Population Modification of Anopheline Species to Control Malaria Transmission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plasmodium Evasion of Mosquito Immunity and Global Malaria Transmission: the Lock-And-Key Theory
Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory Alvaro Molina-Cruz1,2, Gaspar E. Canepa1, Nitin Kamath, Noelle V. Pavlovic, Jianbing Mu, Urvashi N. Ramphul, Jose Luis Ramirez, and Carolina Barillas-Mury2 Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852 Contributed by Carolina Barillas-Mury, October 15, 2015 (sent for review September 19, 2015; reviewed by Serap Aksoy and Daniel L. Hartl) Plasmodium falciparum malaria originated in Africa and became for the parasite to evade mosquito immunity. The implications global as humans migrated to other continents. During this jour- of P. falciparum selection by mosquitoes for global malaria ney, parasites encountered new mosquito species, some of them transmission are discussed. evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mos- Results quito immune system of Anopheles gambiae mosquitoes. Here, we Differences in Compatibility Between P. falciparum Isolates from investigated the role of Pfs47-mediated immune evasion in the Diverse Geographic Origin and Different Anopheline Species. The adaptation of P. falciparum to evolutionarily distant mosquito species. compatibility between P. falciparum isolates from different continents We found that P. falciparum isolates from Africa, Asia, or the Americas and mosquito vectors that are geographically and evolutionarily have low compatibility to malaria vectors from a different continent, distant was investigated by simultaneously infecting major malaria an effect that is mediated by the mosquito immune system. We iden- vectors from Africa (A. gambiae), Southeast Asia (Anopheles dirus), tified 42 different haplotypes of Pfs47 that have a strong geographic and the New World (A. -
Assessment and an Updated List of the Mosquitoes of Saudi Arabia Azzam M
Alahmed et al. Parasites Vectors (2019) 12:356 https://doi.org/10.1186/s13071-019-3579-4 Parasites & Vectors RESEARCH Open Access Assessment and an updated list of the mosquitoes of Saudi Arabia Azzam M. Alahmed1, Kashif Munawar1*, Sayed M. S. Khalil1,2 and Ralph E. Harbach3 Abstract Background: Mosquito-borne pathogens are important causes of diseases in the Kingdom of Saudi Arabia. Knowl- edge of the mosquito fauna is needed for the appropriate control of the vectors that transmit the pathogens and prevent the diseases they cause. An important frst step is to have an up-to-date list of the species known to be present in the country. Original occurrence records were obtained from published literature and critically scrutinized to compile a list of the mosquito species that occur within the borders of the Kingdom. Results: Fifty-one species have been recorded in the Kingdom; however, the occurrence of two of these species is unlikely. Thus, the mosquito fauna of the Kingdom comprises 49 species that include 18 anophelines and 31 culicines. Published records are provided for each species. Problematic records based on misidentifcations and inappropriate sources are discussed and annotated for clarity. Conclusion: Integrated morphological and molecular methods of identifcation are needed to refne the list of spe- cies and accurately document their distributions in the Kingdom. Keywords: Culicidae, Mosquitoes, Saudi Arabia, Vectors Background Mosquito-borne pathogens, including Plasmodium Te Arabian Peninsula (c.3 million km2) includes the species, dengue virus, Rift Valley fever virus and micro- Kingdom of Saudi Arabia (KSA), Oman, Qatar, United flariae, cause diseases in the KSA [9–11]. -
Cerebral and Plasmodium Ovale Malaria in Rhode Island
