An Architecture for Cryptography with Smart Cards and NFC Rings on Android
OpenKeychain: An Architecture for Cryptography with Smart Cards and NFC Rings on Android DOMINIK SCHÜRMANN, TU Braunschweig, Germany SERGEJ DECHAND, University of Bonn, Germany LARS WOLF, TU Braunschweig, Germany While many Android apps provide end-to-end encryption, the cryptographic keys are still stored on the device itself and can thus be stolen by exploiting vulnerabilities. External cryptographic hardware solves this issue, but is currently only used for two-factor authentication and not for communication encryption. In this paper, we design, implement, and evaluate an architecture for NFC-based cryptography on Android. Our high-level API provides cryptographic operations without requiring knowledge of public-key cryptography. By developing OpenKeychain, we were able to roll out this architecture for more than 100,000 users. It provides encryption for emails, messaging, and a password manager. We provide a threat model, NFC performance measurements, and discuss their impact on our architecture design. As an alternative form factor to smart cards, we created the prototype of an NFC signet ring. To evaluate the UI components and form factors, a lab study with 40 participants at a large company has been conducted. We measured the time required by the participants to set up the system and reply to encrypted emails. These measurements and a subsequent interview indicate that our NFC-based solutions are more user friendly in comparison to traditional password-protected keys. CCS Concepts: • Security and privacy → Usability in security and privacy; Key management; Hardware-based security protocols; • Human-centered computing → Mobile devices; Additional Key Words and Phrases: NFC, near-field communication, smart card, ring ACM Reference Format: Dominik Schürmann, Sergej Dechand, and Lars Wolf.
[Show full text]