Software Typically Outlives the Platform That It Was Written For. This Necessitates Regular ‘Porting’ of Software to New Platforms, a Tedious and Ad-Hoc Process
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meeting Agenda 4:30 – 6:00 PM, Wednesday, Nov 2Nd, 2016 Lyons Town Hall
Meeting Agenda 4:30 – 6:00 PM, Wednesday, Nov 2nd, 2016 Lyons Town Hall I. Roll Call, Agenda, Minutes • Amendments to Agenda • Approve Minutes from Oct 19th • UEB Officers and Member Lead Areas • Upcoming Meetings - Nov 12, 2016 9 AM or 1 PM - Lyons Boards and Commissions Training - Lyons Nov 9. 8 AM - Northern Water Fall Water Users Meeting - Longmont, Best Western 1850 Industrial Cir. Dec 2nd - CAMU Fall Meeting - Fairfield & Woods in Denver, CO II. Audience Business III. Liaison Updates • Board of Trustees Update - MEAN meeting Report • Staff, Engineering Update - Honeywell Savings Gaurantee IV. Continued Business ● Town Utility Account tracking V. New Business ● Water/Wastewater Rate and CIP Study Presentation RG & Assoc. VI. Parking Lot • 2017 Utility FUnd Budget, Pipe Water rates for 2017 Budget, • Reserve/Rate Stabilization Funds • Wastewater Pretreatment Policy • LRAP INF 2.2.1 • Municipal Code Corrections UEB Meeting Minutes, 19 Oct 2016 Meeting Time and Location: Began at 4:30 at Town Hall. Attendance:, Aaron Caplan, Lee Hall, Coco Gordon, John Cowdry, Chuck Keim, Dan Reitz, Jay Stott Staff: Kyle Miller Liaisons: Guests: Amendments to Agenda: Welcomed Jay Stott as the newest member of the UEB. Previous Minutes: . Reviewed and modified Oct 5th Minutes under Water Wastewater CIP to add “Areas where there is no looping of the water mains need looping. It was emphasized to try and coordinate getting water, and wastewater done first in areas that need paving.” Aaron had not followed up with Parks and Rec to find out if they were budgeting for water usage. He would do so. Then approved minutes. -
Embedded Linux Systems with the Yocto Project™
OPEN SOURCE SOFTWARE DEVELOPMENT SERIES Embedded Linux Systems with the Yocto Project" FREE SAMPLE CHAPTER SHARE WITH OTHERS �f, � � � � Embedded Linux Systems with the Yocto ProjectTM This page intentionally left blank Embedded Linux Systems with the Yocto ProjectTM Rudolf J. Streif Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales depart- ment at [email protected] or (800) 382-3419. For government sales inquiries, please contact [email protected]. For questions about sales outside the U.S., please contact [email protected]. Visit us on the Web: informit.com Cataloging-in-Publication Data is on file with the Library of Congress. -
Cp 99, Other Filing/Pleading, 11/12/2014
BINGHAM Catherine Wang Brett P. Ferenchak catherine. wang@ bingham. com [email protected] November 11, 2014 Via Overnight Courier and E-Mail Oregon Public Utility Commission Attn: Filing Center 550 Capitol Street, N.E. Suite 215 Salem, OR 97301-2551 [email protected] Re: Business Telecom, LLC d/b/a EarthLink Business I Notification of Conversion and Associated Name Change Dear Sir or Madam: Business Telecom, LLC d/b/a EarthLink Business I (formerly known as Business Telecom, Inc. d/b/a EarthLink Business III) (the "Company") hereby notifies the Commission (1) that the Company converted from a North Carolina corporation to a North Carolina limited liability company' and (2) of the associated name change to "Business Telecom, LLC d/b/a EarthLink Business 1." The Company requests that the Commission update its records, including the Company's Certificate,2 to reflect the conversion and associate name change and, to the extent necessary, approve these changes. Attached hereto are the Company's conversion documents and updated authorization to transact business in Oregon and trade name registration. Beijing Boston Frankfurt Hartford Hong Kong London los Angeles New York Orange County San Francisco Santa Monica Silicon Valley Tokyo Washington The conversion of the Company to a limited liability company was merely a change in its corporate form -the conversion was accomplished through the filing of Articles of Bingham McCutchen LLP Conversion in North Carolina and did not entail any merger or other transactions interrupting 2020 K Street NW Washington, DC the existence of the Company. 20006-1806 2 The Company is authorized to provide interexchange telecommunications services pursuant to Order No. -
