Arithmetic Physics – Abel Lecture

Total Page:16

File Type:pdf, Size:1020Kb

Arithmetic Physics – Abel Lecture P. I. C. M. – 2018 Rio de Janeiro, Vol. 1 (111–118) ARITHMETIC PHYSICS – ABEL LECTURE M A 1 Introduction My Abel lecture in Rio de Janeiro was devoted to solving the riddle of the fine structure constant ˛, an outstanding problem from the world of fundamental physics. Here is what the Nobel Laureate Richard Feynman had to say about ˛ :Where does ˛ come from; is it related to ,or perhaps to e? Nobody knows, it is one of the great damn mysteries of physics: a magic number that comes to us with no understanding by man. You might say the hand of God wrote the number and we don’t know how He pushed his pencil. Within the constraints of a one-hour lecture, before an audience of a thousand math- ematicians, I sketched my explanation of where ˛ came from. The actual title of my lecture was: The Future of Mathematical Physics: new ideas in old bottles. During the ICM I listened to many brilliant lectures and talked with many clever people. As a result my ideas crystallised and, on the long flight back from Rio to Frank- furt, they took final shape. Rather than just expand on my Abel Lecture I will attempt to outline the broad programme that starts with the fine structure constant and aims to build a Theory of Arithmetic Physics. A programme with a similar title was put forward by Yuri Manin in Bonn in 1984 Atiyah [1985]. In fact Manin was not able to come and I presented his lecture for him. This gave me the opportunity to suggest that Manin’s programme was too modest, and that it should be lifted from the classical regime to the quantum regime with Hilbert spaces in the forefront. Visionary programmes take decades to mature and it was 34 years later, on the flight from the new world to the old, that the programme revealed its true self. The title of my Abel lecture suddenly acquired a new meaning, with bottles replaced by continents. In the next section I will survey the history of the “old bottles” and show how old ideas can be put to new use. MSC2010: primary 11G05; secondary 11G40, 14G25, 14H52, 14K15. Keywords: Elliptic curve. 111 112 MICHAEL ATIYAH 2 Past, Present and Future There are two stories from the past that I wish to resurrect. The first, and older of the two, is the Theory of von Neumann Algebras Murray and von Neumann [1936]. It arose from the study of operators in Hilbert space that von Neumann used to lay the foundations of quantum mechanics. It created a deep bridge between non-commutative Algebra and Analysis. In more recent years, in the hands of Alain Connes Connes [1994], it has been further refined to include Differential Geometry. The second story from the past was initiated by Fritz Hirzebruch Hirzebruch [1966], as part of the new algebraic geometry centred on Paris and Princeton. Fritz was a ma- gician, a true successor to Euler Dunham [1999], who found beautiful new applications of the Bernoulli numbers, creating a bridge between number theory and algebraic ge- ometry. My own work in collaboration with Raoul Bott Atiyah and Bott [1966] and Is Singer Atiyah and Singer [1963] extended the bridge into differential geometry and topology. The Hirzebruch era was a generation later than the von Neumann era, but by then the foundations of Arithmetic Physics were being laid, as Manin recognized. With subse- quent developments in Physics led by Edward Witten, M-theory emerged and provided strong hints that Arithmetic Physics should indeed lift to the quantum world as I had speculated. My paper on the fine structure constant, which provides the details behind the ideas sketched in my Abel Lecture, has been submitted to the Proceedings A of the Royal So- ciety Atiyah [2018a]. It was recorded in the ArXiv on 15/8/18. As advertised in Atiyah and Kouneiher [n.d.] a second paper on Newton’s constant is in preparation. In this article I will explain that (quantum) Arithmetic Physics is essentially Alge- braic Geometry over the Quaternions H. I will show that it mimics algebraic geometry over the complex field C. The only difference is that the complex field is replaced by the hyperfinite II-1 factor A(C). Moreover an algebraic number field Q0 in C is re- placed by what I will call the Hirzebruch algebra A(Q0). A careful scrutiny of Hirzebruch’s formalism shows that it essentially gives the Hilbert Nullstellensatz over the quaternions H. Since Hilbert’s theorem is the foundation stone of complex algebraic geometry, its counterpart over A will be the foundation stone of quaternionic algebraic geometry. C and its arithmetic subfields Q0 get replaced by A and its arithmetic sub-factors A(Q0). These algebraic/analytic ideas enable us to extend classical algebra/analysis