Declining RNA Integrity in Control Autopsy Brain Tissue Is Robustly and Asymmetrically Associated with Selective Neuronal Mrna Signal Loss
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mea6 Controls VLDL Transport Through the Coordinated Regulation of COPII Assembly
Cell Research (2016) 26:787-804. npg © 2016 IBCB, SIBS, CAS All rights reserved 1001-0602/16 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Mea6 controls VLDL transport through the coordinated regulation of COPII assembly Yaqing Wang1, *, Liang Liu1, 2, *, Hongsheng Zhang1, 2, Junwan Fan1, 2, Feng Zhang1, 2, Mei Yu3, Lei Shi1, Lin Yang1, Sin Man Lam1, Huimin Wang4, Xiaowei Chen4, Yingchun Wang1, Fei Gao5, Guanghou Shui1, Zhiheng Xu1, 6 1State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 2University of Chinese Academy of Sciences, Beijing 100101, China; 3School of Life Science, Shandong University, Jinan 250100, China; 4Institute of Molecular Medicine, Peking University, Beijing 100871, China; 5State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 6Translation- al Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Lipid accumulation, which may be caused by the disturbance in very low density lipoprotein (VLDL) secretion in the liver, can lead to fatty liver disease. VLDL is synthesized in endoplasmic reticulum (ER) and transported to Golgi apparatus for secretion into plasma. However, the underlying molecular mechanism for VLDL transport is still poor- ly understood. Here we show that hepatocyte-specific deletion of meningioma-expressed antigen 6 (Mea6)/cutaneous T cell lymphoma-associated antigen 5C (cTAGE5C) leads to severe fatty liver and hypolipemia in mice. Quantitative lip- idomic and proteomic analyses indicate that Mea6/cTAGE5 deletion impairs the secretion of different types of lipids and proteins, including VLDL, from the liver. -
Validation of Two Ribosomal RNA Removal Methods for Microbial Metatranscriptomics
ANaLYSIS Validation of two ribosomal RNA removal methods for microbial metatranscriptomics Shaomei He1,2,5, Omri Wurtzel3,5, Kanwar Singh1, Jeff L Froula1, Suzan Yilmaz1, Susannah G Tringe1, Zhong Wang1, Feng Chen1, Erika A Lindquist1, Rotem Sorek3 & Philip Hugenholtz1,2,4 The predominance of rRNAs in the transcriptome is a major Among these methods, subtractive hybridization and exo- technical challenge in sequence-based analysis of cDNAs from nuclease digestion have become the most popular owing to the microbial isolates and communities. Several approaches have availability of commercial kits from Ambion (MICROBExpress been applied to deplete rRNAs from (meta)transcriptomes, but Bacterial mRNA Enrichment kit) and Epicentre (mRNA-ONLY no systematic investigation of potential biases introduced by Prokaryotic mRNA Isolation kit). The former kit uses a subtrac- any of these approaches has been reported. Here we validated tive hybridization with capture oligonucleotides specific to 16S the effectiveness and fidelity of the two most commonly and 23S rRNAs. It has been applied to both bacterial isolates used approaches, subtractive hybridization and exonuclease and environmental samples, in one or two rounds6,13–18. The digestion, as well as combinations of these treatments, on Epicentre kit uses exonuclease to preferentially degrade processed two synthetic five-microorganism metatranscriptomes using RNAs with 5′ monophosphate (the majority of which are believed massively parallel sequencing. We found that the effectiveness to be rRNAs)19,20. In some instances, these methods have been of rRNA removal was a function of community composition and used in combination to improve rRNA removal21–23. There is no RNA integrity for these treatments. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Comparison of RIN and Rine Algorithms for the Agilent 2100 Bioanalyzer and the Agilent 2200 Tapestation Systems Technical Overview
Comparison of RIN and RINe algorithms for the Agilent 2100 Bioanalyzer and the Agilent 2200 TapeStation systems Technical Overview Introduction A typical application for the 96-well plate compatible Agilent 2200 TapeStation system is automated, effi cient, and reliable RNA analysis, including RNA charac- terization and quality assessment with Agilent R6K ScreenTape or Agilent High Sensitivity R6K ScreenTape. When separated by electrophoresis, eukaryotic total RNA samples typically display two major peaks representing the 18S and 28S ribosomal RNA (rRNA). Depending on the purifi cation method, additional smaller peaks can also been seen, which correspond to small rRNAs as well as tRNAs. As total RNA degrades, the 18S and 28S rRNA peaks slowly disappear and the degradation products emerge in the region between the 18S and small RNAs, termed as the fast zone. The RNA integrity number (RIN) functionality of the Agilent 2100 Expert software for the Agilent 2100 Bioanalyzer system uses a proprietary neural network trained algorithm to make an assessment of the entire electrophoretic trace for a given total RNA sample, including ribosomal peak ratios, separation, and the presence or absence of degradation products. RIN values from 1 to 10 can be obtained, where 10 indicates the highest possible RNA quality. Due to fundamental differences in the nature of the raw data, a dedicated soft- ware algorithm has been developed for the 2200 TapeStation system and R6K ScreenTape to determine the RNA integrity number equivalent (RINe). The RINe algorithm is based on a Experimental RNA preparation mathematical model that calculates an Total RNA from HEK 293, Hep G2, and objective quantitative measurement of Material Jurkat cells was purifi ed using the RNA degradation1. -
