Fireweed (Epilobium Angustifolium L.): Botany, Phytochemistry and Traditional Uses

Total Page:16

File Type:pdf, Size:1020Kb

Fireweed (Epilobium Angustifolium L.): Botany, Phytochemistry and Traditional Uses DOI: 10.2478/hepo-2018-000 International journal edited by the Institute of Natural Fibres and Medicinal Plants Vol. 65 No. 3 2019 Received: 2019-08-01 DOI: 10.2478/hepo-2019-0018 DOI: 10.2478/hepo-2018-000 Accepted: 2019-09-20 Available online: 2019-09-30 REVIEW PAPER Fireweed (Epilobium angustifolium L.): botany, phytochemistry and traditional uses. A review ARTUR ADAMCZAK1*, MARIOLA DREGER2, KATARZYNA SEIDLER-ŁOŻYKOWSKA1, KAROLINA WIELGUS2 1Department of Botany, Breeding and Agricultural Technology of Medicinal Plants Institute of Natural Fibres and Medicinal Plants Kolejowa 2 62-064 Plewiska, Poland 2Department of Biotechnology Institute of Natural Fibres and Medicinal Plants Wojska Polskiego 71B 60-630 Poznań, Poland *corresponding author: phone: +48 (61) 665-95-50, e-mail: [email protected] Summary Fireweed (Epilobium angustifolium L., Onagraceae) is one of important medicinal plants used especially in the treatment of urogenital disorders, including benign prostatic hyperplasia (BPH) and prostatitis. The therapeutic effects of E. angustifolium extracts comprise antiproliferative, anti-inflammatory, immunomod- ulatory, antioxidant, and also antimicrobial activities. The aim of the present review was to provide the in- formation on the botany, phytochemistry and traditional uses of E. angustifolium. This plant is a widespread circumboreal species of North America and Eurasia, tolerant in terms of habitat conditions, and often oc- cupying man-made open habitats. Phytochemical studies on E. angustifolium resulted in the identification of about 250 different metabolites, including about 170 substances found for the first time in this plant in the last six years (2014–2019). Fireweed has an abundance of polyphenolic compounds, particularly ellagi- tannins. Oenothein B and quercetin-3-O-glucuronide are proposed as markers for the identification and standardization of the plant raw material. E. angustifolium exhibits significant phytochemical variability in relation to the geographical origin, plant part and time of harvest/vegetation phase. Survey of the ethnobo- tanical literature showed that the above-mentioned species has been widely used not only as a medicinal, but also as an edible, honey and decorative plant. Herba Pol 2019; 65(3): 51-63 52 A. Adamczak, M. Dreger, K. Seidler-Łożykowska, K. Wielgus Key words: rosebay willowherb, phytochemical composition and variability, ellagitannins, oenothein B, ethnobotany Słowa kluczowe: wierzbówka kiprzyca, skład i zmienność fitochemiczna, elagotaniny, oenoteina B, etnobotanika INTRODUCTION botanical part, we described taxonomy, synonyms, and also morphology, ploidy, distribution and habi- Nowadays, the consumption of herbal products and tats of fireweed. The phytochemistry included the the popularity of dietary supplements are growing composition of the bioactive substances found in the throughout the world. Nutraceuticals or functional plant raw material, with particular emphasis on the foods are intended to improve the state of health and newly identified metabolites and with the descrip- well-being and to reduce the risk of nutrition-asso- tion of the phytochemical variability of this species. ciated diseases, including cancer prevention. Fire- In turn, the ethnobotanical characteristic aimed to weed (Epilobium angustifolium L.) is an important present the traditional uses of E. angustifolium as a medicinal plant used in the pharmaceutical, food medicinal, edible, honey and decorative plant. and cosmetic industries. It is particularly utilized in the treatment of benign prostatic hyperplasia (BPH) and prostatitis [1]. Today, dietary supple- BOTANY ments or nutraceuticals containing E. angustifolium components are widely available in many countries in the form of tea, capsules, pills, water and alcohol Taxonomy extracts/tonics. Fireweed extracts are also utilized in creams, shampoos and other cosmetic products, Epilobium (Chamerion) angustifolium is classified to especially for acne. the Onagraceae family, which consists of 22 genera E. angustifolium is a rich source of phenolic com- and approximately 650 species. The genus Chamer- pounds, especially hydrolysable tannins (ellagitan- ion (Raf.) Raf. ex Holub (syn. Chamaenerion Ség.) nins), flavonoids, and phenolic acids [2-4]. Medici- with eight species