from the commutative world of Q0 and C to the non-commutative world of A(Q0) and A(C). This converts large areas of classical mathematics into non-commutative counterparts. The traces of von Neumann factors, the holomorphic Euler characteristics of Hirzebruch and the index of Atiyah and Singer [1963] give stable commutative invariants from the ARITHMETIC PHYSICS – ABEL LECTURE 113 non-commutative world. This is the way gets converted to Ж. Just as is related to the circle via the equation (1) x2 + y2 = 1 where x and y are commuting variables in R C, Ж is related to the same equation with non-commuting variables in A(R) A(C). Keeping the same equation, but taking arithmetic subfields Q0 gives interesting arith- metic invariants interpolating between and Ж. As Hirzebruch showed, the Bernoulli functions and the Todd polynomials play a key role in this story, which is precisely the topic of Hirzebruch [1966]. Hirzebruch had many variants and extensions of his Todd polynomials and they are all based on this one rational case. Replacing the equation (2.1) by other polynomial equations leads to elliptic and higher genus curves whose counterparts give rise to invariants of elliptic fields or fields of higher genus. It seems likely that this will provide a novel approach to algebraic number theory, yet to be explored. In the next section I will peer into this future and describe the vista I see. 3 A new programme for the future I envisage Arithmetic Physics as a future programme ahead that will unify many fields. These include: 3.1 the Langlands programme (number theory) 3.2 Donaldson theory (differential geometry) 3.3 M–theory (theoretical physics) 3.4 Burnside problems (group theory) 3.5 Thompson theory (finite simple groups) There are already many hints that these fields are connected in some way, via mod- ular forms and L-functions. Examples of old problems that have been rejuvenated and extended by the first steps into the domain of Arithmetic Physics include: 3.6. Complex structures on the 6-sphere Atiyah [2016] Atiyah [2018b] 114 MICHAEL ATIYAH 3.7 Groups of odd order Atiyah [n.d.] 3.8 The fine structure constant Atiyah [2018a] Work in progress includes: 3.9 Newton’s constant Atiyah and Kouneiher [n.d.], joint with J.Kouneiher 3.10 New results on the restricted Burnside problem Atiyah and Zuk [n.d.], joint with A. Zuk. Going beyond the Quaternions H, to the Octonions O, deepens Arithmetic Physics in several ways: 3.11 It extends the physics to include Gravity and black holes 3.12 It extends group theory to include Exceptional groups This indicates the potential scope of the theory showing that much remains to be done. In the next section I will comment on the technical tools that will be needed. 4 New Technology The fundamental idea behind the new technology is that all the hard problems of mathe- matics or physics are non-linear, but our tools are linear. A familiar example is a CT scan which inputs linear waves and attempts to reconstruct your bones or your brain. Bom- barding a nucleus with waves and analysing the scattering is another example. These are examples from biology and physics. Representation theory is an example from group theory, while classical modular forms provide an example from the theory of elliptic curves. This was the bread and butter of Arithmetic Physics in the classical setting described by Manin in 1984. In the classical theories, as the subject developed, more elaborate processes were constructed. A simple example is the use of cohomology theory which began with H 1 but gradually moved on to H 2 and H 3. The new version of Arithmetic Physics that I envisage, replacing classical by quan- tum ideas, is infinite-dimensional and is reached by an infinite iteration of steps. Addi- tion and multiplication were handled with consummate skill, by Euler Dunham [1999] with infinite series and infinite products. But the hard operation, to iterate to infinity, is the exponential which converts addition into multiplication. In set theory the expo- nential 2S is the set of all subsets of S, and it was Emil Artin who exploited this. But it was von Neumann who went one step further and considered an infinite iteration of ex- ponentials as an analytical tool. This analysis was refined by Hirzebruch to be defined ARITHMETIC PHYSICS – ABEL LECTURE 115 over Q or over a number field Q0. This is the fundamental tool for the new theory and it encapsulates linear information from Hilbert space, such as the spectrum. Cohomology is the classical linear invariant and is the basis of much number theory, as in l-adic representations. But it was clear from the work of Grothendieck and Quillen that K-theory is a more sophisticated invariant, being filtered rather than graded.