Smashing the Stack Protector for Fun and Profit
Smashing the Stack Protector for Fun and Profit Bruno Bierbaumer1 ( ), Julian Kirsch1, Thomas Kittel1, Aurélien Francillon2, and Apostolis Zarras3 1 Technical University of Munich, Munich, Germany [email protected] 2 EURECOM, Sophia Antipolis, France 3 Maastricht University, Maastricht, Netherlands Abstract. Software exploitation has been proven to be a lucrative busi- ness for cybercriminals. Unfortunately, protecting software against attacks is a long-lasting endeavor that is still under active research. However, certain software-hardening schemes are already incorporated into current compilers and are actively used to make software exploitation a compli- cated procedure for the adversaries. Stack canaries are such a protection mechanism. Stack canaries aim to prevent control flow hijack by detecting corruption of a specific value on the program’s stack. Careful design and implementation of this conceptually straightforward mechanism is crucial to defeat stack-based control flow detours. In this paper, we examine 17 different stack canary implementations across multiple versions of the most popular Operating Systems running on various architectures. We systematically compare critical implementation details and introduce one new generic attack vector which allows bypassing stack canaries on current Linux systems running up-to-date multi-threaded software altogether. We release an open-source framework (CookieCrumbler) that identifies the characteristics of stack canaries on any platform it is compiled on and we propose mitigation techniques against stack-based attacks. Although stack canaries may appear obsolete, we show that when they are used correctly, they can prevent intrusions which even the more sophisticated solutions may potentially fail to block. 1 Introduction Buffer overflow vulnerabilities are as old as the Internet itself. -
Operating Systems and Applications for Embedded Systems >>> Toolchains
>>> Operating Systems And Applications For Embedded Systems >>> Toolchains Name: Mariusz Naumowicz Date: 31 sierpnia 2018 [~]$ _ [1/19] >>> Plan 1. Toolchain Toolchain Main component of GNU toolchain C library Finding a toolchain 2. crosstool-NG crosstool-NG Installing Anatomy of a toolchain Information about cross-compiler Configruation Most interesting features Sysroot Other tools POSIX functions AP [~]$ _ [2/19] >>> Toolchain A toolchain is the set of tools that compiles source code into executables that can run on your target device, and includes a compiler, a linker, and run-time libraries. [1. Toolchain]$ _ [3/19] >>> Main component of GNU toolchain * Binutils: A set of binary utilities including the assembler, and the linker, ld. It is available at http://www.gnu.org/software/binutils/. * GNU Compiler Collection (GCC): These are the compilers for C and other languages which, depending on the version of GCC, include C++, Objective-C, Objective-C++, Java, Fortran, Ada, and Go. They all use a common back-end which produces assembler code which is fed to the GNU assembler. It is available at http://gcc.gnu.org/. * C library: A standardized API based on the POSIX specification which is the principle interface to the operating system kernel from applications. There are several C libraries to consider, see the following section. [1. Toolchain]$ _ [4/19] >>> C library * glibc: Available at http://www.gnu.org/software/libc. It is the standard GNU C library. It is big and, until recently, not very configurable, but it is the most complete implementation of the POSIX API. * eglibc: Available at http://www.eglibc.org/home. -
What Is LLVM? and a Status Update
