Template Method, Factory Method, and Composite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(GOF) Java Design Patterns Mock Exams
Gang of Four (GOF) Java Design Patterns Mock Exams http://www.JavaChamp.com Open Certification Plattform Authors: N. Ibrahim, Y. Ibrahim Copyright (c) 2009-2010 Introducing JavaChamp.com Website JavaChamp.com is an Open Certification Platform. What does this mean? JavaChamp is the best place to learn, share, and certify your professional skills. We help you develop yourself in the field of computer science and programming Here are the most significant features offered by JavaChamp: Online Exams Start Online Certification Exams in SCJP, SCEA, EJB, JMS, JPA and more... Top quality mock exams for SCJP, SCEA, EJB, JMS, JPA. Start Express or topic-wise customized exam. * We offer you unlimited free mock exams * Exams cover subjects like SCJP, SCEA, EJB, JMS, JPA,.. * You can take as many exams as you want and at any time and for no charges * Each exam contains 20 multiple choice questions * You can save the exams taken in your exams history * Your exams history saves the exams you took, the scores you got, time took you to finish the exam, date of examination and also saves your answers to the questions for later revision * You can re-take the same exam to monitor your progress * Your exams history helps the system to offer you variant new questions every time you take a new exam, therefore we encourage you to register and maintain an exams history Network Find guidance through the maze, meet Study-Mates, Coaches or Trainees... Studying together is fun, productive and helps you in building your professional network and collecting leads Bookshelf JavaChamp Bookshelf full of PDF eBooks.. -
Usage of Factory Design Pattern
What is a Creational Pattern? Creational Patterns are concerned with object creation problems faced during software design. Object creation often results in design problems, creational patterns solve this problem by controlling the object creation. Factory pattern A Factory Pattern or Factory Method Pattern says that just define an interface or abstract class for creating an object but let the subclasses decide which class to instantiate. In other words, subclasses are responsible to create the instance of the class. The Factory Method Pattern is also known as Virtual Constructor. A Factory returns an instance of an object based on the data supplied to it. The instance returned can be one of many classes that extend a common parent class or interface. ("Animal" as a parent class, then "Dog", "Cat", "Zebra" as child classes.) Create objects without exposing their instantiation logic. Consequences: The requestor is independent of the concrete object that is created (how that object is created, and which class is actually created). Advantage of Factory Design Pattern Factory Method Pattern allows the sub-classes to choose the type of objects to create. It promotes the loose-coupling by eliminating the need to bind application-specific classes into the code. That means the code interacts solely with the resultant interface or abstract class, so that it will work with any classes that implement that interface or that extends that abstract class. Usage of Factory Design Pattern When a class doesn't know what sub-classes will be required to create When a class wants that its sub-classes specify the objects to be created. -
One-Slide Summary Lecture Outline
Using Design Patterns #1 One-Slide Summary • Design patterns are solutions to recurring OOP design problems. There are patterns for constructing objects, structuring data, and object behavior . • Since this is PL, we’ll examine how language features like (multiple) inheritance and dynamic dispatch relate to design patterns. #2 Lecture Outline • Design Patterns • Iterator • Observer • Singleton • Mediator #3 1 What is a design pattern? • A solution for a recurring problem in a large object-oriented programming system – Based on Erich Gamma’s Ph.D. thesis, as presented in the “gang of four” book • “Each pattern describes a problem which occurs over and over again in our environment, and then describes the core of the solution to that problem, in such a way that you can use this solution a million times over, without ever doing it the same way twice” – Charles Alexander #4 Types of design patterns • Design patterns can be (roughly) grouped into three categories: • Creational patterns – Constructing objects • Structural patterns – Controlling the structure of a class, e.g. affecting the API or the data structure layout • Behavioral patterns – Deal with how the object behaves #5 Iterator design pattern • Often you may have to move through a collection – Tree (splay, AVL, binary, red-black, etc.), linked list, array, hash table, dictionary, etc. • Easy for arrays and vectors • But hard for more complicated data structures – Hash table, dictionary, etc. • The code doing the iteration should not have to know the details of the data structure -
Design Patterns Promote Reuse