Recommended publications
  • Discrete and Profinite Groups Acting on Regular Rooted Trees
    Discrete and Profinite Groups Acting on Regular Rooted Trees Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universit¨at G¨ottingen vorgelegt von Olivier Siegenthaler aus Lausanne G¨ottingen, den 31. August 2009 Referent: Prof. Dr. Laurent Bartholdi Korreferent: Prof. Dr. Thomas Schick Tag der m¨undlichen Pr¨ufung: den 28. September 2009 Contents Introduction 1 1 Foundations 5 1.1 Definition of Aut X∗ and ...................... 5 A∗ 1.2 ZariskiTopology ............................ 7 1.3 Actions of X∗ .............................. 8 1.4 Self-SimilarityandBranching . 9 1.5 Decompositions and Generators of Aut X∗ and ......... 11 A∗ 1.6 The Permutation Modules k X and k X ............ 13 { } {{ }} 1.7 Subgroups of Aut X∗ .......................... 14 1.8 RegularBranchGroups . 16 1.9 Self-Similarity and Branching Simultaneously . 18 1.10Questions ................................ 19 ∗ 2 The Special Case Autp X 23 2.1 Definition ................................ 23 ∗ 2.2 Subgroups of Autp X ......................... 24 2.3 NiceGeneratingSets. 26 2.4 Uniseriality ............................... 28 2.5 Signature and Maximal Subgroups . 30 2.6 Torsion-FreeGroups . 31 2.7 Some Specific Classes of Automorphisms . 32 2.8 TorsionGroups ............................. 34 3 Wreath Product of Affine Group Schemes 37 3.1 AffineSchemes ............................. 38 3.2 ExponentialObjects . 40 3.3 Some Hopf Algebra Constructions . 43 3.4 Group Schemes Corresponding to Aut X∗ .............. 45 3.5 Iterated Wreath Product of the Frobenius Kernel . 46 i Contents 4 Central Series and Automorphism Towers 49 4.1 Notation................................. 49 4.2 CentralSeries.............................. 51 4.3 Automorphism and Normalizer Towers . 54 5 Hausdorff Dimension 57 5.1 Definition ................................ 57 5.2 Layers .................................. 58 5.3 ComputingDimensions .
    [Show full text]
  • A Short Survey of Cyclic Cohomology
    Clay Mathematics Proceedings Volume 10, 2008 A Short Survey of Cyclic Cohomology Masoud Khalkhali Dedicated with admiration and affection to Alain Connes Abstract. This is a short survey of some aspects of Alain Connes’ contribu- tions to cyclic cohomology theory in the course of his work on noncommutative geometry over the past 30 years. Contents 1. Introduction 1 2. Cyclic cohomology 3 3. From K-homology to cyclic cohomology 10 4. Cyclic modules 13 5. Thelocalindexformulaandbeyond 16 6. Hopf cyclic cohomology 21 References 28 1. Introduction Cyclic cohomology was discovered by Alain Connes no later than 1981 and in fact it was announced in that year in a conference in Oberwolfach [5]. I have reproduced the text of his abstract below. As it appears in his report, one of arXiv:1008.1212v1 [math.OA] 6 Aug 2010 Connes’ main motivations to introduce cyclic cohomology theory came from index theory on foliated spaces. Let (V, ) be a compact foliated manifold and let V/ denote the space of leaves of (V, ).F This space, with its natural quotient topology,F is, in general, a highly singular spaceF and in noncommutative geometry one usually replaces the quotient space V/ with a noncommutative algebra A = C∗(V, ) called the foliation algebra of (V,F ). It is the convolution algebra of the holonomyF groupoid of the foliation and isF a C∗-algebra. It has a dense subalgebra = C∞(V, ) which plays the role of the algebra of smooth functions on V/ . LetA D be a transversallyF elliptic operator on (V, ). The analytic index of D, index(F D) F ∈ K0(A), is an element of the K-theory of A.
