Theory and Practice Theory and Practice for Hash Functions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IMPLEMENTATION and BENCHMARKING of PADDING UNITS and HMAC for SHA-3 CANDIDATES in FPGAS and ASICS by Ambarish Vyas a Thesis Subm
IMPLEMENTATION AND BENCHMARKING OF PADDING UNITS AND HMAC FOR SHA-3 CANDIDATES IN FPGAS AND ASICS by Ambarish Vyas A Thesis Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements for the Degree of Master of Science Computer Engineering Committee: Dr. Kris Gaj, Thesis Director Dr. Jens-Peter Kaps. Committee Member Dr. Bernd-Peter Paris. Committee Member Dr. Andre Manitius, Department Chair of Electrical and Computer Engineering Dr. Lloyd J. Griffiths. Dean, Volgenau School of Engineering Date: ---J d. / q /9- 0 II Fall Semester 2011 George Mason University Fairfax, VA Implementation and Benchmarking of Padding Units and HMAC for SHA-3 Candidates in FPGAs and ASICs A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University By Ambarish Vyas Bachelor of Science University of Pune, 2009 Director: Dr. Kris Gaj, Associate Professor Department of Electrical and Computer Engineering Fall Semester 2011 George Mason University Fairfax, VA Copyright c 2011 by Ambarish Vyas All Rights Reserved ii Acknowledgments I would like to use this oppurtunity to thank the people who have supported me throughout my thesis. First and foremost my advisor Dr.Kris Gaj, without his zeal, his motivation, his patience, his confidence in me, his humility, his diverse knowledge, and his great efforts this thesis wouldn't be possible. It is difficult to exaggerate my gratitude towards him. I also thank Ekawat Homsirikamol for his contributions to this project. He has significantly contributed to the designs and implementations of the architectures. Additionally, I am indebted to my student colleagues in CERG for providing a fun environment to learn and giving invaluable tips and support. -
Lecture9.Pdf
Merkle- Suppose H is a Damgaord hash function built from a secure compression function : several to build a function ways keyed : m : = H Ilm 1 . end FCK ) (k ) Prep key , " " ↳ - Insecure due to structure of Merkle : can mount an extension attack: H (KH m) can Barnyard given , compute ' Hlkllmllm ) by extending Merkle- Danged chain = : m : 2 . FCK ) 11k) Append key , Hlm ↳ - - to : Similar to hash then MAC construction and vulnerable same offline attack adversary finds a collision in the - - > Merkle and uses that to construct a for SHA I used PDF files Barnyard prefix forgery f , they ↳ - Structure in SHA I (can matches exploited collision demonstration generate arbitrary collisions once prefix ) ' = : FCK m - H on h 3. method , ) ( K HMH K) for reasonable randomness ( both Envelope pseudo assumptions e.g , : = - = i - - : F ( m m } : h K m h m k 4. nest ( ki ) H Ck H (k m ( , and m ( ) is a PRF both Two , kz , ) (ka HH , )) F- , ) ) Falk , ) , ) key , - of these constructions are secure PRFS on a variable size domain hash- based MAC ✓ a the - nest with correlated : HMAC is PRF / MAC based on two key (though keys) : = m H H ka m HMACCK ( K H ( , )) , ) , where k ← k ④ and kz ← k to , ipad opad and and are fixed ( in the HMAC standard) ipad opad strings specified I 0×36 repeated %x5C repeated : k . a Since , and ka are correlated need to make on h remains under Sety , stronger assumption security leg , pseudorandom related attack) Instantiations : denoted HMAC- H where H is the hash function Typically , HMAC- SHAI %" - - HMAC SHA256 -
Authenticated Key-Exchange: Protocols, Attacks, and Analyses
