Acid Mine Drainage Reduction Efforts Restore Tomhicken Creek (EPA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Conowingo Tunnel and the Anthracite Mine Flood-Control Project a Historical Perspective on a “Solution” to the Anthracite Mine Drainage Problem
The Conowingo Tunnel and the Anthracite Mine Flood-Control Project A Historical Perspective on a “Solution” to the Anthracite Mine Drainage Problem Michael C. Korb, P.E. Environmental Program Manager Pennsylvania Department of Environmental Protection Bureau of Abandoned Mine Reclamation (BAMR) Wilkes Barre District Office [email protected] www.depweb.state.pa.us Abstract Fifty-seven years ago, Pennsylvania’s Anthracite Mine Drainage Commission recommended that the Conowingo Tunnel, an expensive, long-range solution to the Anthracite Mine Drainage problem, be “tabled” and that a cheaper, short-range “job- stimulus” project be implemented instead. Today Pennsylvania’s anthracite region has more than 40 major mine water discharges, which have a combined average flow of more than 285,000 gallons per minute (GPM). Two of these average more than 30,000 GPM, 10 more of the discharges are greater than 6,000 GPM, while another 15 average more than 1,000 GPM. Had the Conowingo Tunnel Project been completed, most of this Pennsylvania Anthracite mine water problem would have been Maryland’s mine water problem. Between 1944 and 1954, engineers of the US Bureau of Mines carried out a comprehensive study resulting in more than 25 publications on all aspects of the mine water problem. The engineering study resulted in a recommendation of a fantastic and impressive plan to allow the gravity drainage of most of the Pennsylvania anthracite mines into the estuary of the Susquehanna River, below Conowingo, Maryland, by driving a 137-mile main tunnel with several laterals into the four separate anthracite fields. The $280 million (1954 dollars) scheme was not executed, but rather a $17 million program of pump installations, ditch installation, stream bed improvement and targeted strip-pit backfilling was initiated. -
Catawissa Creek Watershed: 303(D) Listed Streams and Municipalities
Catawissa Creek Watershed: 303(d) Listed Streams and Municipalities MIFFLIN (2TWP) Scotch Run k ee Cr a ss wi ta Ca o T 41 75 2 ib Tr un h R k MAIN (2TWP) otc ee Sc er Run Cr Beav LL UU ZZ EE RR NN EE CC OO UU NN TT YY a iss ek aw re at C C sa is C aw ata at wi C ssa CC OO LL UU MM BB II AA CC OO UU NN TT YY Cr eek n e Ru BEAVER (2TWP) n rnac n e Ru Fu u rnac r R Fu ve un n ea R Ru B CATAWISSA (BORO) ce er a C rn eav C a a Fu B t t aw CATAWISSA (2TWP) To a Catawissa Cat w is 45 awissa Creek s 5 r Run i a 7 Fishe s C 2 s re rib a e T k C r un e R e er k ish F k n Cree Raccoo FRANKLIN (2TWP) BLACK CREEK (2TWP) un Nuremberg R ap "Long Hollow" G e in ow" T M Holl o ek Long Catawis m oaf Cre " sa Creek h Sugarl reek ic Catawissa C ke Creek en L C ick n ek k h i C re a e om t C e T t r f t r l a a T e o rib C e e rl w 27 a k 565 n k g ree To e C u i C Ca k S s ssa taw i is c r " s taw sa i w C a Cr h o llo a C ee o To k m k r H a 5 o ree nge t 756 o C 2 k n ROARING CREEK (2TWP) Stra C a rib T icke " w T e h r k Tom e d e is re e s C k a ssa R i u C aw HAZLE (2TWP) t n re Ca e sa Creek k ek LL UU ZZ EE RR NN EE CC OO UU NN TT YY f Catawis C Tomhicken Cre ib 27615 O ataw Tr issa L Legend Cr i ee t k t Cat un l awissa Klingermans R NORTH UNION (2TWP) e Creek BANKS (2TWP) T Catawissa Creek o m Towns h n i k y Ru c ee CC AA RR BB OO NN CC OO UU NN TT YY err k Cr anb e ry Cr n do T y rib 2 C k Population Crooked Run 7568 To To un mhicken r H Creek e e k MCADOO (BORO) less than 10,000 k e e r C a 10,000 to 49,999 s s i w McAdoo a t 50,000 to 99,999 a C C a t a w EAST UNION (2TWP) un i Streams ed R s rook s C a C r KLINE (2TWP) e Strahler Stream Order e SS CC HH UU YY LL KK II LL LL CC OO UU NN TT YY k Cataw 1 issa Creek un n ek R u Catawissa Cre M un 2 y R e ers R n on rk ss ess Ru St a er To M rs D s 10 se R 276 es un Trib M 3 Messers Run D . -
Abandoned Mine Drainage Workgroup Overview