restricted to the northern hemi- nal properties of fireweed extracts have been attrib- sphere (mainly in Eurasia) belongs to the Onagroi- uted to the synergic effect of polyphenols and the deae subfamily and Epilobieae tribe [18]. Relatively presence of the most abundant, compound – oeno- often, it is included in Epilobium L., which is the thein B. This substance shows various pharmacolog- largest genus in the Onagraceae [19-22]. However, ical activities, including anti-androgenic, antiprolif- Chamerion clearly differs from Epilobium in terms erative, anticancer, antioxidant, anti-inflammatory, of flower structure, leaf arrangement and other and immunomodulatory properties [5-10]. Addi- features [18, 23-25]. Molecular data also show that tionally, E. angustifolium exhibits antimicrobial [11- Chamerion is a separate monophyletic group of 15], analgesic [16] as well as photoprotective and plants [26-28]. antiaging [17] activities. Recently, the number of publications concerning the above-mentioned species has increased signifi- Synonyms cantly. Screening of the Scopus database with the keywords of 'Epilobium/Chamerion/Chamaenerion The Plant List [22] provides more than 40 synonyms angustifolium' found 416 document results, includ- of the species described, with three of these being the ing 80 articles published in the years of 2014–2019. most commonly used: Epilobium angustifolium L., A new detailed summary is required not only for Chamerion angustifolium (L.) Holub and Chamae- phytochemistry and pharmacology of E. angustifoli- nerion angustifolium (L.) Scop. According to Holub um, but also in the case of scattered data on fireweed [23], Chamerion should be considered the correct botany and ethnobotany. Latin name of this genus, while Chamaenerion is The aim of the study was to provide an overview an illegitimate name. On the other hand, Sennikov of information available on the botany, phytochem- [25] recently presented arguments for the restora- istry and traditional uses of E. angustifolium. In the tion of the older name Chamaenerion. However, in Fireweed (Epilobium angustifolium L.): botany, phytochemistry and traditional uses. A review 53 this review, the name appearing most frequently in subentire margin, and glabrous abaxial midribs, the references will be used: Epilobium angustifolium. as well as subglabrous stems and usually triporate E. angustifolium is commonly known as fireweed pollen. The polyploid plants of subsp. circumvagum in the United States and rosebay willowherb in Brit- (n=36, 54) are generally luxuriant with taller stems, ain [25]. Other names mentioned include: peren- larger leaves, flowers and pollen. They have leaves nial fireweed, narrow-leaved fireweed, great willow- with petioles 2–7 mm long, a cuneate base, denticu- herb, willow herb, flowering willow, French willow, late margin, glabrous to very pubescent midribs, as etc. [29, 30]. well as strigillose stems, at least in the upper section, while pollen is usually a mixture of triporate and quadriporate grains [36, 37]. Morphology and ploidy Fireweed is an herbaceous perennial with long Distribution and habitats branched rhizomes and fleshy stolons. Green stems, frequently reddish, glabrous below and pubescent E. angustifolium is a widespread circumboreal spe- above, are erect up to 2 m high. The willow-like cies occurring in the temperate zone of North Amer- leaves are alternate, 3–20 cm long. E. angustifolium ica and Eurasia at a latitude from 25o to 70o north. It blooms from June to September, developing large grows both in the lowlands and in the mountains: in raceme inflorescences consist of a number of pink Switzerland to 2530 m, in North America to 3960 m, (rarely white) flowers (figure 1). They are up to 3 cm and in the Himalayas to an altitude of 4850 m a.s.l. in diameter, zygomorphic, epigynous with a small Diploid populations occur in colder climates: in nectar-secreting disc, markedly protandrous. The Greenland, Canada, Alaska, Siberia and northern capsules, 4–8 cm long, contain small light brown Europe, and also tend to develop at higher altitudes. seeds (1.0–1.3 mm in length) with greyish white Tetraploids grow in warmer and drier habitats oc- hairs up to 13 mm long. One plant could produce cupying the southern part of the range in Eurasia 76 000 wind-dispersed seeds per year [31-33]. The and North America [18, 38, 39]. In turn, triploids weight of 1 000 seeds is about 0.07 g [34] and with- (n=27) appear in mixed-ploidy populations of bor- out the pappus reaches