Design Patterns Promote Reuse “A pattern describes a problem that occurs often, along with a tried solution to the problem” - Christopher Alexander, 1977 • Christopher Alexander’s 253 (civil) architectural patterns range from the creation of cities (2. distribution of towns) to particular building problems (232. roof cap) • A pattern language is an organized way of tackling an architectural problem using patterns Kinds of Patterns in Software • Architectural (“macroscale”) patterns • Model-view-controller • Pipe & Filter (e.g. compiler, Unix pipeline) • Event-based (e.g. interactive game) • Layering (e.g. SaaS technology stack) • Computation patterns • Fast Fourier transform • Structured & unstructured grids • Dense linear algebra • Sparse linear algebra • GoF (Gang of Four) Patterns: structural, creational, behavior The Gang of Four (GoF) • 23 structural design patterns • description of communicating objects & classes • captures common (and successful) solution to a category of related problem instances • can be customized to solve a specific (new) problem in that category • Pattern ≠ • individual classes or libraries (list, hash, ...) • full design—more like a blueprint for a design The GoF Pattern Zoo 1. Factory 13. Observer 14. Mediator 2. Abstract factory 15. Chain of responsibility 3. Builder Creation 16. Command 4. Prototype 17. Interpreter 18. Iterator 5. Singleton/Null obj 19. Memento (memoization) 6. Adapter Behavioral 20. State 21. Strategy 7. Composite 22. Template 8. Proxy 23. Visitor Structural 9. Bridge 10. Flyweight 11. -
Design Case Study: Java Swing
Principles of Software Construction: Objects, Design, and Concurrency Part 2: Design case studies Design case study: Java Swing Charlie Garrod Chris Timperley 17-214 1 Administrivia • Reading due today: UML and Patterns 26.1 and 26.4 • Homework 4b due Thursday, October 17th https://commons.wikimedia.org/wiki/File:1_carcassonne_aerial_2016.jpg 17-214 2 Key concepts from Thursday • Observer design pattern • Introduction to concurrency – Not enough synchronization: safety failure – Too much synchronization: liveness failure • Event-based programming • Introduction to GUIs 17-214 3 GUI programming is inherently multi-threaded • Swing event dispatch thread (EDT) handles all GUI events – Mouse events, keyboard events, timer events, etc. • No other time-consuming activity allowed on the EDT – Violating this rule can cause liveness failures 17-214 4 Swing has many event listener interfaces • ActionListener • MouseListener • AdjustmentListener • TreeExpansionListener • FocusListener • TextListener • ItemListener • WindowListener • KeyListener • … class ActionEvent { int when; String actionCommand; int modifiers; Object source(); int id; … interface ActionListener { } void actionPerformed(ActionEvent e); } 17-214 5 Aside: lambdas vs. explicit class declarations? //static public void main… JFrame window = … JPanel panel = new JPanel(); window.setContentPane(panel); panel to hold the button JButton button = new JButton(“Click me”); button.addActionListener(new ActionListener() { public void actionPerformed(ActionEvent e) { System.out.println(“Button -
Object-Oriented Analysis, Design and Implementation
Undergraduate Topics in Computer Science Brahma Dathan Sarnath Ramnath Object-Oriented Analysis, Design and Implementation An Integrated Approach Second Edition Undergraduate Topics in Computer Science Undergraduate Topics in Computer Science (UTiCS) delivers high-quality instruc- tional content for undergraduates studying in all areas of computing and information science. From core foundational and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by established experts in their fields, reviewed by an international advisory board, and contain numerous examples and problems. Many include fully worked solutions. More information about this series at http://www.springer.com/series/7592 Brahma Dathan • Sarnath Ramnath Object-Oriented Analysis, Design and Implementation An Integrated Approach Second Edition 123 Brahma Dathan Sarnath Ramnath Department of Information and Computer Department of Computer Science Science and Information Technology Metropolitan State University St. Cloud State University St. Paul, MN St. Cloud, MN USA USA Series editor Ian Mackie Advisory Board Samson Abramsky, University of Oxford, Oxford, UK Karin Breitman, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil Chris Hankin, Imperial College London, London, UK Dexter Kozen, Cornell University, Ithaca, USA Andrew Pitts, University of Cambridge, Cambridge, UK Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark Steven Skiena, Stony Brook University, Stony Brook, USA Iain Stewart, University of Durham, Durham, UK A co-publication with the Universities Press (India) Private Ltd., licensed for sale in all countries outside of India, Pakistan, Bhutan, Bangladesh, Sri Lanka, Nepal, The Maldives, Middle East, Malaysia, Indonesia and Singapore. -
Design Patterns Design Patterns