What is LLVM? And a Status Update. Approved for public release Hal Finkel Leadership Computing Facility Argonne National Laboratory Clang, LLVM, etc. ✔ LLVM is a liberally-licensed(*) infrastructure for creating compilers, other toolchain components, and JIT compilation engines. ✔ Clang is a modern C++ frontend for LLVM ✔ LLVM and Clang will play significant roles in exascale computing systems! (*) Now under the Apache 2 license with the LLVM Exception LLVM/Clang is both a research platform and a production-quality compiler. 2 A role in exascale? Current/Future HPC vendors are already involved (plus many others)... Apple + Google Intel (Many millions invested annually) + many others (Qualcomm, Sony, Microsoft, Facebook, Ericcson, etc.) ARM LLVM IBM Cray NVIDIA (and PGI) Academia, Labs, etc. AMD 3 What is LLVM: LLVM is a multi-architecture infrastructure for constructing compilers and other toolchain components. LLVM is not a “low-level virtual machine”! LLVM IR Architecture-independent simplification Architecture-aware optimization (e.g. vectorization) Assembly printing, binary generation, or JIT execution Backends (Type legalization, instruction selection, register allocation, etc.) 4 What is Clang: LLVM IR Clang is a C++ frontend for LLVM... Code generation Parsing and C++ Source semantic analysis (C++14, C11, etc.) Static analysis ● For basic compilation, Clang works just like gcc – using clang instead of gcc, or clang++ instead of g++, in your makefile will likely “just work.” ● Clang has a scalable LTO, check out: https://clang.llvm.org/docs/ThinLTO.html 5 The core LLVM compiler-infrastructure components are one of the subprojects in the LLVM project. These components are also referred to as “LLVM.” 6 What About Flang? ● Started as a collaboration between DOE and NVIDIA/PGI. -
A DSL for Resource Checking Using Finite State Automaton-Driven Symbolic Execution Code
Open Comput. Sci. 2021; 11:107–115 Research Article Endre Fülöp and Norbert Pataki* A DSL for Resource Checking Using Finite State Automaton-Driven Symbolic Execution https://doi.org/10.1515/comp-2020-0120 code. Compilers validate the syntactic elements, referred Received Mar 31, 2020; accepted May 28, 2020 variables, called functions to name a few. However, many problems may remain undiscovered. Abstract: Static analysis is an essential way to find code Static analysis is a widely-used method which is by smells and bugs. It checks the source code without exe- definition the act of uncovering properties and reasoning cution and no test cases are required, therefore its cost is about software without observing its runtime behaviour, lower than testing. Moreover, static analysis can help in restricting the scope of tools to those which operate on the software engineering comprehensively, since static anal- source representation, the code written in a single or mul- ysis can be used for the validation of code conventions, tiple programming languages. While most static analysis for measuring software complexity and for executing code methods are designed to detect anomalies (called bugs) in refactorings as well. Symbolic execution is a static analy- software code, the methods they employ are varied [1]. One sis method where the variables (e.g. input data) are inter- major difference is the level of abstraction at which the preted with symbolic values. code is represented [2]. Because static analysis is closely Clang Static Analyzer is a powerful symbolic execution related to the compilation of the code, the formats used engine based on the Clang compiler infrastructure that to represent the different abstractions are not unique to can be used with C, C++ and Objective-C. -
SMT-Based Refutation of Spurious Bug Reports in the Clang Static Analyzer
SMT-Based Refutation of Spurious Bug Reports in the Clang Static Analyzer Mikhail R. Gadelha∗, Enrico Steffinlongo∗, Lucas C. Cordeiroy, Bernd Fischerz, and Denis A. Nicole∗ ∗University of Southampton, UK. yUniversity of Manchester, UK. zStellenbosch University, South Africa. Abstract—We describe and evaluate a bug refutation extension bit in a is one, and (a & 1) ˆ 1 inverts the last bit in a. for the Clang Static Analyzer (CSA) that addresses the limi- The analyzer, however, produces the following (spurious) bug tations of the existing built-in constraint solver. In particular, report when analyzing the program: we complement CSA’s existing heuristics that remove spurious bug reports. We