. This research should help policy makers look critically at what’s needed to provide good liquidity with these exciting systems. Michael Parsons FCA Chairman, Cardano Foundation, Distributed Futures 2/60 © Z/Yen Group, 2018 Liquidity Or Leakage - Plumbing Problems With Cryptocurrencies Contents Foreword .............................................................................................................. -
Transparent and Collaborative Proof-Of-Work Consensus
StrongChain: Transparent and Collaborative Proof-of-Work Consensus Pawel Szalachowski, Daniël Reijsbergen, and Ivan Homoliak, Singapore University of Technology and Design (SUTD); Siwei Sun, Institute of Information Engineering and DCS Center, Chinese Academy of Sciences https://www.usenix.org/conference/usenixsecurity19/presentation/szalachowski This paper is included in the Proceedings of the 28th USENIX Security Symposium. August 14–16, 2019 • Santa Clara, CA, USA 978-1-939133-06-9 Open access to the Proceedings of the 28th USENIX Security Symposium is sponsored by USENIX. StrongChain: Transparent and Collaborative Proof-of-Work Consensus Pawel Szalachowski1 Daniel¨ Reijsbergen1 Ivan Homoliak1 Siwei Sun2;∗ 1Singapore University of Technology and Design (SUTD) 2Institute of Information Engineering and DCS Center, Chinese Academy of Sciences Abstract a cryptographically-protected append-only list [2] is intro- duced. This list consists of transactions grouped into blocks Bitcoin is the most successful cryptocurrency so far. This and is usually referred to as a blockchain. Every active pro- is mainly due to its novel consensus algorithm, which is tocol participant (called a miner) collects transactions sent based on proof-of-work combined with a cryptographically- by users and tries to solve a computationally-hard puzzle in protected data structure and a rewarding scheme that incen- order to be able to write to the blockchain (the process of tivizes nodes to participate. However, despite its unprece- solving the puzzle is called mining). When a valid solution dented success Bitcoin suffers from many inefficiencies. For is found, it is disseminated along with the transactions that instance, Bitcoin’s consensus mechanism has been proved to the miner wishes to append. -
3Rd Global Cryptoasset Benchmarking Study
3RD GLOBAL CRYPTOASSET BENCHMARKING STUDY Apolline Blandin, Dr. Gina Pieters, Yue Wu, Thomas Eisermann, Anton Dek, Sean Taylor, Damaris Njoki September 2020 supported by Disclaimer: Data for this report has been gathered primarily from online surveys. While every reasonable effort has been made to verify the accuracy of the data collected, the research team cannot exclude potential errors and omissions. This report should not be considered to provide legal or investment advice. Opinions expressed in this report reflect those of the authors and not necessarily those of their respective institutions. TABLE OF CONTENTS FOREWORDS ..................................................................................................................................................4 RESEARCH TEAM ..........................................................................................................................................6 ACKNOWLEDGEMENTS ............................................................................................................................7 EXECUTIVE SUMMARY ........................................................................................................................... 11 METHODOLOGY ........................................................................................................................................ 14 SECTION 1: INDUSTRY GROWTH INDICATORS .........................................................................17 Employment figures ..............................................................................................................................................................................................................17 -
Evolutionary Game for Mining Pool Selection in Blockchain
1 Evolutionary Game for Mining Pool Selection in Blockchain Networks Xiaojun Liu∗†, Wenbo Wang†, Dusit Niyato†, Narisa Zhao∗ and Ping Wang† ∗Institute of Systems Engineering, Dalian University of Technology, Dalian, China, 116024 †School of Computer Engineering, Nanyang Technological University, Singapore, 639798 Abstract—In blockchain networks adopting the proof-of-work studies [3] have shown that the Nakamoto protocol is able schemes, the monetary incentive is introduced by the Nakamoto to guarantee the persistence and liveness of a blockchain in consensus protocol to guide the behaviors of the full nodes (i.e., a Byzantine environment. In other words, when a majority block miners) in the process of maintaining the consensus about the blockchain state. The block miners have to devote their of the mining nodes honestly follow the Nakamoto protocol, computation power measured in hash rate in a crypto-puzzle the transactional data on the blockchain are guaranteed to be solving competition to win the reward of publishing (a.k.a., immutable once they are recorded. mining) new blocks. Due to the exponentially increasing difficulty In the Nakamoto protocol, the financial incentive mecha- of the crypto-puzzle, individual block miners tends to join mining nism consists of two parts: (a) a computation-intensive crypto- pools, i.e., the coalitions of miners, in order to reduce the income variance and earn stable profits. In this paper, we study the puzzle solving process to make Sybil attacks financially unaf- dynamics of mining pool selection in a blockchain network, where fordable, and (b) a reward generation process to award the mining pools may choose arbitrary block mining strategies.