The HMAC construction: A decade later Ran Canetti IBM Research What is HMAC? ● HMAC: A Message Authentication Code based on Cryptographic Hash functions [Bellare-C-Krawczyk96]. ● Developed for the IPSec standard of the Internet Engineering Task Force (IETF). ● Currently: - incorporated in IPSec, SSL/TLS, SSH, Kerberos, SHTTP, HTTPS, SRTP, MSEC, ... - ANSI and NIST standards - Used daily by all of us. Why is HMAC interesting? ● “Theoretical” security analysis impacts the security of real systems. ● Demonstrates the importance of modelling and abstraction in practical cryptography. ● The recent attacks on hash functions highlight the properties of the HMAC design and analysis. ● Use the HMAC lesson to propose requirements for the next cryptographic hash function. Organization ● Authentication, MACs, Hash-based MACs ● HMAC construction and analysis ● Other uses of HMAC: ● Pseudo-Random Functions ● Extractors ● What properties do we want from a “cryptographic hash function”? Authentication m m' A B The goal: Any tampering with messages should be detected. “If B accepts message m from A then A has sent m to B.” • One of the most basic cryptographic tasks • The basis for any security-conscious interaction over an open network Elements of authentication The structure of typical cryptographic solutions: • Initial entity authentication: The parties perform an initial exchange, bootstrapping from initial trusted information on each other. The result is a secret key that binds the parties to each other. • Message authentication: The parties use the key to authenticate exchanged messages via message authentication codes. Message Authentication Codes m,t m',t' A B t=FK(m) t' =? FK(m') • A and B obtain a common secret key K • A and B agree on a keyed function F • A sends t=FK(m) together with m • B gets (m',t') and accepts m' if t'=FK(m'). -
Fast Hashing and Stream Encryption with Panama
Fast Hashing and Stream Encryption with Panama Joan Daemen1 and Craig Clapp2 1 Banksys, Haachtesteenweg 1442, B-1130 Brussel, Belgium [email protected] 2 PictureTel Corporation, 100 Minuteman Rd., Andover, MA 01810, USA [email protected] Abstract. We present a cryptographic module that can be used both as a cryptographic hash function and as a stream cipher. High performance is achieved through a combination of low work-factor and a high degree of parallelism. Throughputs of 5.1 bits/cycle for the hashing mode and 4.7 bits/cycle for the stream cipher mode are demonstrated on a com- mercially available VLIW micro-processor. 1 Introduction Panama is a cryptographic module that can be used both as a cryptographic hash function and a stream cipher. It is designed to be very efficient in software implementations on 32-bit architectures. Its basic operations are on 32-bit words. The hashing state is updated by a parallel nonlinear transformation, the buffer operates as a linear feedback shift register, similar to that applied in the compression function of SHA [6]. Panama is largely based on the StepRightUp stream/hash module that was described in [4]. Panama has a low per-byte work factor while still claiming very high security. The price paid for this is a relatively high fixed computational overhead for every execution of the hash function. This makes the Panama hash function less suited for the hashing of messages shorter than the equivalent of a typewritten page. For the stream cipher it results in a relatively long initialization procedure. Hence, in applications where speed is critical, too frequent resynchronization should be avoided. -
CS-466: Applied Cryptography Adam O'neill
Hash functions CS-466: Applied Cryptography Adam O’Neill Adapted from http://cseweb.ucsd.edu/~mihir/cse107/ Setting the Stage • Today we will study a second lower-level primitive, hash functions. Setting the Stage • Today we will study a second lower-level primitive, hash functions. • Hash functions like MD5, SHA1, SHA256 are used pervasively. Setting the Stage • Today we will study a second lower-level primitive, hash functions. • Hash functions like MD5, SHA1, SHA256 are used pervasively. • Primary purpose is data compression, but they have many other uses and are often treated like a “magic wand” in protocol design. Collision resistance (CR) Collision Resistance n Definition: A collision for a function h : D 0, 1 is a pair x1, x2 D → { } ∈ of points such that h(x1)=h(x2)butx1 = x2. ̸ If D > 2n then the pigeonhole principle tells us that there must exist a | | collision for h. Mihir Bellare UCSD 3 Collision resistance (CR) Collision resistanceCollision Resistance (CR) n Definition: A collision for a function h : D 0, 1 n is a pair x1, x2 D Definition: A collision for a function h : D → {0, 1} is a pair x1, x2 ∈ D of points such that h(x1)=h(x2)butx1 = →x2.{ } ∈ of points such that h(x1)=h(x2)butx1 ≠ x2. ̸ If D > 2n then the pigeonhole principle tells us that there must exist a If |D| > 2n then the pigeonhole principle tells us that there must exist a collision| | for h. collision for h. We want that even though collisions exist, they are hard to find. -