Design Patterns CSC207 – Software Design Design Patterns • Design pattern: – A general description of the solution to a well- established problem using an arrangement of classes and objects. • Patterns describe the shape of code rather than the details. – There are lots of them in CSC 301 and 302. Loop patterns from first year • Loop pattern: – A general description of an algorithm for processing items in a collection. • All of you (hopefully) have some loop patterns in your heads. • You don’t really need to think about these any more; you just use them, and you should be able to discuss them with your fellow students. • Some first-year patterns: – Process List – Counted Loop – Accumulator – Sentinel Process list pattern • Purpose: to process every item in a collection where you don’t care about order or context; you don’t need to remember previous items. • Outline: • Example: • Other example: darken every pixel in a picture Counted loop pattern • Purpose: to process a range of indices in a collection. • Outline: • Example: • Other example: print indices of even-length string Accumulator pattern • Purpose: to accumulate information about items in a collection. • Outline: • Example: • Other examples: sum, min, accumulate a list of items meeting a particular criterion. Sentinel pattern • Purpose: to remove a condition in a loop guard. • Outline: • Example: Sentinel pattern, continued • Here is the code that Sentinal replaces; note that i != list.size() is evaluated every time through the loop, even though it is false only once. Design Pattern -
Lecture 1 for Chapter 8, Object Design: Reusing Pattern Solutions
Object-Oriented Software Engineering Using UML, Patterns, and Java Chapter 8, Object Design: 8, Object Chapter Reuse and Patterns I and Patterns Reuse Object Design Object design is the process of adding details to the requirements analysis and making implementation decisions The object designer must choose among different ways to implement the analysis model with the goal to minimize execution time, memory and other measures of cost Requirements Analysis: Use cases, functional and dynamic model deliver operations for object model Object Design: Iterates on the models, in particular the object model and refine the models Object Design serves as the basis of implementation System Development as a Set of Activities System Problem Application objects Analysis Solution objects Design Custom objects - Object Design Off-the-Shelf Components - System Design Existing Machine Examples of Object Design Activities Identification of existing components Full definition of associations Full definition of classes (System Design => Service, Object Design => Subsystem interfaces/API) Choosing algorithms and data structures Identifying possibilities of reuse Detection of solution-domain classes Optimization Increase of inheritance Decision on control …… A More Detailed View of Object Design Activities Select Subsystem Specification Reuse Identifying missing Identifying components attributes & operations Specifying visibility Adjusting components Specifying types & signatures Identifying patterns Specifying constraints Specifying exceptions -
Behavioral Patterns
Behavioral Patterns 101 What are Behavioral Patterns ! " Describe algorithms, assignment of responsibility, and interactions between objects (behavioral relationships) ! " Behavioral class patterns use inheritence to distribute behavior ! " Behavioral object patterns use composition ! " General example: ! " Model-view-controller in UI application ! " Iterating over a collection of objects ! " Comparable interface in Java !" 2003 - 2007 DevelopIntelligence List of Structural Patterns ! " Class scope pattern: ! " Interpreter ! " Template Method ! " Object scope patterns: ! " Chain of Responsibility ! " Command ! " Iterator ! " Mediator ! " Memento ! " Observer ! " State ! " Strategy ! " Visitor !" 2003 - 2007 DevelopIntelligence CoR Pattern Description ! " Intent: Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the request. Chain the receiving objects and pass the request along the chain until an object handles it. ! " AKA: Handle/Body ! " Motivation: User Interfaces function as a result of user interactions, known as events. Events can be handled by a component, a container, or the operating system. In the end, the event handling should be decoupled from the component. ! " Applicability: ! " more than one object may handle a request, and the handler isn't known a priori. ! " Want to issue a request to one of several objects without specifying the receiver !" 2003 - 2007 DevelopIntelligence CoR Real World Example ! " The Chain of Responsibility pattern avoids coupling the sender of a request to the receiver, by giving more than one object a chance to handle the request. ! " Mechanical coin sorting banks use the Chain of Responsibility. Rather than having a separate slot for each coin denomination coupled with receptacle for the denomination, a single slot is used. When the coin is dropped, the coin is routed to the appropriate receptacle by the mechanical mechanisms within the bank. -
Design Patterns in Ocaml