RNF11 at the Crossroads of Protein Ubiquitination
biomolecules Review RNF11 at the Crossroads of Protein Ubiquitination Anna Mattioni, Luisa Castagnoli and Elena Santonico * Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy; [email protected] (A.M.); [email protected] (L.C.) * Correspondence: [email protected] Received: 29 September 2020; Accepted: 8 November 2020; Published: 11 November 2020 Abstract: RNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways. Starting from the analysis of the primary sequence motifs and from the list of RNF11 protein partners, we summarize the evidence implicating RNF11 as an important player in modulating ubiquitin-regulated processes that are involved in transforming growth factor beta (TGF-β), nuclear factor-κB (NF-κB), and Epidermal Growth Factor (EGF) signaling pathways. This connection appears to be particularly significant, since RNF11 is overexpressed in several tumors, even though its role as tumor growth inhibitor or promoter is still controversial. The review highlights the different facets and peculiarities of this unconventional small RING-E3 ligase and its implication in tumorigenesis, invasion, neuroinflammation, and cancer metastasis. Keywords: Ring Finger Protein 11; HECT ligases; ubiquitination 1. -
Synaptotagmin13 Is a Neuroendocrine Marker in Brain, Intestine and Pancreas
Synaptotagmin13 Is A Neuroendocrine Marker In Brain, Intestine And Pancreas Marta Tarquis-Medina Helmholtz Zentrum München Katharina Scheibner Helmholtz Zentrum München Ismael Gonzalez Garcia Helmholtz Zentrum München Aimée Bastidas-Ponce Helmholtz Zentrum München Michael Sterr Helmholtz Zentrum München Jessica Jaki Helmholtz Zentrum München Silvia Schirge Helmholtz Zentrum München Cristina García-Cáceres Helmholtz Zentrum München Heiko Lickert Helmholtz Zentrum München Mostafa Bakhti ( [email protected] ) Helmholtz Zentrum München Research Article Keywords: Synaptotagmin 13, Syt13, uorescent reporter, endocrine lineage, brain, intestine, pancreas Posted Date: June 22nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-622505/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Synaptotagmin13 (Syt13) is an atypical member of the vesicle tracking Synaptotagmin protein family. The expression pattern and the biological function of this Ca2+-independent protein are not well resolved. Here, we have generated a novel Syt13-Venus fusion (Syt13-VF) uorescence reporter allele to track and isolate tissues and cells expressing Syt13 protein. The reporter allele is regulated by endogenous cis- regulatory elements of Syt13 and the fusion protein follows an identical expression pattern of the endogenous Syt13 protein. The homozygous reporter mice are viable and fertile. We identify the expression of the Syt13-VF reporter in different regions of the brain with high expression in tyrosine hydroxylase (TH)-expressing and oxytocin-producing neuroendocrine cells. Moreover, Syt13-VF is highly restricted to all enteroendocrine cells in the adult intestine that can be traced in live imaging. Finally, Syt13-VF protein is expressed in the pancreatic endocrine lineage allowing their specic isolation by ow sorting. -
Low RIN Value for RNA-Seq Library Construction from Long-Term Stored Seeds: a Case Study of Barley Seeds
G C A T T A C G G C A T genes Technical Note Low RIN Value for RNA-Seq Library Construction from Long-Term Stored Seeds: A Case Study of Barley Seeds Marta Puchta , Maja Boczkowska * and Jolanta Groszyk National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization National Research Institute, Radzików, 05-870 Błonie, Poland; [email protected] (M.P.); [email protected] (J.G.) * Correspondence: [email protected] Received: 20 August 2020; Accepted: 8 October 2020; Published: 13 October 2020 Abstract: Seed aging is a complex biological process and its fundamentals and mechanisms have not yet been fully recognized. This is a key issue faced by research teams involved in the collection and storage of plant genetic resources in gene banks every day. Transcriptomic changes associated with seed aging in the dry state have barely been studied. The aim of the study was to develop an efficient protocol for construction of RNA-Seq libraries from long-term stored seeds with very low viability and low RNA integrity number (RIN). Here, barley seeds that have almost completely lost their viability as a result of long-term storage were used. As a control, fully viable seeds obtained in the course of field regeneration were used. The effectiveness of protocols dedicated to RNA samples with high and low RIN values was compared. The experiment concluded that library construction from low viable or long-term stored seeds with degraded RNA (RIN < 3) should be carried out with extraordinary attention due to the possibility of uneven degradation of different RNA fractions. -
PD-WP-017 Issue2 (Interpreting Bioanaylzer).Indd