    [Show full text]
  • Abstract Quotients of Profinite Groups, After Nikolov and Segal
    ABSTRACT QUOTIENTS OF PROFINITE GROUPS, AFTER NIKOLOV AND SEGAL BENJAMIN KLOPSCH Abstract. In this expanded account of a talk given at the Oberwolfach Ar- beitsgemeinschaft “Totally Disconnected Groups”, October 2014, we discuss results of Nikolay Nikolov and Dan Segal on abstract quotients of compact Hausdorff topological groups, paying special attention to the class of finitely generated profinite groups. Our primary source is [17]. Sidestepping all difficult and technical proofs, we present a selection of accessible arguments to illuminate key ideas in the subject. 1. Introduction §1.1. Many concepts and techniques in the theory of finite groups depend in- trinsically on the assumption that the groups considered are a priori finite. The theoretical framework based on such methods has led to marvellous achievements, including – as a particular highlight – the classification of all finite simple groups. Notwithstanding, the same methods are only of limited use in the study of infinite groups: it remains mysterious how one could possibly pin down the structure of a general infinite group in a systematic way. Significantly more can be said if such a group comes equipped with additional information, such as a structure-preserving action on a notable geometric object. A coherent approach to studying restricted classes of infinite groups is found by imposing suitable ‘finiteness conditions’, i.e., conditions that generalise the notion of being finite but are significantly more flexible, such as the group being finitely generated or compact with respect to a natural topology. One rather fruitful theme, fusing methods from finite and infinite group theory, consists in studying the interplay between an infinite group Γ and the collection of all its finite quotients.
    [Show full text]
  • Burnside, March 2016
    A Straightforward Solution to Burnside’s Problem S. Bachmuth 1. Introduction The Burnside Problem for groups asks whether a finitely generated group, all of whose elements have bounded order, is finite. We present a straightforward proof showing that the 2-generator Burnside groups of prime power exponent are solvable and therefore finite. This proof is straightforward in that it does not rely on induced maps as in [2], but it is strongly dependent on Theorem B in the joint paper with H. A. Heilbronn and H. Y. Mochizuki [9]. Theorem B is reformulated here as Lemma 3(i) in Section 2. Our use of Lemma 3(i) is indispensable. Throughout this paper we fix a prime power q = pe and unless specifically mentioned otherwise, all groups are 2-generator. At appropriate places, we may require e = 1 so that q = p is prime; otherwise q may be any fixed prime power. The only (published) positive results of finiteness of Burnside groups of prime power exponents are for exponents q = 2, 3 and 4 ([10],[12]). Some authors, beginning with P. S. Novikoff and S. I. Adian {15], (see also [1}), have claimed that groups of exponent k are infinite for k sufficiently large. Our result here, as in [2], is at odds with this claim. Since this proof avoids the use of induced maps, Section 4 of [2] has been rewritten. Sections 2, 3 and 6 have been left unaltered apart from minor, mostly expository, changes and renumbering of items. The introduction and Section 5 have been rewritten. Sections 5 & 6 are not involved in the proof although Section 5 is strongly recommended.
    [Show full text]
  • Congruence Subgroup Problem for Algebraic Groups: Old and New Astérisque, Tome 209 (1992), P
    Astérisque A. S. RAPINCHUK Congruence subgroup problem for algebraic groups: old and new Astérisque, tome 209 (1992), p. 73-84 <http://www.numdam.org/item?id=AST_1992__209__73_0> © Société mathématique de France, 1992, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CONGRUENCE SUBGROUP PROBLEM FOR ALGEBRAIC GROUPS: OLD AND NEW A. S. RAPINCHUK* Let G C GLn be an algebraic group defined over an algebraic number field K. Let 5 be a finite subset of the set VK of all valuations of K, containing the set V*£ of archimedean valuations. Denote by O(S) the ring of 5-integers in K and by GQ(S) the group of 5-units in G. To any nonzero ideal a C O(S) there corresponds the congruence subgroup Go(s)(*) = {96 G0(s) \ 9 = En (mod a)} , which is a normal subgroup of finite index in GQ(S)- The initial statement of the Congruence Subgroup Problem was : (1) Does any normal subgroup of finite index in GQ(S) contain a suitable congruence subgroup Go(s)(a) ? In fact, it was found by F. Klein as far back as 1880 that for the group SL2(Z) the answer to question (1) is "no".