encode the path constraints produced by CSA as Satisfiability Modulo Theories (SMT) problems, use SMT main.c:4:12: warning: Dereference of null solvers to precisely check them for satisfiability, and remove pointer (loaded from variable ’z’) bug reports whose associated path constraints are unsatisfi- return *z; able. Our refutation extension refutes spurious bug reports in ˆ˜ 8 out of 12 widely used open-source applications; on aver- age, it refutes ca. 7% of all bug reports, and never refutes 1 warning generated. any true bug report. It incurs only negligible performance overheads, and on average adds 1.2% to the runtime of the The null pointer dereference reported here means that CSA full Clang/LLVM toolchain. A demonstration is available at claims to nevertheless have found a path where the dereference https://www.youtube.com/watch?v=ylW5iRYNsGA. of z is reachable. Such spurious bug reports are in practice common; in our I. -
Porting Musl to the M3 Microkernel TU Dresden
Porting Musl to the M3 microkernel TU Dresden Sherif Abdalazim, Nils Asmussen May 8, 2018 Contents 1 Abstract 2 2 Introduction 3 2.1 Background.............................. 3 2.2 M3................................... 4 3 Picking a C library 5 3.1 C libraries design factors . 5 3.2 Alternative C libraries . 5 4 Porting Musl 7 4.1 M3andMuslbuildsystems ..................... 7 4.1.1 Scons ............................. 7 4.1.2 GNUAutotools........................ 7 4.1.3 Integrating Autotools with Scons . 8 4.2 Repositoryconfiguration. 8 4.3 Compilation.............................. 8 4.4 Testing ................................ 9 4.4.1 Syscalls ............................ 9 5 Evaluation 10 5.1 PortingBusyboxcoreutils . 10 6 Conclusion 12 1 Chapter 1 Abstract Today’s processing workloads require the usage of heterogeneous multiproces- sors to utilize the benefits of specialized processors and accelerators. This has, in turn, motivated new Operating System (OS) designs to manage these het- erogeneous processors and accelerators systematically. M3 [9] is an OS following the microkernel approach. M3 uses a hardware/- software co-design to exploit the heterogeneous systems in a seamless and effi- cient form. It achieves that by abstracting the heterogeneity of the cores via a Data Transfer Unit (DTU). The DTU abstracts the heterogeneity of the cores and accelerators so that they can communicate systematically. I have been working to enhance the programming environment in M3 by porting a C library to M3. I have evaluated different C library implementations like the GNU C Library (glibc), Musl, and uClibc. I decided to port Musl as it has a relatively small code base with fewer configurations. It is simpler to port, and it started to gain more ground in embedded systems which are also a perfect match for M3 applications. -
Rockjit: Securing Just-In-Time Compilation Using Modular Control-Flow Integrity
RockJIT: Securing Just-In-Time Compilation Using Modular Control-Flow Integrity Ben Niu Gang Tan Lehigh University Lehigh University 19 Memorial Dr West 19 Memorial Dr West Bethlehem, PA, 18015 Bethlehem, PA, 18015 [email protected] [email protected] ABSTRACT For performance, modern managed language implementations Managed languages such as JavaScript are popular. For perfor- adopt Just-In-Time (JIT) compilation. Instead of performing pure mance, modern implementations of managed languages adopt Just- interpretation, a JIT compiler dynamically compiles programs into In-Time (JIT) compilation. The danger to a JIT compiler is that an native code and performs optimization on the fly based on informa- attacker can often control the input program and use it to trigger a tion collected through runtime profiling. JIT compilation in man- vulnerability in the JIT compiler to launch code injection or JIT aged languages is the key to high performance, which is often the spraying attacks. In this paper, we propose a general approach only metric when comparing JIT engines, as seen in the case of called RockJIT to securing JIT compilers through Control-Flow JavaScript. Hereafter, we use the term JITted code for native code Integrity (CFI). RockJIT builds a fine-grained control-flow graph that is dynamically generated by a JIT compiler, and code heap for from the source code of the JIT compiler and dynamically up- memory pages that hold JITted code. dates the control-flow policy when new code is generated on the fly. In terms of security, JIT brings its own set of challenges. First, a Through evaluation on Google’s V8 JavaScript engine, we demon- JIT compiler is large and usually written in C/C++, which lacks strate that RockJIT can enforce strong security on a JIT compiler, memory safety. -