CASE REPORT Cerebral and Plasmodium ovale Malaria in Rhode Island JOSHUA KAINE, MD; JOSEPH MORAN-GUIATI, MD; JAMES TANCH, MD; BRIAN CLYNE, MD 64 67 EN ABSTRACT mortality. While the CDC currently reports a stable inci- We report two cases of malaria diagnosed in Rhode Is- dence of malaria in the US, climate change is predicted to land. First, a 21-year-old female who presented with 5 affect disease dynamics, and it remains unclear how the US days of fevers, chills, headache, and myalgias after return- incidence will be affected by climate change in the future.2,3 ing from a trip to Liberia, found to have uncomplicated Given the potentially fatal consequences of a missed malaria due to P. ovale which was treated successfully diagnosis of malaria and the relative inexperience of US with atovaquone/proguanil and primaquine. Second, a clinicians with the disease, we review two cases of malaria chronically ill 55-year-old male presented with 3 days of recently diagnosed in Rhode Island that are representative of headache followed by altered mental status, fever, and the spectrum of the disease one could expect to encounter in new-onset seizures after a recent visit to Sierra Leone, the US. The first is a classic, uncomplicated presentation of found to have P. falciparum malaria requiring ICU ad- malaria in a 21-year-old female and the second is an example mission and IV artesunate treatment. The diagnosis and of severe malaria in a chronically ill 55-year-old male. management of malaria in the United States (US), as well as its rare association with subdural hemorrhage are subsequently reviewed. -
Comparative Assessment of An. Gambiae and An. Stephensi Mosquitoes to Determine Transmission-Reducing Activity of Antibodies Against P
Eldering et al. Parasites & Vectors (2017) 10:489 DOI 10.1186/s13071-017-2414-z RESEARCH Open Access Comparative assessment of An. gambiae and An. stephensi mosquitoes to determine transmission-reducing activity of antibodies against P. falciparum sexual stage antigens Maarten Eldering1†, Anaïs Bompard2†, Kazutoyo Miura3, Will Stone1, Isabelle Morlais4, Anna Cohuet4, Geert-Jan van Gemert1, Patrick M. Brock2,6, Sanna R. Rijpma1, Marga van de Vegte-Bolmer1, Wouter Graumans1, Rianne Siebelink-Stoter1, Dari F. Da5, Carole A. Long3, Merribeth J. Morin7, Robert W. Sauerwein1, Thomas S. Churcher2 and Teun Bousema1,8* Abstract Background: With the increasing interest in vaccines to interrupt malaria transmission, there is a demand for harmonization of current methods to assess Plasmodium transmission in laboratory settings. Potential vaccine candidates are currently tested in the standard membrane feeding assay (SMFA) that commonly relies on Anopheles stephensi mosquitoes. Other mosquito species including Anopheles gambiae are the dominant malaria vectors for Plasmodium falciparum in sub-Saharan Africa. Methods: Using human serum and monoclonal pre-fertilization (anti-Pfs48/45) and post-fertilization (anti-Pfs25) antibodies known to effectively inhibit sporogony, we directly compared SMFA based estimates of transmission- reducing activity (TRA) for An. stephensi and An. gambiae mosquitoes. Results: In the absence of transmission-reducing antibodies, average numbers of oocysts were similar between An. gambiae and An. stephensi. Antibody-mediated TRA was strongly correlated between both mosquito species, and absolute TRA estimates for pre-fertilisation monoclonal antibodies (mAb) showed no significant difference between the two species. TRA estimates for IgG of naturally exposed individuals and partially effective concentrations of anti-Pfs25 mAb were higher for An. -
Malaria History
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site. Copyright 2006, The Johns Hopkins University and David Sullivan. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided “AS IS”; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed. Malariology Overview History, Lifecycle, Epidemiology, Pathology, and Control David Sullivan, MD Malaria History • 2700 BCE: The Nei Ching (Chinese Canon of Medicine) discussed malaria symptoms and the relationship between fevers and enlarged spleens. • 1550 BCE: The Ebers Papyrus mentions fevers, rigors, splenomegaly, and oil from Balantines tree as mosquito repellent. • 6th century BCE: Cuneiform tablets mention deadly malaria-like fevers affecting Mesopotamia. • Hippocrates from studies in Egypt was first to make connection between nearness of stagnant bodies of water and occurrence of fevers in local population. • Romans also associated marshes with fever and pioneered efforts to drain swamps. • Italian: “aria cattiva” = bad air; “mal aria” = bad air. • French: “paludisme” = rooted in swamp. Cure Before Etiology: Mid 17th Century - Three Theories • PC Garnham relates that following: An earthquake caused destruction in Loxa in which many cinchona trees collapsed and fell into small lake or pond and water became very bitter as to be almost undrinkable. Yet an Indian so thirsty with a violent fever quenched his thirst with this cinchona bark contaminated water and was better in a day or two. -
