An Improved Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Assay for the Detection of a PON2 Gene Polymorphism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Genome Mapping in the Sequence-Based Era: Early Experience with Human Chromosome 7
Downloaded from genome.cshlp.org on May 28, 2019 - Published by Cold Spring Harbor Laboratory Press First Glimpses/Report Comparative Genome Mapping in the Sequence-based Era: Early Experience with Human Chromosome 7 James W. Thomas,1 Tyrone J. Summers,1 Shih-Queen Lee-Lin,1 Valerie V. Braden Maduro,1 Jacquelyn R. Idol,1 Stephen D. Mastrian,1 Joseph F. Ryan,1 D. Curtis Jamison,1 and Eric D. Green1,2 1Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 USA The success of the ongoing Human Genome Project has resulted in accelerated plans for completing the human genome sequence and the earlier-than-anticipated initiation of efforts to sequence the mouse genome. As a complement to these efforts, we are utilizing the available human sequence to refine human-mouse comparative maps and to assemble sequence-ready mouse physical maps. Here we describe how the first glimpses of genomic sequence from human chromosome 7 are directly facilitating these activities. Specifically, we are actively enhancing the available human-mouse comparative map by analyzing human chromosome 7 sequence for the presence of orthologs of mapped mouse genes. Such orthologs can then be precisely positioned relative to mapped human STSs and other genes. The chromosome 7 sequence generated to date has allowed us to more than double the number of genes that can be placed on the comparative map. The latter effort reveals that human chromosome 7 is represented by at least 20 orthologous segments of DNA in the mouse genome. A second component of our program involves systematically analyzing the evolving human chromosome 7 sequence for the presence of matching mouse genes and expressed-sequence tags (ESTs). -
Genetic Variation of Genes for Xenobiotic-Metabolizing
Journal of Human Genetics (2009) 54, 440–449 & 2009 The Japan Society of Human Genetics All rights reserved 1434-5161/09 $32.00 www.nature.com/jhg ORIGINAL ARTICLE Genetic variation of genes for xenobiotic-metabolizing enzymes and risk of bronchial asthma: the importance of gene–gene and gene–environment interactions for disease susceptibility Alexey V Polonikov, Vladimir P Ivanov and Maria A Solodilova The aim of our pilot study was to evaluate the contribution of genes for xenobiotic-metabolizing enzymes (XMEs) for the development of bronchial asthma. We have genotyped 25 polymorphic variants of 18 key XME genes in 429 Russians, including 215 asthmatics and 214 healthy controls by a polymerase chain reaction, followed by restriction fragment length polymorphism analyses. We found for the first time significant associations of CYP1B1 V432L (P¼0.045), PON1 Q192R (P¼0.039) and UGT1A6 T181A (P¼0.025) gene polymorphisms with asthma susceptibility. Significant P-values were evaluated through Monte-Carlo simulations. The multifactor-dimensionality reduction method has obtained the best three-locus model for gene–gene interactions between three loci, EPHX1 Y113H, CYP1B1 V432L and CYP2D6 G1934A, in asthma at a maximum cross-validation consistency of 100% (P¼0.05) and a minimum prediction error of 37.8%. We revealed statistically significant gene–environment interactions (XME genotypes–smoking interactions) responsible for asthma susceptibility for seven XME genes. A specific pattern of gametic correlations between alleles of XME genes was found in asthmatics in comparison with healthy individuals. The study results point to the potential relevance of toxicogenomic mechanisms of bronchial asthma in the modern world, and may thereby provide a novel direction in the genetic research of the respiratory disease in the future. -
Pharmacogenetics: a Tool for Identifying Genetic Factors in Drug Dependence and Response to Treatment
RESEARCH REVIEW—PHARMACOGENETICS • 17 Pharmacogenetics: A Tool for Identifying Genetic Factors in Drug Dependence and Response to Treatment harmacogenetics research looks at variations in the human genome and ways in which genetic factors might influence Phow individuals respond to drugs. The authors review basic principles of pharmacogenetics and cite findings from several gene-phenotype studies to illustrate possible associations between genetic variants, drug-related behaviors, and risk for drug dependence. Some gene variants affect responses to one drug; others, to various drugs. Pharmacogenetics can inform medica- tion development and personalized treatment strategies; challenges lie along the pathway to its general use in clinical practice. Margaret Mroziewicz, M.Sc.1 ubstance dependence is a