ABANDONED MINE DRAINAGE The headwaters of the Schuylkill River are located in the serene mountain valleys of Schuylkill County, Pennsylvania. An area rich in scenic beauty and coal mining history, the Little Schuylkill and Upper Schuylkill Rivers are designated cold-water fisheries, and the Schuylkill main stem is a State Scenic River at the confluence of these two tributary waterways. Abandoned Mine Drainage (AMD) is the primary cause of pollution in the Schuylkill River headwaters and the biggest source of metals downstream. AMD is created deep below the ground in abandoned mines where streams, groundwater, and stormwater fill tunnels that were once kept dry by active pumping operations. Water and oxygen react with lingering iron sulfide (pyrite) producing metal-laden and sometimes highly acidic discharges that exit the tunnels in telltale orange and silver plumes, easily visible in these regional surface waters. Abandoned mine discharge Schuylkill PottsvillPottsville River Watershed NJ S Reading ch uy Pottstown lk ill Trenton Riv e Norri r Norristown r PA e iv Philadelphia R Camden re wa N Wilmington la e DE D W E MD S Abandoned mine tunnel AMD interferes with vegetative growth and reproduction of aquatic animals by armoring the streambed with deposits of iron and other metals. Acidity and metals impair both surface and ground drinking water resources and quickly corrode pipes and industrial mechanisms. Unattractive waterways marred by AMD can hinder tourism and recreational opportunities like fishing, boating, and swimming that attract so many people to visit, vacation, and reside in this region. Passive AMD treatment system AMD treatment is expensive, but so is the economic and environmental damage that results from untreated AMD. -
Luzerne County Act 167 Phase II Stormwater Management Plan
Executive Summary Luzerne County Act 167 Phase II Stormwater Management Plan 613 Baltimore Drive, Suite 300 Wilkes-Barre, PA 18702 Voice: 570.821.1999 Fax: 570.821.1990 www.borton-lawson.com 3893 Adler Place, Suite 100 Bethlehem, PA 18017 Voice: 484.821.0470 Fax: 484.821.0474 Submitted to: Luzerne County Planning Commission 200 North River Street Wilkes-Barre, PA 18711 June 30, 2010 Project Number: 2008-2426-00 LUZERNE COUNTY STORMWATER MANAGEMENT PLAN EXECUTIVE SUMMARY – INTRODUCTION 1. Introduction This Stormwater Management Plan has been developed for Luzerne County, Pennsylvania to comply with the requirements of the 1978 Pennsylvania Stormwater Management Act, Act 167. This Plan is the initial county-wide Stormwater Management Plan for Luzerne County, and serves as a Plan Update for the portions or all of six (6) watershed-based previously approved Act 167 Plans including: Bowman’s Creek (portion located in Luzerne County), Lackawanna River (portion located in Luzerne County), Mill Creek, Solomon’s Creek, Toby Creek, and Wapwallopen Creek. This report is developed to document the reasoning, methodologies, and requirements necessary to implement the Plan. The Plan covers legal, engineering, and municipal government topics which, combined, form the basis for implementation of a Stormwater Management Plan. It is the responsibility of the individual municipalities located within the County to adopt this Plan and the associated Ordinance to provide a consistent methodology for the management of stormwater throughout the County. The Plan was managed and administered by the Luzerne County Planning Commission in consultation with Borton-Lawson, Inc. The Luzerne County Planning Commission Project Manager was Nancy Snee. -
Download Proposed Regulation
This space for use by IRRC H f7 .-I""* -*- i t. , ^ ^ (1) Agency Department of Environmental Protection 2m mm ?}mm (2) I.D. Number (Governor's Office Use) #7-366 IRRC Number: J?9BQ> (3) Short Title Stream Redesignations, Class A Wild Trout Waters (4) PA Code Cite (5) Agency Contacts & Telephone Numbers 25 PA Code, Chapter 93 Primary Contact: Sharon F. Trostle, 783-1303 Secondary Contact: Edward R. Brezina, 787-9637 (6) Type of Rulemaking (Check One) (7) Is a 120-Day Emergency Certification Attached? x Proposed Rulemaking X No Final Order Adopting Regulation Yes: By the Attorney General Final Order, Proposed Rulemaking Omitted Yes: By the Governor (8) Briefly explain the regulation in clear and nontechnical language This proposed rulemaking modifies Chapter 93 to reflect the recommended redesignation of a number of streams that are designated as Class A Wild Trout Waters by the Pennsylvania Fish and Boat Commission (PFBC). Class A Waters qualify for designation as High Quality Waters (HQ) under §§ 93.4b(a)(2)(ii). The changes provide the appropriate designated use to these streams to protect existing uses. These changes may, upon implementation, result in more stringent treatment requirements for new and/or expanded wastewater discharges to the streams in order to protect the existing and designated water uses. (9) State the statutory authority for the regulation and any relevant state or federal court decisions. These proposed amendments are made under the authority of the following acts: The Pennsylvania Clean Streams Law, Act of June 22, 1937 (P.L. 1987, No 394) as amended, 35 P.S/S 691.5 etseq. -
Brook Trout Outcome Management Strategy
Brook Trout Outcome Management Strategy Introduction Brook Trout symbolize healthy waters because they rely on clean, cold stream habitat and are sensitive to rising stream temperatures, thereby serving as an aquatic version of a “canary in a coal mine”. Brook Trout are also highly prized by recreational anglers and have been designated as the state fish in many eastern states. They are an essential part of the headwater stream ecosystem, an important part of the upper watershed’s natural heritage and a valuable recreational resource. Land trusts in West Virginia, New York and Virginia have found that the possibility of restoring Brook Trout to local streams can act as a motivator for private landowners to take conservation actions, whether it is installing a fence that will exclude livestock from a waterway or putting their land under a conservation easement. The decline of Brook Trout serves as a warning about the health of local waterways and the lands draining to them. More than a century of declining Brook Trout populations has led to lost economic revenue and recreational fishing opportunities in the Bay’s headwaters. Chesapeake Bay Management Strategy: Brook Trout March 16, 2015 - DRAFT I. Goal, Outcome and Baseline This management strategy identifies approaches for achieving the following goal and outcome: Vital Habitats Goal: Restore, enhance and protect a network of land and water habitats to support fish and wildlife, and to afford other public benefits, including water quality, recreational uses and scenic value across the watershed. Brook Trout Outcome: Restore and sustain naturally reproducing Brook Trout populations in Chesapeake Bay headwater streams, with an eight percent increase in occupied habitat by 2025. -
Shoup's Run Watershed Association
11/1/2004 Shoup Run Watershed Restoration Plan Developed by the Huntingdon County Conservation District for The Shoup Run Watershed Association Introduction Watershed History The Shoup Run, locally known as Shoup’s Run, watershed drains approximately 13,746 acres or 21.8 square miles, in the Appalachian Mountain, Broad Top region of the Valley-Ridge Physiographic Province. Within this province, the area lies within the northwestern section of the Broad Top Mountain Plateau. This area is characterized by narrow valleys and moderately steep mountain slopes. Shoup Run is located in Huntingdon County, but includes drainage from portions of Bedford County. Shoup Run flows into the Raystown Branch of the Juniata River near the community of Saxton at river mile 42.4. Shoup Run has five named tributaries (Figure 1). Approximately 10% of the surface area of the Shoup Run basin has been surface mined. Much of the mining activity was done prior to current regulations and few of the mines were reclaimed to current specifications. Surface mining activity ended in the early 1980’s. There is currently no active mining in the watershed. Deep mines underlie approximately 12% of the Shoup Run watershed. Many abandoned deep mine entries and openings still exist in the Shoup Run Basin. Deep mining was done below the water table in many locations. In order to dewater the mines, drifts were driven into the deep mines to allow water to flow down slope and out of many of the mines. The bedrock in this area is folded and faulted. Tunnels were driven through many different lithologies to allow drainage. -
Pine Knot Mine Drainage Tunnel –