Package 'Malariaatlas'
Package ‘malariaAtlas’ June 1, 2020 Title An R Interface to Open-Access Malaria Data, Hosted by the 'Malaria Atlas Project' Version 1.0.1 Description A suite of tools to allow you to download all publicly available parasite rate survey points, mosquito occurrence points and raster surfaces from the 'Malaria Atlas Project' <https://malariaatlas.org/> servers as well as utility functions for plot- ting the downloaded data. License MIT + file LICENSE Encoding UTF-8 LazyData true Imports curl, rgdal, raster, sp, xml2, grid, gridExtra, httr, dplyr, stringi, tidyr, methods, stats, utils, rlang Depends ggplot2 RoxygenNote 7.0.2 Suggests testthat, knitr, rmarkdown, palettetown, magrittr, tibble, rdhs URL https://github.com/malaria-atlas-project/malariaAtlas BugReports https://github.com/malaria-atlas-project/malariaAtlas/issues VignetteBuilder knitr NeedsCompilation no Author Daniel Pfeffer [aut] (<https://orcid.org/0000-0002-2204-3488>), Tim Lucas [aut, cre] (<https://orcid.org/0000-0003-4694-8107>), Daniel May [aut] (<https://orcid.org/0000-0003-0005-2452>), Suzanne Keddie [aut] (<https://orcid.org/0000-0003-1254-7794>), Jen Rozier [aut] (<https://orcid.org/0000-0002-2610-7557>), Oliver Watson [aut] (<https://orcid.org/0000-0003-2374-0741>), Harry Gibson [aut] (<https://orcid.org/0000-0001-6779-3250>), Nick Golding [ctb], David Smith [ctb] Maintainer Tim Lucas <[email protected]> 1 2 as.MAPraster Repository CRAN Date/Publication 2020-06-01 20:30:11 UTC R topics documented: as.MAPraster . .2 as.MAPshp . .3 as.pr.points . .4 as.vectorpoints . .5 autoplot.MAPraster . .6 autoplot.MAPshp . .7 autoplot.pr.points . .8 autoplot.vector.points . 10 autoplot_MAPraster . 11 convertPrevalence . 13 extractRaster . -
A New Malaria Vector in Africa: Predicting the Expansion Range of Anopheles Stephensi and Identifying the Urban Populations at Risk
A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk M. E. Sinkaa,1, S. Pirononb, N. C. Masseyc, J. Longbottomd, J. Hemingwayd,1, C. L. Moyesc,2, and K. J. Willisa,b,2 aDepartment of Zoology, University of Oxford, Oxford, United Kingdom, OX1 3SZ; bBiodiversity Informatics and Spatial Analysis Department, Royal Botanic Gardens Kew, Richmond, Surrey, United Kingdom, TW9 3DS; cBig Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom, OX3 7LF; and dDepartment of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom, L3 5QA Edited by Nils Chr. Stenseth, University of Oslo, Norway, and approved July 27, 2020 (received for review March 26, 2020) In 2012, an unusual outbreak of urban malaria was reported from vector species in the published literature and found an equal Djibouti City in the Horn of Africa and increasingly severe out- number of studies (5:5) reported An. arabiensis in polluted, turbid breaks have been reported annually ever since. Subsequent inves- water as were found in clear, clean habitats, with a similar result tigations discovered the presence of an Asian mosquito species; for An. gambiae (4:4). Nonetheless, urban Plasmodium falciparum Anopheles stephensi, a species known to thrive in urban environ- transmission rates are repeatedly reported as significantly lower ments. Since that first report, An. stephensi has been identified in than those in peri-urban or rural areas (7, 10). Hay et al. (10) Ethiopia and Sudan, and this worrying development has prompted conducted a meta-analysis in cities from 22 African countries and the World Health Organization (WHO) to publish a vector alert reported a mean urban annual P. -
Extra-Intestinal Coccidians Plasmodium Species Distribution Of
