Quarterly Journal of the ALPO

Total Page:16

File Type:pdf, Size:1020Kb

Quarterly Journal of the ALPO ISSN-0039-2502 Journal of the Association of Lunar & Planetary Observers The Strolling Astronomer Volume 59, Number 1, Winter 2017 Now in Portable Document Format (PDF) for Macintosh and PC-compatible computers Online and in COLOR at http://www.alpo-astronomy.org The Super Full Moon of November (see page 2 for details) The Strolling Astronomer Journal of the Inside the ALPO Point of View: Your ALPO! ................................ 2 Association of Lunar & News of General Interest .................................. 3 Our Cover ....................................................... 3 Planetary Observers Special Announcement from the The Strolling Astronomer ALPO Venus Section ................................ 4 Digital Journal of the ALPO Now Available to All ALPO Members ..................................... 4 Volume 59, No.1, Winter 2017 This issue published in December 2016 for distribution in both Update: The ALPO Publications Section portable document format (pdf) and hardcopy format. Gallery ........................................................ 4 ALPO Interest Section Reports ........................ 6 This publication is the official journal of the Association of Lunar & ALPO Observing Section Reports .................... 7 Planetary Observers (ALPO). Obituary: Winifred Sawtell Cameron, 1918–2016 ............................................... 20 The purpose of this journal is to share observation reports, opinions, Contributors and Newest Members ................ 21 and other news from ALPO members with other members and the professional astronomical community. Papers & Presentations © 2016, Association of Lunar and Planetary Observers (ALPO). The A Report on Carrington Rotations 2178 and ALPO hereby grants permission to educators, academic libraries and 2179 (2016-06-06 to 2016-07-31) ................ 25 the professional astronomical community to photocopy material for ALPO Observations of Venus During the educational or research purposes as required. There is no charge for 2012-2013 Western (Morning) Apparition .... 36 these uses provided that credit is given to The Strolling Astronomer, People on the Moon: Women ......................... 48 the “JALPO” or the ALPO itself. All others must request permission ALPO Observations of Mars During the from the ALPO. 2005 Apparition ............................................ 58 For membership or general information about the ALPO, contact: ALPO Resources Matthew Will Board of Directors .......................................... 73 ALPO Membership Secretary/Treasurer Publications Staff ............................................ 73 P.O. Box 13456 Springfield, Illinois 62791-3456 Interest Sections ............................................. 73 Observing Sections ........................................ 73 E-mail to: [email protected] ALPO Publications ......................................... 74 The Monograph Series ................................. 74 ALPO Observing Section Publications ......... 75 Visit the ALPO online at: Other ALPO Publications ............................. 76 http://www.alpo-astronomy.org Back Issues of The Strolling Astronomer ..... 76 Volume 59, No. 1, Winter 2017 Page 1 The Strolling Astronomer Inside the ALPO Member, section and activity news Association of Lunar & Planetary Observers (ALPO) Point of View Your ALPO! Board of Directors Executive Director (Chair); Michael D. Reynolds By Matthew L. Will, membership secretary, the ALPO Associate Director; Richard W. Schmude, Jr. Member of the Board; Julius L. Benton, Jr. For those of you that read the minutes of Member of the Board; Sanjay Limaye our Board meeting in the last issue of the Member of the Board; Ken Poshedly Journal of the ALPO, you may have read Member of the Board; John E. Westfall about developments for expanding Member of the Board & Secretary/Treasurer; membership access to our quarterly Journal in both media (hard copy and Matthew Will digital). The move to do this was in the Founder/Director Emeritus; the late Walter H. Haas spirit of strengthening membership in our organization and making ALPO Publications membership more appealing. Editor & Publisher: Ken Poshedly Also, the ALPO is focused on strengthening our own organizational structure, whether that is: Primary Observing Section & Interest Section Staff • Fortifying our own observing programs with capable and dedicated staff to manage these programs. (See full listing in ALPO Resources) Lunar& Planetary Training Section: • Producing credible and respected literature such as with our Journal Timothy J. Robertson and other publications. Solar Section: Rik Hill Mercury Section: Frank Melillo • Administering the mechanics of the internal workings of the ALPO. Venus Section: Julius L. Benton, Jr. • Projecting future