about 0.05 g [35]. der areas [40]. The hexaploid cytotype was reported E. angustifolium is a variable species diverse in only in central Japan and the Yunnan province of terms of morphology and ploidy. The diploid rep- China [36, 41]. resenting subsp. angustifolium (n=18) has sub- Fireweed is a common plant occupying man- sessile leaves with an obtuse or subrounded base, made open habitats, such as deforested or burned Figure 1 Epilobium angustifolium in the blooming phase (Krajewice, Poland) Vol. 65 No. 3 2019 54 A. Adamczak, M. Dreger, K. Seidler-Łożykowska, K. Wielgus areas, roadsides and railway embankments. This Hydrolysable tannins species also occurs on the edge of forests and thick- ets, along streams, on rocky
Recommended publications
  • Invented Herbal Tradition.Pdf
    Journal of Ethnopharmacology 247 (2020) 112254 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jethpharm Inventing a herbal tradition: The complex roots of the current popularity of T Epilobium angustifolium in Eastern Europe Renata Sõukanda, Giulia Mattaliaa, Valeria Kolosovaa,b, Nataliya Stryametsa, Julia Prakofjewaa, Olga Belichenkoa, Natalia Kuznetsovaa,b, Sabrina Minuzzia, Liisi Keedusc, Baiba Prūsed, ∗ Andra Simanovad, Aleksandra Ippolitovae, Raivo Kallef,g, a Ca’ Foscari University of Venice, Via Torino 155, 30172, Mestre, Venice, Italy b Institute for Linguistic Studies, Russian Academy of Sciences, Tuchkov pereulok 9, 199004, St Petersburg, Russia c Tallinn University, Narva rd 25, 10120, Tallinn, Estonia d Institute for Environmental Solutions, "Lidlauks”, Priekuļu parish, LV-4126, Priekuļu county, Latvia e A.M. Gorky Institute of World Literature of the Russian Academy of Sciences, 25a Povarskaya st, 121069, Moscow, Russia f Kuldvillane OÜ, Umbusi village, Põltsamaa parish, Jõgeva county, 48026, Estonia g University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, 12042, Pollenzo, Bra, Cn, Italy ARTICLE INFO ABSTRACT Keywords: Ethnopharmacological relevance: Currently various scientific and popular sources provide a wide spectrum of Epilobium angustifolium ethnopharmacological information on many plants, yet the sources of that information, as well as the in- Ancient herbals formation itself, are often not clear, potentially resulting in the erroneous use of plants among lay people or even Eastern Europe in official medicine. Our field studies in seven countries on the Eastern edge of Europe have revealed anunusual source interpretation increase in the medicinal use of Epilobium angustifolium L., especially in Estonia, where the majority of uses were Ethnopharmacology specifically related to “men's problems”.
    [Show full text]
  • WRITTEN FINDINGS of the WASHINGTON STATE NOXIOUS WEED CONTROL BOARD 2018 Noxious Weed List Proposal
    DRAFT: WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD 2018 Noxious Weed List Proposal Scientific Name: Tussilago farfara L. Synonyms: Cineraria farfara Bernh., Farfara radiata Gilib., Tussilago alpestris Hegetschw., Tussilago umbertina Borbás Common Name: European coltsfoot, coltsfoot, bullsfoot, coughwort, butterbur, horsehoof, foalswort, fieldhove, English tobacco, hallfoot Family: Asteraceae Legal Status: Proposed as a Class B noxious weed for 2018, to be designated for control throughout Washington, except for in Grant, Lincoln, Adams, Benton, and Franklin counties. Images: left, blooming flowerheads of Tussilago farfara, image by Caleb Slemmons, National Ecological Observatory Network, Bugwood.org; center, leaves of T. farfara growing with ferns, grasses and other groundcover species; right, mature seedheads of T. farfara before seeds have been dispersed, center and right images by Leslie J. Mehrhoff, University of Connecticut, Bugwood.org. Description and Variation: The common name of Tussilago farfara, coltsfoot, refers to the outline of the basal leaf being that of a colt’s footprint. Overall habit: Tussilago farfara is a rhizomatous perennial, growing up to 19.7 inches (50 cm tall), which can form extensive colonies. Plants first send up flowering stems in the spring, each with a single yellow flowerhead. Just before or after flowers have formed seeds, basal leaves on long petioles grow from the rhizomes, with somewhat roundish leaf blades that are more or less white-woolly on the undersides. Roots: Plants have long creeping, white scaly rhizomes (Griffiths 1994, Chen and Nordenstam 2011). Rhizomes are branching and have fibrous roots (Barkley 2006). They are also brittle and can break easily (Pfeiffer et al.