Extra-intestinal coccidians Apicomplexa Coccidia Gregarinea Piroplasmida Eimeriida Haemosporida -Eimeriidae -Theileriidae -Haemosporiidae -Cryptosporidiidae - Babesiidae (Plasmodium) -Sarcocystidae (Sacrocystis) Aconoid (Toxoplasmsa) Plasmodium species Causitive agent of Malaria ~155 species named Infect birds, reptiles, rodents, primates, humans Species is specific for host and •P. falciparum vector •P. vivax 4 species cause human disease •P. malariae No zoonoses or animal reservoirs •P. ovale Transmission by Anopheles mosquito Distribution of Malarial Parasites P. vivax most widespread, found in most endemic areas including some temperate zones P. falciparum primarily tropics and subtropics P. malariae similar range as P. falciparum, but less common and patchy distribution P. ovale occurs primarily in tropical west Africa 1 Distribution of Malaria US Army, 1943 300 - 500 million cases per year 1.5 to 2.0 million deaths per year #1 cause of infant mortality in Africa! 40% of world’s population is at risk Malaria Atlas Map Project http://www.map.ox.ac.uk/index.htm 2 Malaria in the United States Malaria was quite prevalent in the rural South It was eradicated after world war II in an aggressive campaign using, treatment, vector control and exposure control Time magazine - 1947 (along with overall improvement of living Was a widely available, conditions) cheap insecticide This was the CDCs initial DDT resistance misssion Half-life in mammals - 8 years! US banned use of DDT in 1973 History of Malaria Considered to be the most -
CYCLE 43 SLIDE 1 Plasmodium Ovale
P.O. Box 131375, Bryanston, 2074 Ground Floor, Block 5 Bryanston Gate, 170 Curzon Road Bryanston, Johannesburg, South Africa 804 Flatrock, Buiten Street, Cape Town, 8001 www.thistle.co.za Tel: +27 (011) 463 3260 Fax: +27 (011) 463 3036 Fax to Email: + 27 (0) 86-557-2232 e-mail : [email protected] Please read this section first The HPCSA and the Med Tech Society have confirmed that this clinical case study, plus your routine review of your EQA reports from Thistle QA, should be documented as a “Journal Club” activity. This means that you must record those attending for CEU purposes. Thistle will not issue a certificate to cover these activities, nor send out “correct” answers to the CEU questions at the end of this case study. The Thistle QA CEU No is: MT-13/00142. Each attendee should claim THREE CEU points for completing this Quality Control Journal Club exercise, and retain a copy of the relevant Thistle QA Participation Certificate as proof of registration on a Thistle QA EQA. DIFFERENTIAL SLIDES LEGEND CYCLE 43 SLIDE 1 Plasmodium ovale Plasmodium ovale is a species of parasitic protozoa that causes tertian malaria in humans. It is closely related to Plasmodium falciparum and Plasmodium vivax, which are responsible for most malaria. It is rare compared to these two parasites, and substantially less dangerous than P. falciparum. P. ovale has recently been shown by genetic methods to consist of two subspecies, P. ovale curtisi and P. ovale wallikeri. History This species was first described by Stephens in a patient from East Africa in 1922. -
Screening and Identification of Potential Novel Biomarker for Diagnosis of Complicated Plasmodium Vivax Malaria
Kaur et al. J Transl Med (2018) 16:272 https://doi.org/10.1186/s12967-018-1646-9 Journal of Translational Medicine RESEARCH Open Access Screening and identifcation of potential novel biomarker for diagnosis of complicated Plasmodium vivax malaria Hargobinder Kaur1, Rakesh Sehgal1*, Archit Kumar2, Alka Sehgal3, Devendra Bansal4 and Ali A. Sultan4 Abstract Background: In the recent years Plasmodium vivax has been reported to cause severe infections associated with mortality. Clinical evaluation has limited accuracy for the early identifcation of the patients progressing towards the fatal condition. Researchers have tried to identify the serum and the plasma-based indicators of the severe malaria. Discovery of MicroRNA (miRNA) has opened up an era of identifcation of early biomarkers for various infectious and non-infectious diseases. MicroRNAs (miRNA) are the small non-coding RNA molecules of length 19–24 nts and are responsible for the regulation of the majority of human gene expressions at post transcriptional level. Methods: We identifed the diferentially expressed miRNAs by microarray and validated the selected miRNAs by qRT-PCR. We assessed the diagnostic potential of these up-regulated miRNAs for complicated P. vivax malaria. Futher, the bioinformtic analysis was performed to construct protein–protein and mRNA–miRNA networks to identify highly regulated miRNA. Results: In the present study, utility of miRNA as potential biomarker of complicated P. vivax malaria was explored. A total of 276 miRNAs were found to be diferentially expressed by miRNA microarray and out of which 5 miRNAs (hsa-miR-7977, hsa-miR-28-3p, hsa-miR-378-5p, hsa-miR-194-5p and hsa-miR-3667-5p) were found to be signifcantly up-regulated in complicated P. -