needs, directions, and goals for the ALPO. Mercury/Venus Transit Section: John E. Westfall Lunar Section: In short, the ALPO has a lot of moving parts! Lunar Topographical Studies & Selected Areas Program; Wayne Bailey As we celebrate our 70th anniversary next year, the success of the ALPO can be attributed to an engaged membership, responsive staff, Lunar Meteoritic Impact Search; Brian Cudnik sound finances, the use of modern technology and media, along with Lunar Transient Phenomena; Anthony Cook preserving our institutional history and having a vision for the future. I Mars Section: Roger Venable would briefly like to focus on our engaged membership. Minor Planets Section: Frederick Pilcher Jupiter Section: Ed Grafton The ALPO has been fortunate to have a membership that has taken great interest in the scientific debates on the pages of our Journal for Saturn Section: Julius L. Benton, Jr. the last 70 years. Moreover, ALPO members have also offered Remote Planets Section: Richard W. Schmude, Jr. suggestions to me from time to time about our operations from the Eclipse Section: Michael D. Reynolds business end. The Membership Secretary has gotten some good ideas Comets Section: Carl Hergenrother over the years. While some were impractical for various reasons, others Meteors Section: Robert D. Lunsford were things that I had not thought of before. In short, change doesn’t occur in a vacuum and your input as members is important in improving Meteorites Section: Dolores Hill our organization. ALPO Online Section: Larry Owens Computing Section: Larry Owens My presentation on the history of the ALPO at the ALCon last summer Youth Section: Timothy J. Robertson demonstrated that. Many ALPO members over the years, whether they were on staff or just regular dues paying members, have made their mark with the ALPO with helpful insights and suggestions. So speak up! I can’t say that every suggestion that I receive will be implemented due to factors or circumstances that might not be apparent at first blush. However, this is your ALPO and the dues that you pay support our organization and entitle you to some say in our operations. I eagerly, and cheerfully look forward to engaging with you! Page 2 Volume 59, No. 1, Winter 2017 The Strolling Astronomer Inside the ALPO Member, section and activity news News of General Interest Our Cover to me (periwestfall?) rather than at that moment, and 5,461 km to the center of the Earth: 2016 closer than the closest center-to- This month’s cover image of the NOV 14, 07h49m UT. The line- center distance at 11:28 UT. November “Super Full Moon”, while of-sight distance was then • Larry Owens (top of this page) not strictly scientific, does (at least 350,768 km, or 5,766 km less from Alpharetta (near Atlanta), technically) fall into the camp of than the center-to-center distance “observational astronomy”. Taken from his observatory in Colfax, California, our cover features an image by Don Machholz that he took through his homemade 6" binoculars using a simple Nikon digital camera. Don adds that, “The ridge (where the foreground trees are located) is 4,000 feet from my house.” On this page, we include a few other attempts to catch the experience. • Says John Westfall (bottom of this column) from Antioch (near San Francisco), California USA: “The attached supermoon 450-mm telephoto image isn't what you asked for (no foreground object for comparison), but still may be of some interest because it was taken when the Moon was closest Volume 59, No. 1, Winter 2017 Page 3 The Strolling Astronomer Inside the ALPO Member, section and activity news Georgia USA, describes his effort index.cfm?fobjectid=38833&fbodylongid repository where some Journals were as simply, “With a little fall color”. =1856. still password-protected. That online (Top right) location will be deleted. • Rik Hill (beneath the Larry Digital Journal of the ALPO The Journals for calendar year 2016 Owens image) from Tuscon, Now Available to All ALPO remain available only to ALPO Arizona, USA, states, “Here ya Members members and will be posted to the go!” (Bottom right) As per the unanimous vote by the new location as their individual one- ALPO board of directors at its August year anniversaries of release are Special Announcement from 13 meeting, those whose ALPO reached. the ALPO Venus Section membership includes only the paper It was in 2001 that Ken Poshedly The ALPO Venus Section continues (hard copy) of our Journal will now was named editor & publisher and to routinely share visual observations be able to download the full-color began production of a redesigned and digital images at various digital version as well, complete with ALPO journal on a quarterly wavelengths with the professional its electronic bookmarks
Recommended publications
  • USGS Open-File Report 2005-1190, Table 1
    TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16).