    [Show full text]
  • Annals of K-Theory Vol. 1 (2016)
    ANNALSOF K-THEORY Paul Balmer Spencer Bloch vol. 1 no. 4 2016 Alain Connes Guillermo Cortiñas Eric Friedlander Max Karoubi Gennadi Kasparov Alexander Merkurjev Amnon Neeman Jonathan Rosenberg Marco Schlichting Andrei Suslin Vladimir Voevodsky Charles Weibel Guoliang Yu msp A JOURNAL OF THE K-THEORY FOUNDATION ANNALS OF K-THEORY msp.org/akt EDITORIAL BOARD Paul Balmer University of California, Los Angeles, USA [email protected] Spencer Bloch University of Chicago, USA [email protected] Alain Connes Collège de France; Institut des Hautes Études Scientifiques; Ohio State University [email protected] Guillermo Cortiñas Universidad de Buenos Aires and CONICET, Argentina [email protected] Eric Friedlander University of Southern California, USA [email protected] Max Karoubi Institut de Mathématiques de Jussieu – Paris Rive Gauche, France [email protected] Gennadi Kasparov Vanderbilt University, USA [email protected] Alexander Merkurjev University of California, Los Angeles, USA [email protected] Amnon Neeman amnon.Australian National University [email protected] Jonathan Rosenberg (Managing Editor) University of Maryland, USA [email protected] Marco Schlichting University of Warwick, UK [email protected] Andrei Suslin Northwestern University, USA [email protected] Vladimir Voevodsky Institute for Advanced Studies, USA [email protected] Charles Weibel (Managing Editor) Rutgers University, USA [email protected] Guoliang Yu Texas A&M University, USA [email protected] PRODUCTION Silvio Levy (Scientific Editor) [email protected] Annals of K-Theory is a journal of the K-Theory Foundation(ktheoryfoundation.org). The K-Theory Foundation acknowledges the precious support of Foundation Compositio Mathematica, whose help has been instrumental in the launch of the Annals of K-Theory.
    [Show full text]
  • Lie Groupoids, Pseudodifferential Calculus and Index Theory
    Lie groupoids, pseudodifferential calculus and index theory by Claire Debord and Georges Skandalis Université Paris Diderot, Sorbonne Paris Cité Sorbonne Universités, UPMC Paris 06, CNRS, IMJ-PRG UFR de Mathématiques, CP 7012 - Bâtiment Sophie Germain 5 rue Thomas Mann, 75205 Paris CEDEX 13, France [email protected] [email protected] Abstract Alain Connes introduced the use of Lie groupoids in noncommutative geometry in his pio- neering work on the index theory of foliations. In the present paper, we recall the basic notion involved: groupoids, their C∗-algebras, their pseudodifferential calculus... We review several re- cent and older advances on the involvement of Lie groupoids in noncommutative geometry. We then propose some open questions and possible developments of the subject. Contents 1 Introduction 2 2 Lie groupoids and their operators algebras 3 2.1 Lie groupoids . .3 2.1.1 Generalities . .3 2.1.2 Morita equivalence of Lie groupoids . .7 2.2 C∗-algebra of a Lie groupoid . .7 2.2.1 Convolution ∗-algebra of smooth functions with compact support . .7 2.2.2 Norm and C∗-algebra . .8 2.3 Deformation to the normal cone and blowup groupoids . .9 2.3.1 Deformation to the normal cone groupoid . .9 2.3.2 Blowup groupoid . 10 3 Pseudodifferential calculus on Lie groupoids 11 3.1 Distributions on G conormal to G(0) ........................... 12 3.1.1 Symbols and conormal distributions . 12 3.1.2 Convolution . 15 3.1.3 Pseudodifferential operators of order ≤ 0 ..................... 16 3.1.4 Analytic index . 17 3.2 Classical examples .