    [Show full text]
  • Notes on Epilobium (Onagraceae) from the Western Mediterranean
    NOTES ON EPILOBIUM (ONAGRACEAE) FROM THE WESTERN MEDITERRANEAN by GONZALO NETO FELINER* Resumen NIETO FELINER, G. (1996). Notas sobre los Epilobium (Onagraceae) del Mediterráneo occidental. Anales Jard. Bot. Madrid 54: 255-264 (en inglés). Aportaciones taxonómicas sobre el género Epilobium que son consecuencia de la revisión lle- vada a cabo para producir una síntesis genérica destinada a Flora iberica. En particular, se acla- ran nombres tales como E. mutabile Boiss. & Reut., E. carpetanum Willk., E. psilotum Maire & Samuelsson o E. salcedoi Vicioso, así como varios creados por Sennen (E. barcinonense, E. gredillae, E. losae, E. rigatum, E. barnadesianum, E. debile, E. costeanum) y por Merino (£. maciae, E. simulans, E. tudense y E. lucense). Asimismo, se discute en detalle el problema de E. lamyi F.W. Schultz; en especial, se aclara el uso de dicho nombre por parte de botánicos que han trabajado en España y Portugal, y se rechazan las citas peninsulares del mismo. Se explican algunos problemas taxonómicos derivados de la variabilidad morfológica que exhiben E. duriaei, E. montanum, E. lanceolatum, E. collinum, E. tetragonum subsp. tournefortii y E. obscurum. De este último, adicionalmente, se aportan algunos datos de interés corológico. Palabras clave: Spermatophyta, Epilobium, Onagraceae, taxonomía, corología, Mediterráneo occidental. Abstract NIETO FELINER, G. (1996). Notes on Epilobium (Onagraceae) from the western Mediterranean. Anales Jard. Bot. Madrid 54: 255-264. The present taxonomic notes are part of the results of a revisión of Epilobium carried out for the "Flora iberica" project. The identity of diverse ñames is clarified, including E. mutabile Boiss. & Reut., E. carpetanum Willk., E. psilotum Maire & Samuelsson, E.
    [Show full text]
  • Guava (Psidium Guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities
    foods Review Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities Manoj Kumar 1 , Maharishi Tomar 2, Ryszard Amarowicz 3,* , Vivek Saurabh 4 , M. Sneha Nair 5, Chirag Maheshwari 6, Minnu Sasi 7, Uma Prajapati 4, Muzaffar Hasan 8, Surinder Singh 9, Sushil Changan 10 , Rakesh Kumar Prajapat 11, Mukesh K. Berwal 12 and Varsha Satankar 13 1 Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India; [email protected] 2 ICAR—Indian Grassland and Fodder Research Institute, Jhansi 284003, India; [email protected] 3 Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland 4 Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; [email protected] (V.S.); [email protected] (U.P.) 5 Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad 121004, Haryana, India; [email protected] 6 Department of Agriculture Energy and Power, ICAR—Central Institute of Agricultural Engineering, Bhopal 462038, India; [email protected] 7 Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; [email protected] 8 Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Citation: Kumar, M.; Tomar, M.; Bhopal 462038, India; [email protected] 9 Amarowicz, R.; Saurabh, V.; Nair, Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India; [email protected] M.S.; Maheshwari, C.; Sasi, M.; 10 Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR—Central Potato Research Prajapati, U.; Hasan, M.; Singh, S.; Institute, Shimla 171001, India; [email protected] et al.