    [Show full text]
  • Lunar Orbiter Photographic Atlas of the Near Side of the Moon Charles J
    Lunar Orbiter Photographic Atlas of the Near Side of the Moon Charles J. Byrne Lunar Orbiter Photographic Atlas of the Near Side of the Moon Charles J. Byrne Image Again Middletown, NJ USA Cover illustration: Earth-based photograph of the full Moon from the “Consolidated Lunar Atlas” on the Website of the Lunar and Planetary Institute. British Library Cataloging-in-Publication Data Byrne, Charles J., 1935– Lunar Orbiter photographic atlas of the near side of the Moon 1. Lunar Orbiter (Artificial satellite) 2. Moon–Maps 3. Moon–Photographs from space I. Title 523.3 0223 ISBN 1852338865 Library of Congress Cataloging-in-Publication Data Byrne, Charles J., 1935– Lunar Orbiter photographic atlas of the near side of the Moon : with 619 figures / Charles J. Byrne. p. cm. Includes bibliographical references and index. ISBN 1-85233-886-5 (acid-free paper) 1. Moon–Maps. 2. Moon–Photographs from space. 3. Moon–Remote-sensing images. 4. Lunar Orbiter (Artificial satellite) I. Title. G1000.3.B9 2005 523.3 022 3–dc22 2004045006 Additional material to this book can be downloaded from http://extras.springer.com. ISBN 1-85233-886-5 Printed on acid-free paper. © 2005 Springer-Verlag London Limited Apart from any fair dealing for the purposes of research or private study, or criticism, or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro- duced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Oral Histories in Meteoritics and Planetary Science – XX: Dale P
    Oral Histories in Meteoritics and Planetary Science – XX: Dale P. Cruikshank by Derek W. G. Sears Planetary Science and Astrobiology Division NASA Ames Research Center, Mountain View California. SUPPLEMENTAL INFORMATION Recollections of Gerard Kuiper DS: Okay, so we have recorded your oral history, let’s spend some time recollecting your interactions with Gerard Kuiper. You described how you met him at Yerkes Observatory as an undergraduate and how you went to graduate school after he moved to the University of Arizona DC: Alan Binder and I applied to graduate school in Arizona and did our graduate training there. At about the same time, Bill Hartmann came to Tucson as a graduate student from Penn State, Elliott Moore and Tobias Owen also came as students from the University of Chicago. Several astronomers and atmospheric physicists also came to Tucson in those first years; Joseph Chamberlain, Donald Hunten, and Lloyd Wallace came to Arizona and joined the staff at the Kitt Peak National Observatory. The National Observatory had decided to locate in Tucson and build its observatory at Kitt Peak some 40 miles outside of town. By the time Kuiper got there Kitt Peak National Observatory was becoming quite a significant national establishment, and that provided a strong draw to the area. The Kitt Peak offices were located on the edge of the University of Arizona campus, just across the street from the University's Steward Observatory. When Kuiper left Yerkes several people involved in his lunar studies enterprise went with him, including David Arthur and Ewen Whitaker. Eventually Tom Gehrels, formerly associated with Kuiper at the University of Chicago, joined the group in Tucson.
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]
  • 10Great Features for Moon Watchers
    Sinus Aestuum is a lava pond hemming the Imbrium debris. Mare Orientale is another of the Moon’s large impact basins, Beginning observing On its eastern edge, dark volcanic material erupted explosively and possibly the youngest. Lunar scientists think it formed 170 along a rille. Although this region at first appears featureless, million years after Mare Imbrium. And although “Mare Orien- observe it at several different lunar phases and you’ll see the tale” translates to “Eastern Sea,” in 1961, the International dark area grow more apparent as the Sun climbs higher. Astronomical Union changed the way astronomers denote great features for Occupying a region below and a bit left of the Moon’s dead lunar directions. The result is that Mare Orientale now sits on center, Mare Nubium lies far from many lunar showpiece sites. the Moon’s western limb. From Earth we never see most of it. Look for it as the dark region above magnificent Tycho Crater. When you observe the Cauchy Domes, you’ll be looking at Yet this small region, where lava plains meet highlands, con- shield volcanoes that erupted from lunar vents. The lava cooled Moon watchers tains a variety of interesting geologic features — impact craters, slowly, so it had a chance to spread and form gentle slopes. 10Our natural satellite offers plenty of targets you can spot through any size telescope. lava-flooded plains, tectonic faulting, and debris from distant In a geologic sense, our Moon is now quiet. The only events by Michael E. Bakich impacts — that are great for telescopic exploring.