    [Show full text]
  • Master's Thesis
    MASTER'S THESIS Title of the Master's Thesis Engel Lie algebras submitted by Thimo Maria Kasper, BSc in partial fulfilment of the requirements for the degree of Master of Science (MSc) Vienna, 2018 Degree programme code: A 066 821 Degree programme: Master Mathematics Supervisor: Prof. Dr. Dietrich Burde Summary The purpose of this thesis is to present an investigation of Engel-n Lie algebras. In addition to the defining relations of Lie algebras these satisfy the so-called Engel-n identity ad(x)n = 0 for all x. Engel Lie algebras arise in the study of the Restricted Burnside Problem, which was solved by Efim Zelmanov in 1991. Beside a general introduction to the topic, special interest is taken in the exploration of the nilpotency classes of Engel-n Lie algebras for small values of n. At this, the primary objective is to elaborate the case of n = 3 explicitly. Chapter 1 concerns the general theory of Lie algebras. In the course of this, the essential properties of solvability and nilpotency are explained as they will be central in the subsequent discussion. Further, the definition of free Lie algebras which contributes to the establishment of the concept of free-nilpotent Lie algebras. In the last section several notions of group theory are surveyed. These will be useful in Chapter 2. The second chapter explains the origin and solution of the Burnside Problems. In that process, a historical survey on William Burnside and the first results on his fundamental questions are given. Next, the so-called Restricted Burnside Problem is considered and an overview of the most important steps to the solution is dis- played.
    [Show full text]
  • The Top Mathematics Award
    Fields told me and which I later verified in Sweden, namely, that Nobel hated the mathematician Mittag- Leffler and that mathematics would not be one of the do- mains in which the Nobel prizes would The Top Mathematics be available." Award Whatever the reason, Nobel had lit- tle esteem for mathematics. He was Florin Diacuy a practical man who ignored basic re- search. He never understood its impor- tance and long term consequences. But Fields did, and he meant to do his best John Charles Fields to promote it. Fields was born in Hamilton, Ontario in 1863. At the age of 21, he graduated from the University of Toronto Fields Medal with a B.A. in mathematics. Three years later, he fin- ished his Ph.D. at Johns Hopkins University and was then There is no Nobel Prize for mathematics. Its top award, appointed professor at Allegheny College in Pennsylvania, the Fields Medal, bears the name of a Canadian. where he taught from 1889 to 1892. But soon his dream In 1896, the Swedish inventor Al- of pursuing research faded away. North America was not fred Nobel died rich and famous. His ready to fund novel ideas in science. Then, an opportunity will provided for the establishment of to leave for Europe arose. a prize fund. Starting in 1901 the For the next 10 years, Fields studied in Paris and Berlin annual interest was awarded yearly with some of the best mathematicians of his time. Af- for the most important contributions ter feeling accomplished, he returned home|his country to physics, chemistry, physiology or needed him.
    [Show full text]
  • 17 Oct 2019 Sir Michael Atiyah, a Knight Mathematician
    Sir Michael Atiyah, a Knight Mathematician A tribute to Michael Atiyah, an inspiration and a friend∗ Alain Connes and Joseph Kouneiher Sir Michael Atiyah was considered one of the world’s foremost mathematicians. He is best known for his work in algebraic topology and the codevelopment of a branch of mathematics called topological K-theory together with the Atiyah-Singer index theorem for which he received Fields Medal (1966). He also received the Abel Prize (2004) along with Isadore M. Singer for their discovery and proof of the index the- orem, bringing together topology, geometry and analysis, and for their outstanding role in building new bridges between mathematics and theoretical physics. Indeed, his work has helped theoretical physicists to advance their understanding of quantum field theory and general relativity. Michael’s approach to mathematics was based primarily on the idea of finding new horizons and opening up new perspectives. Even if the idea was not validated by the mathematical criterion of proof at the beginning, “the idea would become rigorous in due course, as happened in the past when Riemann used analytic continuation to justify Euler’s brilliant theorems.” For him an idea was justified by the new links between different problems which it illuminated. Our experience with him is that, in the manner of an explorer, he adapted to the landscape he encountered on the way until he conceived a global vision of the setting of the problem. Atiyah describes here 1 his way of doing mathematics2 : arXiv:1910.07851v1 [math.HO] 17 Oct 2019 Some people may sit back and say, I want to solve this problem and they sit down and say, “How do I solve this problem?” I don’t.