Linearization Framework for Collision Attacks: Application to Cubehash and MD6
Linearization Framework for Collision Attacks: Application to CubeHash and MD6 Eric Brier1, Shahram Khazaei2, Willi Meier3, and Thomas Peyrin1 1 Ingenico, France 2 EPFL, Switzerland 3 FHNW, Switzerland Abstract. In this paper, an improved differential cryptanalysis framework for finding collisions in hash functions is provided. Its principle is based on lineariza- tion of compression functions in order to find low weight differential characteris- tics as initiated by Chabaud and Joux. This is formalized and refined however in several ways: for the problem of finding a conforming message pair whose differ- ential trail follows a linear trail, a condition function is introduced so that finding a collision is equivalent to finding a preimage of the zero vector under the con- dition function. Then, the dependency table concept shows how much influence every input bit of the condition function has on each output bit. Careful analysis of the dependency table reveals degrees of freedom that can be exploited in ac- celerated preimage reconstruction under the condition function. These concepts are applied to an in-depth collision analysis of reduced-round versions of the two SHA-3 candidates CubeHash and MD6, and are demonstrated to give by far the best currently known collision attacks on these SHA-3 candidates. Keywords: Hash functions, collisions, differential attack, SHA-3, CubeHash and MD6. 1 Introduction Hash functions are important cryptographic primitives that find applications in many areas including digital signatures and commitment schemes. A hash function is a trans- formation which maps a variable-length input to a fixed-size output, called message digest. One expects a hash function to possess several security properties, one of which is collision resistance. -
Permutation-Based Encryption, Authentication and Authenticated Encryption
Permutation-based encryption, authentication and authenticated encryption Permutation-based encryption, authentication and authenticated encryption Joan Daemen1 Joint work with Guido Bertoni1, Michaël Peeters2 and Gilles Van Assche1 1STMicroelectronics 2NXP Semiconductors DIAC 2012, Stockholm, July 6 . Permutation-based encryption, authentication and authenticated encryption Modern-day cryptography is block-cipher centric Modern-day cryptography is block-cipher centric (Standard) hash functions make use of block ciphers SHA-1, SHA-256, SHA-512, Whirlpool, RIPEMD-160, … So HMAC, MGF1, etc. are in practice also block-cipher based Block encryption: ECB, CBC, … Stream encryption: synchronous: counter mode, OFB, … self-synchronizing: CFB MAC computation: CBC-MAC, C-MAC, … Authenticated encryption: OCB, GCM, CCM … . Permutation-based encryption, authentication and authenticated encryption Modern-day cryptography is block-cipher centric Structure of a block cipher . Permutation-based encryption, authentication and authenticated encryption Modern-day cryptography is block-cipher centric Structure of a block cipher (inverse operation) . Permutation-based encryption, authentication and authenticated encryption Modern-day cryptography is block-cipher centric When is the inverse block cipher needed? Indicated in red: Hashing and its modes HMAC, MGF1, … Block encryption: ECB, CBC, … Stream encryption: synchronous: counter mode, OFB, … self-synchronizing: CFB MAC computation: CBC-MAC, C-MAC, … Authenticated encryption: OCB, GCM, CCM … So a block cipher -