    [Show full text]
  • Phytopharmacological Overview of Psidium Guajava Linn
    Pharmacogn. J. Review Article A multifaceted peer reviewed journal in the field of Pharmacognosy and Natural Products www.phcogfirst.com/phcogj Phytopharmacological overview of Psidium guajava Linn. Vijaya Anand1, Manikandan2, Vijaya Kumar2, Sampath Kumar3, Pushpa4, Agaath Hedina1 1Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore–641 046, Tamil Nadu, INDIA. 2Department of Biochemistry, M.I.E.T. Arts and Science College, Tiruchirappalli–620 007, Tamil Nadu, INDIA. 3Department of Chemistry and Biosciences, SASTRA University, Kumbakonam–612 001, Tamil Nadu, INDIA. 4Department of Microbiology, Cauvery College for Women, Tiruchirappalli–620 018, Tamil Nadu, INDIA. ABSTRACT Psidium guajava Linn. possesses useful medicinal benefits. It has been recognized as the medicinally essential phytoconstituents, such as pheno- Corresponding author: lic, flavonoid and carotenoid. Numerous pharmacological investigation have Dr. A. Vijaya Anand, confirmed that the ability of this plant is to exhibit antimicrobial, antidia- Associate Professor and Head, Department of Human Genetics and betic, cardioprotective, neuroprotective, hepatoprotective, antioxidant and Molecular Biology, Bharathiar University, Coimbatore–641 046, anticancer activities and it supports the traditional uses. This is a compre- Tamil Nadu, INDIA. hensive of the phytoconstituents and pharmacological benefits. Mobile: +91 9842525830 Key words: Psidium guajava, Antimicrobial, Antidiabetic, Antioxidant, Hep- E-mail: [email protected] atoprotective, Anticancer. DOI: 10.5530/pj.2016.4.3 INTRODUCTION (9Z)-, (13Z)-, and (15Z)-lycopene, (all-E,3R)-beta-cryptoxanthin, (all- E, 3R)-rubixanthin, (all-E,3S,5R,8S)-cryptoflavin, (all-E,3R,3’R, 6’R)- Psidium guajava Linn. is commonly called guave, goyave in French; lutein, (all-E,3S,5R,6R,3’S,5’R,8’R)-, and (all-E,3S,5R,6R,3’S, 5’R,8’S)- guave, guavenbaum, in German; banjiro in Japanese; goiaba, in Portu- neochrome.9 Guavanoic acid, guavacoumaric acid, 2α-hydroxyursolic 1 gal; arac¸ guaiaba in Brazil; and guava in English.
    [Show full text]
  • Habitat Indicator Species
    1 Handout 6 – Habitat Indicator Species Habitat Indicator Species The species lists below are laid out by habitats and help you to find out which habitats you are surveying – you will see that some species occur in several different habitats. Key: * Plants that are especially good indicators of that specific habitat Plants found in Norfolk’s woodland Common Name Scientific Name Alder Buckthorn Frangula alnus Aspen Populus tremula Barren Strawberry Potentilla sterilis Bird Cherry Prunus padus Black Bryony Tamus communis Bush Vetch Vicia sepium Climbing Corydalis Ceratocapnos claviculata Common Cow-wheat Melampyrum pratense Early dog violet Viola reichenbachiana Early Purple Orchid Orchis mascula * English bluebell Hyacinthoides non-scripta* * Field Maple Acer campestre* Giant Fescue Festuca gigantea * Goldilocks buttercup Ranunculus auricomus* Great Wood-rush Luzula sylvatica Greater Burnet-saxifrage Pimpinella major Greater Butterfly-orchid Platanthera chlorantha Guelder Rose Viburnum opulus Hairy Wood-rush Luzula pilosa Hairy-brome Bromopsis ramosa Hard Fern Blechnum spicant Hard Shield-fern Polystichum aculeatum * Hart's-tongue Phyllitis scolopendrium* Holly Ilex aquifolium * Hornbeam Carpinus betulus* * Midland Hawthorn Crataegus laevigata* Moschatel Adoxa moschatellina Narrow Buckler-fern Dryopteris carthusiana Opposite-leaved Golden-saxifrage Chrysosplenium oppositifolium * Pendulous Sedge Carex Pendula* Pignut Conopodium majus Polypody (all species) Polypodium vulgare (sensulato) * Primrose Primula vulgaris* 2 Handout 6 – Habitat
    [Show full text]
  • Appendix C. Plant Species Observed at the Yolo Grasslands Regional Park (2009-2010)
    Appendix C. Plant Species Observed at the Yolo Grasslands Regional Park (2009-2010) Plant Species Observed at the Yolo Grassland Regional Park (2009-2010) Wetland Growth Indicator Scientific Name Common Name Habitat Occurrence Habit Status Family Achyrachaena mollis Blow wives AG, VP, VS AH FAC* Asteraceae Aegilops cylinricia* Jointed goatgrass AG AG NL Poaceae Aegilops triuncialis* Barbed goat grass AG AG NL Poaceae Aesculus californica California buckeye D T NL Hippocastanaceae Aira caryophyllea * [Aspris c.] Silver hairgrass AG AG NL Poaceae Alchemilla arvensis Lady's mantle AG AH NL Rosaceae Alopecurus saccatus Pacific foxtail VP, SW AG OBL Poaceae Amaranthus albus * Pigweed amaranth AG, D AH FACU Amaranthaceae Amsinckia menziesii var. intermedia [A. i.] Rancher's fire AG AH NL Boraginaceae