Code and Control Flow Integrity for COTS Binaries
Control Flow and Code Integrity for COTS binaries: An Effective Defense Against Real-World ROP Attacks ∗ Mingwei Zhang R. Sekar Security & Privacy Research Stony Brook University Intel Labs Stony Brook [email protected] [email protected] ABSTRACT bitrary (i.e., Turing-complete) computation. While Turing Despite decades of sustained effort, memory corruption at- completeness is an attractive property that is often the topic tacks continue to be one of the most serious security threats of research papers, real-world ROP attacks have had a more faced today. They are highly sought after by attackers, limited objective: stringing together a small set of gadgets as they provide ultimate control | the ability to execute to bypass DEP. arbitrary low-level code. Attackers have shown time and Control flow integrity (CFI) [16] is a well-known counter- again their ability to overcome widely deployed countermea- measure against control-flow hijack attacks. Such attacks sures such as Address Space Layout Randomization (ASLR) typically rely on memory corruption vulnerabilities to over- and Data Execution Prevention (DEP) by crafting Return write code pointers, e.g., return addresses on the stack, or Oriented Programming (ROP) attacks. Although Turing- variables containing function pointers. CFI thwarts most complete ROP attacks have been demonstrated in research such attacks by constraining the targets of indirect control- papers, real-world ROP payloads have had a more limited flow transfers to be consistent with a statically computed objective: that of disabling DEP so that injected native code control-flow graph. Many research efforts have demonstrated attacks can be carried out. In this paper, we provide a that CFI can be implemented within a compiler [46, 44] or systematic defense, called Control Flow and Code Integrity on binaries [66, 63], and moreover, can be applied to large (CFCI), that makes injected native code attacks impossible. -
Compiling and Makefiles
Compiling C Programs Makefiles Compiling and Makefiles 2501ICT/7421ICTNathan René Hexel School of Information and Communication Technology Griffith University Semester 1, 2012 René Hexel Compiling and Makefiles Compiling C Programs Makefiles Outline 1 Compiling C Programs 2 Makefiles Using the make Utility Makefiles for Objective-C Code Makefiles for C++ Code René Hexel Compiling and Makefiles Compiling C Programs Makefiles Compiling C Programs Integrated Development Environment (IDE) Eclipse, XCode, Visual C++, Project Center, . Compiles programs at the press of a button (like BlueJ) Often difficult to customise Very rarely support multiple platforms and languages Command Line Requires manual invocation Requires knowledge of command line parameters Can be tedious for large projects Cross-platform and -language compilers (e.g. clang) Makefiles Combine the best of both worlds Recompile a complex project with a simple make command René Hexel Compiling and Makefiles Compiling C Programs Makefiles Getting a Command Line Interface Via Dwarf ssh dwarf.ict.griffith.edu.au using putty (Windows) Via a local Terminal Mac OS X: e.g. Applications / Utilities / Terminal.app Linux: e.g. through the Gnome program menu Windows: e.g. Start / Programs / Programming Tools / GNUstep / Shell ) Enter commands to compile your program Hit Return (or Enter) after every command! René Hexel Compiling and Makefiles Compiling C Programs Makefiles Compiling a C program using clang or gcc Once on the command line change to the directory (folder) your program is in cd /my/example/directory