    [Show full text]
  • Comet Section Observing Guide
    Comet Section Observing Guide 1 The British Astronomical Association Comet Section www.britastro.org/comet BAA Comet Section Observing Guide Front cover image: C/1995 O1 (Hale-Bopp) by Geoffrey Johnstone on 1997 April 10. Back cover image: C/2011 W3 (Lovejoy) by Lester Barnes on 2011 December 23. © The British Astronomical Association 2018 2018 December (rev 4) 2 CONTENTS 1 Foreword .................................................................................................................................. 6 2 An introduction to comets ......................................................................................................... 7 2.1 Anatomy and origins ............................................................................................................................ 7 2.2 Naming .............................................................................................................................................. 12 2.3 Comet orbits ...................................................................................................................................... 13 2.4 Orbit evolution .................................................................................................................................... 15 2.5 Magnitudes ........................................................................................................................................ 18 3 Basic visual observation ........................................................................................................
    [Show full text]
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]
  • THE STUDY of SATURN's RINGS 1 Thesis Presented for the Degree Of
    1 THE STUDY OF SATURN'S RINGS 1610-1675, Thesis presented for the Degree of Doctor of Philosophy in the Field of History of Science by Albert Van Haden Department of History of Science and Technology Imperial College of Science and Teohnology University of London May, 1970 2 ABSTRACT Shortly after the publication of his Starry Messenger, Galileo observed the planet Saturn for the first time through a telescope. To his surprise he discovered that the planet does.not exhibit a single disc, as all other planets do, but rather a central disc flanked by two smaller ones. In the following years, Galileo found that Sa- turn sometimes also appears without these lateral discs, and at other times with handle-like appendages istead of round discs. These ap- pearances posed a great problem to scientists, and this problem was not solved until 1656, while the solution was not fully accepted until about 1670. This thesis traces the problem of Saturn, from its initial form- ulation, through the period of gathering information, to the final stage in which theories were proposed, ending with the acceptance of one of these theories: the ring-theory of Christiaan Huygens. Although the improvement of the telescope had great bearing on the problem of Saturn, and is dealt with to some extent, many other factors were in- volved in the solution of the problem. It was as much a perceptual problem as a technical problem of telescopes, and the mental processes that led Huygens to its solution were symptomatic of the state of science in the 1650's and would have been out of place and perhaps impossible before Descartes.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • Lunar Observers' Feature Finder
    Lunar Observers’ Feature Finder This feature finder is a modified version of Charles Wood’s original “Lunar 100” list as published in April 2004 Sky & Telescope. Notes: • The orientation is as seen with the naked eye and binoculars. Different telescopes may reverse the image vertically or laterally or both depending on telescope type and whether a star diagonal is used or not. • Feature visibilities are correct for viewing at about 2200-2300 hrs on the dates given. • See the guidance at the end of this article for help on using the table. That guidance also includes how the table can be used for dates following May 2021. Moon May Diam. or Long. (°) Term. Age Date L V Feature Name Significance length Lat. (°) E -ve Long. (days) 2021 (km) W +ve 85 C Langrenus rays Aged ray system 132 8.9S -60.9 16 A Petavius Crater with domed & fractured 177 25.1S -60.4 3 14 floor -52 10 A Mare Crisium Mare contained in large 540 18.0N -59.0 and (DA) circular basin 58 B Rheita Valley Basin secondary-crater chain 445 42.5S -51.5 25 A Messier & Oblique ricochet-impact pair 11 1.9S -47.6 Messier A 4 15 12 A Proclus Oblique-impact rays 28 16.1N -46.8 -40 31 A Taruntius Young floor-fractured crater 56 5.6N -46.5 72 C Atlas dark-halo Explosive volcanic pits on the 87 46.7N -44.4 craters floor of Atlas 40 B Janssen Rille Rare example of a highland 190 45.4S -39.3 rille across floor of Janssen 48 B Cauchy region Fault, rilles, & domes 130 10.5N -38.0 21 A Fracastorius Crater with subsided & 124 21.5S -33.2 fractured floor 88 C Peary Difficult-to-observe polar 74
    [Show full text]
  • Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
    chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.
    [Show full text]