Anopheles Stephensi Invasion and Spread Horn of Africa, the Republic of the Sudan and Surrounding Geographical Areas, and Sri Lanka
Global Malaria Programme Vector alert: Anopheles stephensi invasion and spread Horn of Africa, the Republic of the Sudan and surrounding geographical areas, and Sri Lanka AUGUST 2019 (UPDATED DECEMBER 2019) INFORMATION NOTE IDENTIFIED THREAT Anopheles stephensi, a highly competent vector of Plasmodium falciparum and P. vivax, is considered an efficient vector of urban malaria. In parts of India, two biological forms of An. stephensi – “type” and “intermediate” – have also emerged as efficient vectors in rural areas, due to changing agricultural and water storage practices and urbanization. The third form – “mysorensis” – is considered to be a poor vector, although it has been involved in malaria transmission in certain rural areas in Afghanistan and Iran. Until 2011, the reported distribution of An. stephensi was confined to certain countries in South-East Asia and large parts of the Arabian Peninsula. Since then, the vector has been reported from Djibouti (2012), Ethiopia (2016), Sri Lanka (2017) and most recently from the Republic of the Sudan (2019). In the Horn of Africa, the vector seems to be spreading from its first site of detection (Djibouti) to neighbouring countries. An. stephensi typically breeds in containers or cisterns with clean water, and the vector appears to quickly adapt itself to the local environment (including cryptic habitats such as deep wells); it also survives extremely high temperatures during the dry season, when malaria transmission usually reaches a seasonal low. In addition, the genetic background of introduced An. stephensi seems to confer resistance to multiple insecticide classes, posing potential challenges to its control. The World Health Organization (WHO) considers the spread of An. -
Evolutionary History of Human Plasmodium Vivax Revealed by Genome-Wide Analyses of Related Ape Parasites
Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites Dorothy E. Loya,b,1, Lindsey J. Plenderleithc,d,1, Sesh A. Sundararamana,b, Weimin Liua, Jakub Gruszczyke, Yi-Jun Chend,f, Stephanie Trimbolia, Gerald H. Learna, Oscar A. MacLeanc,d, Alex L. K. Morganc,d, Yingying Lia, Alexa N. Avittoa, Jasmin Gilesa, Sébastien Calvignac-Spencerg, Andreas Sachseg, Fabian H. Leendertzg, Sheri Speedeh, Ahidjo Ayoubai, Martine Peetersi, Julian C. Raynerj, Wai-Hong Thame,f, Paul M. Sharpc,d,2, and Beatrice H. Hahna,b,2,3 aDepartment of Medicine, University of Pennsylvania, Philadelphia, PA 19104; bDepartment of Microbiology, University of Pennsylvania, Philadelphia, PA 19104; cInstitute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; dCentre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; eWalter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia; fDepartment of Medical Biology, The University of Melbourne, Parkville VIC 3010, Australia; gRobert Koch Institute, 13353 Berlin, Germany; hSanaga-Yong Chimpanzee Rescue Center, International Development Association-Africa, Portland, OR 97208; iRecherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France; and jMalaria Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton Cambridgeshire CB10 1SA, United Kingdom Contributed by Beatrice H. Hahn, July 13, 2018 (sent for review June 12, 2018; reviewed by David Serre and L. David Sibley) Wild-living African apes are endemically infected with parasites most recently in bonobos (Pan paniscus)(7–11). Phylogenetic that are closely related to human Plasmodium vivax,aleadingcause analyses of available sequences revealed that ape and human of malaria outside Africa.