Interpreting bioanalyzer results for RNA collected using Oragene®•RNA The Agilent Bioanalyzer is an instrument for assessing however, for several reasons, it is more difficult to the “quality” of RNA used for microarray analysis. obtain a high RIN value. As with blood, saliva has a The sharpness of the ribosomal RNA peak and the lower RNA to DNA ratio than that of cultured cells or low baseline between peaks on the electropherogram tissue therefore similar care must be taken to remove generated by the instrument are used as measures of the contaminating DNA. Additionally, saliva is not a integrity of the ribosomal RNA and, by implication, the sterile source of nucleic acid; some of the RNA integrity of messenger RNA. The bioanalyzer uses an contained in saliva originates from oral bacteria. algorithm to generate an “RNA integrity number” (RIN) The ratio between the 16S and 23S bacterial ribosomal that helps researchers decide if the RNA is of sufficiently RNAs is less than the human 18S:28S ratio. The high integrity to proceed with microarray analysis. algorithm used by the bioanalyzer was not designed for use with samples containing both human and Most high quality RNA samples share the same bacterial RNA so the instrument generates a lower common features: RIN that is not indicative of the integrity of the RNA. • distinct 18S and 28S ribosomal peaks Instead of relying on the RIN, a visual assessment of (or 16S and 23S for prokaryotic samples) the electropherogram can provide valuable insight • the absence of smaller peaks between the into the quality of the RNA. -
S100A8 Transported by SEC23A Inhibits Metastatic Colonization Via
Sun et al. Cell Death and Disease (2020) 11:650 https://doi.org/10.1038/s41419-020-02835-w Cell Death & Disease ARTICLE Open Access S100A8 transported by SEC23A inhibits metastatic colonization via autocrine activation of autophagy Zhiwei Sun1,2, Bin Zeng1,2,DoudouLiu1,2, Qiting Zhao1,2,JianyuWang1,2 and H. Rosie Xing2,3 Abstract Metastasis is the main cause of failure of cancer treatment. Metastatic colonization is regarded the most rate- limiting step of metastasis and is subjected to regulation by a plethora of biological factors and processes. On one hand, regulation of metastatic colonization by autophagy appears to be stage- and context-dependent, whereas mechanistic characterization remains elusive. On the other hand, interactions between the tumor cells and their microenvironment in metastasis have long been appreciated, whether the secretome of tumor cells can effectively reshape the tumor microenvironment has not been elucidated mechanistically. In the present study, we have identified “SEC23A-S1008-BECLIN1-autophagy axis” in the autophagic regulation of metastatic colonization step, a mechanism that tumor cells can exploit autophagy to exert self-restrain for clonogenic proliferation before the favorable tumor microenvironment is established. Specifically, we employed a paired lung-derived oligometastatic cell line (OL) and the homologous polymetastatic cell line (POL) from human melanoma cell line M14 that differ in colonization efficiency. We show that S100A8 transported by SEC23A inhibits metastatic colonization via autocrine activation of autophagy. Furthermore, we verified the clinical relevance of our experimental findings by bioinformatics analysis of the expression of Sec23a and S100A8 and the clinical- pathological associations. We demonstrate that higher Sec23a and Atg5 expression levels appear to be protective factors and favorable diagnostic (TNM staging) and prognostic (overall survival) markers for skin cutaneous 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; melanoma (SKCM) and colon adenocarcinoma (COAD) patients. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Impact of RNA Degradation on Gene Expression Profiling
Opitz et al. BMC Medical Genomics 2010, 3:36 http://www.biomedcentral.com/1755-8794/3/36 RESEARCH ARTICLE Open Access Impact of RNA degradation on gene expression profiling Lennart Opitz1, Gabriela Salinas-Riester1, Marian Grade2, Klaus Jung3, Peter Jo2, Georg Emons2, B Michael Ghadimi2, Tim Beißbarth3*†, Jochen Gaedcke2† Abstract Background: Gene expression profiling is a highly sensitive technique which is used for profiling tumor samples for medical prognosis. RNA quality and degradation influence the analysis results of gene expression profiles. The impact of this influence on the profiles and its medical impact is not fully understood. As patient samples are very valuable for clinical studies, it is necessary to establish criteria for the RNA quality to be able to use these samples in later analysis. Methods: To investigate the effects of RNA integrity on gene expression profiling, whole genome expression arrays were used. We used tumor biopsies from patients diagnosed with locally advanced rectal cancer. To simulate degradation, the isolated total RNA of all patients was subjected to heat-induced degradation in a time- dependent manner. Expression profiling was then performed and data were analyzed bioinformatically to assess the differences. Results: The differences introduced by RNA degradation were largely outweighed by the biological differences between the patients. Only a relatively small number of probes (275 out of 41,000) show a significant effect due to degradation. The genes that show the strongest effect due to RNA degradation were, especially, those with short mRNAs and probe positions near the 5′ end. Conclusions: Degraded RNA from tumor samples (RIN > 5) can still be used to perform gene expression analysis. -
Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.