Design Patterns in OCaml Antonio Vicente [email protected] Earl Wagner [email protected] Abstract The GOF Design Patterns book is an important piece of any professional programmer's library. These patterns are generally considered to be an indication of good design and development practices. By giving an implementation of these patterns in OCaml we expected to better understand the importance of OCaml's advanced language features and provide other developers with an implementation of these familiar concepts in order to reduce the effort required to learn this language. As in the case of Smalltalk and Scheme+GLOS, OCaml's higher order features allows for simple elegant implementation of some of the patterns while others were much harder due to the OCaml's restrictive type system. 1 Contents 1 Background and Motivation 3 2 Results and Evaluation 3 3 Lessons Learned and Conclusions 4 4 Creational Patterns 5 4.1 Abstract Factory . 5 4.2 Builder . 6 4.3 Factory Method . 6 4.4 Prototype . 7 4.5 Singleton . 8 5 Structural Patterns 8 5.1 Adapter . 8 5.2 Bridge . 8 5.3 Composite . 8 5.4 Decorator . 9 5.5 Facade . 10 5.6 Flyweight . 10 5.7 Proxy . 10 6 Behavior Patterns 11 6.1 Chain of Responsibility . 11 6.2 Command . 12 6.3 Interpreter . 13 6.4 Iterator . 13 6.5 Mediator . 13 6.6 Memento . 13 6.7 Observer . 13 6.8 State . 14 6.9 Strategy . 15 6.10 Template Method . 15 6.11 Visitor . 15 7 References 18 2 1 Background and Motivation Throughout this course we have seen many examples of methodologies and tools that can be used to reduce the burden of working in a software project. -
HEDGEHOG: Automatic Verification of Design Patterns in Java
HEDGEHOG: Automatic Verification of Design Patterns in Java Alex Blewitt I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy School of Informatics University of Edinburgh 2006 Abstract Design patterns are widely used by designers and developers for building complex systems in object-oriented programming languages such as Java. However, systems evolve over time, increasing the chance that the pattern in its original form will be broken. To verify that a design pattern has not been broken involves specifying the original intent of the design pattern. Whilst informal descriptions of patterns exist, no formal specifications are available due to differences in implementations between programming languages. This thesis shows that many patterns (implemented in Java) can be verified automatically. Patterns are defined in terms of variants, mini-patterns, and artefacts in a pattern description language called SPINE. These specifications are then processed by HEDGEHOG, an automated proof tool that attempts to prove that Java source code meets these specifications. iii Acknowledgements I am indebted to Alan Bundy who has given me the freedom to work on this thesis whilst at the same time guiding me towards the final production and presentation of these results. I not would have been able to achieve this without Alan’s support through a sometimes difficult, but always busy part of my life. This project, and especially the production of this thesis, would not have been possible without the care and attention that Alan provided. Ian Stark has provided invaluable feedback on all aspects of this thesis, from the low-level technical intricacies of Java’s design patterns through to the high-level structure of the thesis as a whole. -
On the Interaction of Object-Oriented Design Patterns and Programming
On the Interaction of Object-Oriented Design Patterns and Programming Languages Gerald Baumgartner∗ Konstantin L¨aufer∗∗ Vincent F. Russo∗∗∗ ∗ Department of Computer and Information Science The Ohio State University 395 Dreese Lab., 2015 Neil Ave. Columbus, OH 43210–1277, USA [email protected] ∗∗ Department of Mathematical and Computer Sciences Loyola University Chicago 6525 N. Sheridan Rd. Chicago, IL 60626, USA [email protected] ∗∗∗ Lycos, Inc. 400–2 Totten Pond Rd. Waltham, MA 02154, USA [email protected] February 29, 1996 Abstract Design patterns are distilled from many real systems to catalog common programming practice. However, some object-oriented design patterns are distorted or overly complicated because of the lack of supporting programming language constructs or mechanisms. For this paper, we have analyzed several published design patterns looking for idiomatic ways of working around constraints of the implemen- tation language. From this analysis, we lay a groundwork of general-purpose language constructs and mechanisms that, if provided by a statically typed, object-oriented language, would better support the arXiv:1905.13674v1 [cs.PL] 31 May 2019 implementation of design patterns and, transitively, benefit the construction of many real systems. In particular, our catalog of language constructs includes subtyping separate from inheritance, lexically scoped closure objects independent of classes, and multimethod dispatch. The proposed constructs and mechanisms are not radically new, but rather are adopted from a variety of languages and programming language research and combined in a new, orthogonal manner. We argue that by describing design pat- terns in terms of the proposed constructs and mechanisms, pattern descriptions become simpler and, therefore, accessible to a larger number of language communities.