QUANTITY AND QUALITY OF STREAM WATER DRAINING MINED AREAS OF THE UPPER SCHUYLKILL RIVER BASIN, SCHUYLKILL COUNTY, PENNSYLVANIA, USA, 2005-20071 Charles A. Cravotta III,2 and John M. Nantz Abstract: Hydrologic effects of abandoned anthracite mines were documented by continuous streamflow gaging coupled with synoptic streamflow and water- quality monitoring in headwater reaches and at the mouths of major tributaries in the upper Schuylkill River Basin, Pa., during 2005-2007. Hydrograph separation of the daily average streamflow for 10 streamflow-gaging stations was used to evaluate the annual streamflow characteristics for October 2005 through September 2006. Maps showing stream locations and areas underlain by underground mines were used to explain the differences in total annual runoff, base flow, and streamflow yields (streamflow/drainage area) for the gaged watersheds. For example, one stream that had the lowest yield (59.2 cm/yr) could have lost water to an underground mine that extended beneath the topographic watershed divide, whereas the neighboring stream that had the highest yield (97.3 cm/yr) gained that water as abandoned mine drainage (AMD). Although the stream-water chemistry and fish abundance were poor downstream of this site and others where AMD was a major source of streamflow, the neighboring stream that had diminished streamflow met relevant in-stream water-quality criteria and supported a diverse fish community. If streamflow losses could be reduced, natural streamflow and water quality could be maintained in the watersheds with lower than normal yields. Likewise, stream restoration could lead to decreases in discharges of AMD from underground mines, with potential for decreased metal loading and corresponding improvements in downstream conditions. -
Alkalinity and Acidity in Mine Drainage
Proceedings America Society of Mining and Reclamation, 2004 ACIDITY AND ALKALINITY IN MINE DRAINAGE: PRACTICAL CONSIDERATIONS1 Charles A. Cravotta III2 and Carl S. Kirby2 Abstract. In this paper, we emphasize that the Standard Method hot peroxide treatment procedure for acidity determination (hot acidity) directly measures net acidity or net alkalinity, but that more than one water-quality measure can be useful as a measure of the severity of acid mine drainage. We demonstrate that the hot acidity is related to the pH, alkalinity, and dissolved concentrations of Fe, Mn, and Al in fresh mine drainage. We show that the hot acidity accurately indicates the potential for pH to decrease to acidic values after complete oxidation of Fe and Mn, and it indicates the excess alkalinity or that required for neutralization of the sample. We show that the hot acidity method gives consistent, interpretable results on fresh or aged samples. Regional data for mine-drainage quality in Pennsylvania indicated the pH of fresh samples was predominantly acidic (pH 2.5 to 4) or near neutral (pH 6 to 7); approximately 25 percent of the samples had intermediate pH values. This bimodal frequency distribution of pH was distinctive for fully oxidized samples; oxidized samples had acidic or near-neutral pH, only. Samples that had near- neutral pH after oxidation had negative hot acidity; samples that had acidic pH after oxidation had positive hot acidity. Samples with comparable pH values had variable hot acidities owing to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. The hot acidity was comparable to net acidity computed on the basis of initial pH and concentrations of Fe, Mn, and Al minus the initial alkalinity. -
2018 Pennsylvania Summary of Fishing Regulations and Laws PERMITS, MULTI-YEAR LICENSES, BUTTONS
2018PENNSYLVANIA FISHING SUMMARY Summary of Fishing Regulations and Laws 2018 Fishing License BUTTON WHAT’s NeW FOR 2018 l Addition to Panfish Enhancement Waters–page 15 l Changes to Misc. Regulations–page 16 l Changes to Stocked Trout Waters–pages 22-29 www.PaBestFishing.com Multi-Year Fishing Licenses–page 5 18 Southeastern Regular Opening Day 2 TROUT OPENERS Counties March 31 AND April 14 for Trout Statewide www.GoneFishingPa.com Use the following contacts for answers to your questions or better yet, go onlinePFBC to the LOCATION PFBC S/TABLE OF CONTENTS website (www.fishandboat.com) for a wealth of information about fishing and boating. THANK YOU FOR MORE INFORMATION: for the purchase STATE HEADQUARTERS CENTRE REGION OFFICE FISHING LICENSES: 1601 Elmerton Avenue 