    [Show full text]
  • 2003 Jean-Pierre Serre: an Overview of His Work
    2003 Jean-Pierre Serre Jean-Pierre Serre: Mon premier demi-siècle au Collège de France Jean-Pierre Serre: My First Fifty Years at the Collège de France Marc Kirsch Ce chapitre est une interview par Marc Kirsch. Publié précédemment dans Lettre du Collège de France,no 18 (déc. 2006). Reproduit avec autorisation. This chapter is an interview by Marc Kirsch. Previously published in Lettre du Collège de France, no. 18 (déc. 2006). Reprinted with permission. M. Kirsch () Collège de France, 11, place Marcelin Berthelot, 75231 Paris Cedex 05, France e-mail: [email protected] H. Holden, R. Piene (eds.), The Abel Prize, 15 DOI 10.1007/978-3-642-01373-7_3, © Springer-Verlag Berlin Heidelberg 2010 16 Jean-Pierre Serre: Mon premier demi-siècle au Collège de France Jean-Pierre Serre, Professeur au Collège de France, titulaire de la chaire d’Algèbre et Géométrie de 1956 à 1994. Vous avez enseigné au Collège de France de 1956 à 1994, dans la chaire d’Algèbre et Géométrie. Quel souvenir en gardez-vous? J’ai occupé cette chaire pendant 38 ans. C’est une longue période, mais il y a des précédents: si l’on en croit l’Annuaire du Collège de France, au XIXe siècle, la chaire de physique n’a été occupée que par deux professeurs: l’un est resté 60 ans, l’autre 40. Il est vrai qu’il n’y avait pas de retraite à cette époque et que les pro- fesseurs avaient des suppléants (auxquels ils versaient une partie de leur salaire). Quant à mon enseignement, voici ce que j’en disais dans une interview de 19861: “Enseigner au Collège est un privilège merveilleux et redoutable.
    [Show full text]
  • Current Trends and Open Problems in Arithmetic Dynamics
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 56, Number 4, October 2019, Pages 611–685 https://doi.org/10.1090/bull/1665 Article electronically published on March 1, 2019 CURRENT TRENDS AND OPEN PROBLEMS IN ARITHMETIC DYNAMICS ROBERT BENEDETTO, PATRICK INGRAM, RAFE JONES, MICHELLE MANES, JOSEPH H. SILVERMAN, AND THOMAS J. TUCKER Abstract. Arithmetic dynamics is the study of number theoretic properties of dynamical systems. A relatively new field, it draws inspiration partly from dynamical analogues of theorems and conjectures in classical arithmetic geom- etry and partly from p-adic analogues of theorems and conjectures in classical complex dynamics. In this article we survey some of the motivating problems and some of the recent progress in the field of arithmetic dynamics. Contents 1. Introduction 612 2. Abstract dynamical systems 613 3. Background: Number theory and algebraic geometry 615 4. Uniform boundedness of (pre)periodic points 617 5. Arboreal representations 619 6. Dynatomic representations 622 7. Intersections of orbits and subvarieties 624 8. (Pre)periodic points on subvarieties 626 9. Dynamical (dynatomic) modular curves 627 10. Dynamical moduli spaces 630 11. Unlikely intersections in dynamics 634 12. Good reduction of maps and orbits 636 13. Dynamical degrees of rational maps 642 14. Arithmetic degrees of orbits 645 15. Canonical heights 649 16. Variation of the canonical height 653 17. p-adic and non-archimedean dynamics 656 18. Dynamics over finite fields 661 19. Irreducibilty and stability of iterates 665 20. Primes, prime divisors, and primitive divisors in orbits 668 21. Integral points in orbits 671 Received by the editors June 30, 2018.
    [Show full text]