Amsinckia menziesii var. menziesii Common fiddleneck AG AH NL Boraginaceae Amsinckia sp. Fiddleneck AG, D AH NL Boraginaceae Anagallis arvensis * Scarlet pimpernel SW, D, SS AH FAC Primulaceae Anthemis cotula * Mayweed AG AH FACU Asteraceae Anthoxanthum odoratum ssp. odoratum * Sweet vernal grass AG PG FACU Poaceae Aphanes occidentalis [Alchemilla occidentalis] Dew-cup AG, F AH NL Rosaceae Asclepias fascicularis Narrow-leaved milkweed AG PH FAC Ascepiadaceae Atriplex sp. Saltbush VP, SW AH ? Chenopodiaceae Avena barbata * Slender wild oat AG AG NL Poaceae Avena fatua * [A. f. var. glabrata, A. f. var. vilis] Wild oat AG AG NL Poaceae Brassica nigra * Black mustard AG, D AH NL Brassicaceae Brassica rapa field mustard AG, D AH NL Brassicaceae Briza minor * Little quakinggrass AG, SW, SS, VP AG FACW Poaceae Brodiaea californica California brodiaea AG PH NL Amaryllidaceae Brodiaea coronaria ssp. coronaria [B.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Northern Willowherb Control in Nursery Containers James Altland
    Northern Willowherb Control in Nursery Containers James Altland North Willamette Research and Extension Center Oregon State University Aurora, OR 97002 [email protected] Introduction Northern willowherb (Epilobium ciliatum Rafin, syn. E. adenocaulon Hauss.) is a perennial in the family Onagraceae and is native to North America. Northern willowherb is one of the most prevalent weed species in west coast container nurseries and is becoming increasingly problematic in cooler regions along the east coast. E. ciliatum is wrongly, but commonly, referred to as fireweed by many west coast nurserymen. Northern willowherb is also known by the common names hairy willowherb, slender willowherb, or fringed willowherb depending on the region where it is found. A single plant can produce up to 60,000 seeds per plant per season. Seeds are attached to a tuft of hair which aid in wind dispersal allowing for widespread seed dissemination in container nurseries. Northern willowherb germinates in dry to water logged soils, and is particularly well suited for establishing in dry soils compared to other species in the same genera. Northern willowherb seeds germinate readily in full sun (100%) or darkness (84%), making them well adapted to germination in containers with little or complete cover from crop canopies. Seeds can germinate over a range of temperatures from 4 to 36C, although germination is reduced as temperatures approach 30C. This allows for germination to occur throughout the spring and summer growing season in northern climates, and virtually year-round in protected container crops. It also explains why its spread has been primarily limited to cooler summer climates typical of the west coast and northeast U.S.
    [Show full text]
  • Vestured Pits in Wood of Onagraceae: Correlations with Ecology, Habit, and Phylogeny1
    VESTURED PITS IN WOOD OF Sherwin Carlquist2 and Peter H. Raven3 ONAGRACEAE: CORRELATIONS WITH ECOLOGY, HABIT, AND PHYLOGENY1 ABSTRACT All Onagraceae for which data are available have vestured pits on vessel-to-vessel pit pairs. Vestures may also be present in some species on the vessel side of vessel-to-ray pit pairs. Herbaceous Onagraceae do not have fewer vestures, although woods with lower density (Circaea L. and Oenothera L.) have fewer vestures. Some Onagraceae from drier areas tend to have smaller vessel pits, and on that account may have fewer vestures (Epilobium L. and Megacorax S. Gonz´alez & W. L. Wagner). Pit apertures as seen on the lumen side of vessel walls are elliptical, occasionally oval, throughout the family. Vestures are predominantly attached to pit aperture margins. As seen from the outer surfaces of vessels, vestures may extend across the pit cavities. Vestures are usually absent or smaller on the distal portions of pit borders (except for Ludwigia L., which grows consistently in wet areas). Distinctive vesture patterns were observed in the several species of Lopezia Cav. and in Xylonagra Donn. Sm. & Rose. Vestures spread onto the lumen-facing vessel walls of Ludwigia octovalvis (Jacq.) P. H. Raven. Although the genera are presented here in the sequence of a recent molecular phylogeny of Onagraceae, ecology and growth forms are more important than evolutionary relationships with respect to abundance, degree of grouping, and morphology of vestured pits. Designation of vesture types is not warranted based on the distribution of named types in Onagraceae and descriptive adjectives seem more useful, although more data on vesturing in the family are needed before patterns of diversity and their extent can be fully ascertained.