595 East Rolling Ridge Drive Phone: (877) 707-4085 of your fishing P.O. Box 67000 Bellefonte, PA 16823 Harrisburg, PA 17106-7000 Phone: (814) 359-5110 BOAT REGISTRATION/TITLING: license! Phone: (866) 262-8734 Phone: (717) 705-7800 Hours: 8:00 a.m. – 4:00 p.m. The mission of the Pennsylvania Hours: 8:00 a.m. – 4:00 p.m. Monday through Friday PUBLICATIONS: Fish and Boat Commission is to Monday through Friday BOATING SAFETY Phone: (717) 705-7835 protect, conserve, and enhance the PFBC WEBSITE: Commonwealth’s aquatic resources EDUCATION COURSES FOLLOW US: www.fishandboat.com Phone: (888) 723-4741 and provide fishing and boating www.fishandboat.com/socialmedia opportunities. REGION OFFICES: LAW ENFORCEMENT/EDUCATION Contents Contact Law Enforcement for information about regulations and fishing and boating opportunities. Contact Education for information about fishing and boating programs and boating safety education. -
Addendum to the Catawissa Creek Restoration Plan
Catawissa Creek Watershed Restoration Plan Update Addressing the TMDL Identification and Summary of Problem and Pollution Sources The Catawissa Creek watershed is a very rural, relatively remote, largely forested watershed, with little agricultural land. The only urbanized area is the Borough of Catawissa, at the mouth of Catawissa Creek. Ringtown Borough, in the upper Little Catawissa Creek watershed, is the only other incorporated municipality in the watershed. Several small villages are scattered through the watershed. Little new development exists in watershed except for Eagle Rock Resort, a development of mostly second and retirement homes in the upper Tomhicken Creek watershed. Farms consist of mostly pasture, with the few row crops planted mostly in corn. Impairment of Water Quality and Aquatic Life The major pollution source in the Catawissa Creek watershed is abandoned mine drainage from five deep mine tunnels located in the upper third of the watershed. A total of 44.5 miles of Catawissa Creek watershed, 11 miles of Tomhicken Creek, and 3.4 miles of Sugarloaf Creek are listed as impaired by metals from abandoned mine drainage on the DEP 303d list of impaired waters. The DEP North Central Regional Office completed the assessment of the entire Catawissa Creek watershed through the DEP Unassessed Waters Program in fall 2004. In addition to the areas already listed as impaired by abandoned mine drainage, several tributaries originating on Catawissa Mountain in the lower watershed were determined to be impaired by acid deposition and will be placed on the 303d list. This is not surprising since nearly the entire watershed is lowly buffered and slightly acidic. -
Wild Trout Waters (Natural Reproduction) - September 2021
Pennsylvania Wild Trout Waters (Natural Reproduction) - September 2021 Length County of Mouth Water Trib To Wild Trout Limits Lower Limit Lat Lower Limit Lon (miles) Adams Birch Run Long Pine Run Reservoir Headwaters to Mouth 39.950279 -77.444443 3.82 Adams Hayes Run East Branch Antietam Creek Headwaters to Mouth 39.815808 -77.458243 2.18 Adams Hosack Run Conococheague Creek Headwaters to Mouth 39.914780 -77.467522 2.90 Adams Knob Run Birch Run Headwaters to Mouth 39.950970 -77.444183 1.82 Adams Latimore Creek Bermudian Creek Headwaters to Mouth 40.003613 -77.061386 7.00 Adams Little Marsh Creek Marsh Creek Headwaters dnst to T-315 39.842220 -77.372780 3.80 Adams Long Pine Run Conococheague Creek Headwaters to Long Pine Run Reservoir 39.942501 -77.455559 2.13 Adams Marsh Creek Out of State Headwaters dnst to SR0030 39.853802 -77.288300 11.12 Adams McDowells Run Carbaugh Run Headwaters to Mouth 39.876610 -77.448990 1.03 Adams Opossum Creek Conewago Creek Headwaters to Mouth 39.931667 -77.185555 12.10 Adams Stillhouse Run Conococheague Creek Headwaters to Mouth 39.915470 -77.467575 1.28 Adams Toms Creek Out of State Headwaters to Miney Branch 39.736532 -77.369041 8.95 Adams UNT to Little Marsh Creek (RM 4.86) Little Marsh Creek Headwaters to Orchard Road 39.876125 -77.384117 1.31 Allegheny Allegheny River Ohio River Headwater dnst to conf Reed Run 41.751389 -78.107498 21.80 Allegheny Kilbuck Run Ohio River Headwaters to UNT at RM 1.25 40.516388 -80.131668 5.17 Allegheny Little Sewickley Creek Ohio River Headwaters to Mouth 40.554253 -80.206802