FIPS 140-2 Non-Proprietary Security Policy Oracle Linux 7 NSS
FIPS 140-2 Non-Proprietary Security Policy Oracle Linux 7 NSS Cryptographic Module FIPS 140-2 Level 1 Validation Software Version: R7-4.0.0 Date: January 22nd, 2020 Document Version 2.3 © Oracle Corporation This document may be reproduced whole and intact including the Copyright notice. Title: Oracle Linux 7 NSS Cryptographic Module Security Policy Date: January 22nd, 2020 Author: Oracle Security Evaluations – Global Product Security Contributing Authors: Oracle Linux Engineering Oracle Corporation World Headquarters 500 Oracle Parkway Redwood Shores, CA 94065 U.S.A. Worldwide Inquiries: Phone: +1.650.506.7000 Fax: +1.650.506.7200 oracle.com Copyright © 2020, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. Oracle specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may reproduced or distributed whole and intact including this copyright notice. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Oracle Linux 7 NSS Cryptographic Module Security Policy i TABLE OF CONTENTS Section Title -
The Boomerang Attacks on the Round-Reduced Skein-512 *
The Boomerang Attacks on the Round-Reduced Skein-512 ? Hongbo Yu1, Jiazhe Chen3, and Xiaoyun Wang2;3 1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China 2 Institute for Advanced Study, Tsinghua University, Beijing 100084, China fyuhongbo,[email protected] 3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, School of Mathematics, Shandong University, Jinan 250100, China [email protected] Abstract. The hash function Skein is one of the ¯ve ¯nalists of the NIST SHA-3 competition; it is based on the block cipher Three¯sh which only uses three primitive operations: modular addition, rotation and bitwise XOR (ARX). This paper studies the boomerang attacks on Skein-512. Boomerang distinguishers on the compression function reduced to 32 and 36 rounds are proposed, with complexities 2104:5 and 2454 respectively. Examples of the distinguishers on 28-round and 31- round are also given. In addition, the boomerang distinguishers are applicable to the key-recovery attacks on reduced Three¯sh-512. The complexities for key-recovery attacks reduced to 32-/33- /34-round are about 2181, 2305 and 2424. Because Laurent et al. [14] pointed out that the previous boomerang distinguishers for Three¯sh-512 are in fact not compatible, our attacks are the ¯rst valid boomerang attacks for the ¯nal round Skein-512. Key words: Hash function, Boomerang attack, Three¯sh, Skein 1 Introduction Cryptographic hash functions, which provide integrity, authentication and etc., are very impor- tant in modern cryptology. In 2005, as the most widely used hash functions MD5 and SHA-1 were broken by Wang et al. -
An Analytic Attack Against ARX Addition Exploiting Standard Side-Channel Leakage
An Analytic Attack Against ARX Addition Exploiting Standard Side-Channel Leakage Yan Yan1, Elisabeth Oswald1 and Srinivas Vivek2 1University of Klagenfurt, Klagenfurt, Austria 2IIIT Bangalore, India fyan.yan, [email protected], [email protected] Keywords: ARX construction, Side-channel analysis, Hamming weight, Chosen plaintext attack Abstract: In the last few years a new design paradigm, the so-called ARX (modular addition, rotation, exclusive-or) ciphers, have gained popularity in part because of their non-linear operation’s seemingly ‘inherent resilience’ against Differential Power Analysis (DPA) Attacks: the non-linear modular addition is not only known to be a poor target for DPA attacks, but also the computational complexity of DPA-style attacks grows exponentially with the operand size and thus DPA-style attacks quickly become practically infeasible. We however propose a novel DPA-style attack strategy that scales linearly with respect to the operand size in the chosen-message attack setting. 