    [Show full text]
  • MONITORING REPORT 2020 BILL BUDD It Is with Great Sadness That We Must Report the Death of Bull Budd in Autumn 2020
    Wimbledon and Putney Commons ECOLOGICAL AND ENVIRONMENTAL MONITORING REPORT 2020 BILL BUDD It is with great sadness that we must report the death of Bull Budd in autumn 2020. Bill was our much respected, dragonfly and damselfly recorder and a member of the Wildlife and Conservation Forum. As well as recording on the Commons, Bill also worked as a volunteer at the London Natural History Museum for many years and was the Surrey Vice County Dragonfly Recorder. Bill supported our BioBlitz activities and, with others from the Forum, led dedicated walks raising public awareness of the dragonfly and damselfly populations on the Commons. In September 2020 in recognition of his outstanding contributions to the recording and conservation of Odonata, a newly identified dragonfly species found in the Bornean rainforest* was named Megalogomphus buddi. His contributions will be very much missed. * For further information see: https://british-dragonflies.org.uk/dragonfly-named-after-bds-county-dragonfly-recorder-bill-budd/ Dow, R.A. and Price, B.W. (2020) A review of Megalogomphus sumatranus (Krüger, 1899) and its allies in Sundaland with a description of a new species from Borneo (Odonata: Anisoptera: Gomphidae). Zootaxa 4845 (4): 487–508. https://www.mapress.com/j/zt/article/view/zootaxa.4845.4.2 Accessed 24.02.2021 Thanks are due to everyone who has contributed records and photographs for this report; to the willing volunteers; for the support of Wildlife and Conservation Forum members; and for the reciprocal enthusiasm of Wimbledon and Putney Commons’ staff. A special thank you goes to Angela Evans-Hill for her help with proof reading, chasing missing data and assistance with the final formatting, compilation and printing of this report.
    [Show full text]
  • Epilobium Hirsutum L. (Onagraceae): a New Distributional Report for Northern Haryana, India
    Journal on New Biological Reports ISSN 2319 – 1104 (Online) JNBR 5(3) 178 – 179 (2016) Published by www.researchtrend.net Epilobium hirsutum L. (Onagraceae): A New Distributional Report for Northern Haryana, India Inam Mohammed & Amarjit Singh* Guru Nanak Khalsa College, Yamuna Nagar,Haryana,India. *Corresponding author: [email protected] | Received: 24 November2016 | Accepted: 26 December 2016 | ABSTRACT The paper presents a taxon namely Epilobium hirsutum L. a showy member of Onagraceae and a Eurasian species collected and identified for the first time from district Yamuna nagar, Nothern Haryana. Key Words: Epilobium, Eurasian, Northern Haryana. INTRODUCTION The genus Epilobium L. with more than 300 specimens from Meerut region near Ganga canal. species occurs in all continents relatively at high Malik et al (2014) collected and identified this altitudes. Clarke (1879) described 12 species under species from district Saharanpur of Uttar Pradesh. the genus Epilobium from East and North- East During the survey of district Yamuna Nagar of Himalaya. Raven (1962) recognized 37 species, Haryana, authors reported three sites of this which include 13 new taxa from the Himalayan species, covering an estimated 325 km square area. region and recorded 31 taxa from India. In the 20th Collected specimens were critically examined with century Peter H. Raven (1976) has researched relevant literature and identified with the help of phylogeny and systematics of willow herbs DD herbarium and BSD herbarium Dehradun. extensively. Giri and Banerjee (1984) wrote Identified specimens have been deposited in identification and distributional note on a few herbarium of Guru Nanak Khalsa College, Yamuna species of Epilobium. In Western Himalayas E.
    [Show full text]