1 Introduction ever are different: they offer a potentially ‘high reso- lution’ for the adversary. In principle, under suitably Ciphers that base their round function on the sim- strong assumptions, adversaries can not only observe ple combination of modular addition, rotation, and leaks for all instructions that are executed on a proces- exclusive-or, (short ARX) have gained recent popu- sor, but indeed attribute leakage points (more or less larity for their lightweight implementations that are accurately) to instructions (Mangard et al., 2007). suitable for resource constrained devices. Some re- Achieving security in this scenario has proven to cent examples include Chacha20 (Nir and Langley, be extremely challenging, and countermeasures such 2015) and Salsa20 (Bernstein, 2008) family stream as masking (secret sharing) are well understood but ciphers, SHA-3 finalists BLAKE (Aumasson et al., costly (Schneider et al., 2015). -
SHA-3 Conference, March 2012, Skein: More Than Just a Hash Function
Skein More than just a hash function Third SHA-3 Candidate Conference 23 March 2012 Washington DC 1 Skein is Skein-512 • Confusion is common, partially our fault • Skein has two special-purpose siblings: – Skein-256 for extreme memory constraints – Skein-1024 for the ultra-high security margin • But for SHA-3, Skein is Skein-512 – One hash function for all output sizes 2 Skein Architecture • Mix function is 64-bit ARX • Permutation: relocation of eight 64-bit words • Threefish: tweakable block cipher – Mix + Permutation – Simple key schedule – 72 rounds, subkey injection every four rounds – Tweakable-cipher design key to speed, security • Skein chains Threefish with UBI chaining mode – Tweakable mode based on MMO – Provable properties – Every hashed block is unique • Variable size output means flexible to use! – One function for any size output 3 The Skein/Threefish Mix 4 Four Threefish Rounds 5 Skein and UBI chaining 6 Fastest in Software • 5.5 cycles/byte on 64-bit reference platform • 17.4 cycles/byte on 32-bit reference platform • 4.7 cycles/byte on Itanium • 15.2 cycles/byte on ARM Cortex A8 (ARMv7) – New numbers, best finalist on ARMv7 (iOS, Samsung, etc.) 7 Fast and Compact in Hardware • Fast – Skein-512 at 32 Gbit/s in 32 nm in 58 k gates – (57 Gbit/s if processing two messages in parallel) • To maximize hardware performance: – Use a fast adder, rely on simple control structure, and exploit Threefish's opportunities for pipelining – Do not trust your EDA tool to generate an efficient implementation • Compact design: – Small FPGA -
BLAKE2: Simpler, Smaller, Fast As MD5
BLAKE2: simpler, smaller, fast as MD5 Jean-Philippe Aumasson1, Samuel Neves2, Zooko Wilcox-O'Hearn3, and Christian Winnerlein4 1 Kudelski Security, Switzerland [email protected] 2 University of Coimbra, Portugal [email protected] 3 Least Authority Enterprises, USA [email protected] 4 Ludwig Maximilian University of Munich, Germany [email protected] Abstract. We present the hash function BLAKE2, an improved version of the SHA-3 finalist BLAKE optimized for speed in software. Target applications include cloud storage, intrusion detection, or version control systems. BLAKE2 comes in two main flavors: BLAKE2b is optimized for 64-bit platforms, and BLAKE2s for smaller architectures. On 64- bit platforms, BLAKE2 is often faster than MD5, yet provides security similar to that of SHA-3: up to 256-bit collision resistance, immunity to length extension, indifferentiability from a random oracle, etc. We specify parallel versions BLAKE2bp and BLAKE2sp that are up to 4 and 8 times faster, by taking advantage of SIMD and/or multiple cores. BLAKE2 reduces the RAM requirements of BLAKE down to 168 bytes, making it smaller than any of the five SHA-3 finalists, and 32% smaller than BLAKE. Finally, BLAKE2 provides a comprehensive support for tree-hashing as well as keyed hashing (be it in sequential or tree mode). 1 Introduction The SHA-3 Competition succeeded in selecting a hash function that comple- ments SHA-2 and is much faster than SHA-2 in hardware [1]. There is nev- ertheless a demand for fast software hashing for applications such as integrity checking and deduplication in filesystems and cloud storage, host-based intrusion detection, version control systems, or secure boot schemes.