complex psychiatric disorder that develops in Rachel F. Tyndale, Ph.D. 1,2,3 response to a combination of environmental and genetic risk factors and 1 Department of Pharmacology and Toxicology drug-induced effects (Ho et al., 2010). The strong genetic basis of depen- University of Toronto S Toronto, Canada dence is supported by family, adoption, and twin studies, which demonstrate 2Department of Psychiatry substantial heritability, estimated to be about 50 percent (Uhl et al., 2008). The University of Toronto Toronto, Canada evidence suggests that no single variant accounts for a major portion of this risk, 3Centre for Addiction and Mental Health but that variations in many genes each contribute a small amount. Toronto, Canada Pharmacogenetics is the study of the genetic factors that influence drug response and toxicity. In this review, we briefly state the basic principles of pharmacoge- netics and then provide examples of discoveries that demonstrate the impact of genetic variation on drug dependence, drug effects, and drug-induced behaviors. -
Transposon Variants and Their Effects on Gene Expression in Arabidopsis
Transposon Variants and Their Effects on Gene Expression in Arabidopsis Xi Wang, Detlef Weigel*, Lisa M. Smith* Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tu¨bingen, Germany Abstract Transposable elements (TEs) make up the majority of many plant genomes. Their transcription and transposition is controlled through siRNAs and epigenetic marks including DNA methylation. To dissect the interplay of siRNA–mediated regulation and TE evolution, and to examine how TE differences affect nearby gene expression, we investigated genome- wide differences in TEs, siRNAs, and gene expression among three Arabidopsis thaliana accessions. Both TE sequence polymorphisms and presence of linked TEs are positively correlated with intraspecific variation in gene expression. The expression of genes within 2 kb of conserved TEs is more stable than that of genes next to variant TEs harboring sequence polymorphisms. Polymorphism levels of TEs and closely linked adjacent genes are positively correlated as well. We also investigated the distribution of 24-nt-long siRNAs, which mediate TE repression. TEs targeted by uniquely mapping siRNAs are on average farther from coding genes, apparently because they more strongly suppress expression of adjacent genes. Furthermore, siRNAs, and especially uniquely mapping siRNAs, are enriched in TE regions missing in other accessions. Thus, targeting by uniquely mapping siRNAs appears to promote sequence deletions in TEs. Overall, our work indicates that siRNA–targeting of TEs may influence removal of sequences from the genome and hence evolution of gene expression in plants. Citation: Wang X, Weigel D, Smith LM (2013) Transposon Variants and Their Effects on Gene Expression in Arabidopsis. PLoS Genet 9(2): e1003255. -
Essential Trace Elements in Human Health: a Physician's View
Margarita G. Skalnaya, Anatoly V. Skalny ESSENTIAL TRACE ELEMENTS IN HUMAN HEALTH: A PHYSICIAN'S VIEW Reviewers: Philippe Collery, M.D., Ph.D. Ivan V. Radysh, M.D., Ph.D., D.Sc. Tomsk Publishing House of Tomsk State University 2018 2 Essential trace elements in human health UDK 612:577.1 LBC 52.57 S66 Skalnaya Margarita G., Skalny Anatoly V. S66 Essential trace elements in human health: a physician's view. – Tomsk : Publishing House of Tomsk State University, 2018. – 224 p. ISBN 978-5-94621-683-8 Disturbances in trace element homeostasis may result in the development of pathologic states and diseases. The most characteristic patterns of a modern human being are deficiency of essential and excess of toxic trace elements. Such a deficiency frequently occurs due to insufficient trace element content in diets or increased requirements of an organism. All these changes of trace element homeostasis form an individual trace element portrait of a person. Consequently, impaired balance of every trace element should be analyzed in the view of other patterns of trace element portrait. Only personalized approach to diagnosis can meet these requirements and result in successful treatment. Effective management and timely diagnosis of trace element deficiency and toxicity may occur only in the case of adequate assessment of trace element status of every individual based on recent data on trace element metabolism. Therefore, the most recent basic data on participation of essential trace elements in physiological processes, metabolism, routes and volumes of entering to the body, relation to various diseases, medical applications with a special focus on iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), selenium (Se), iodine (I), cobalt (Co), chromium, and molybdenum (Mo) are reviewed. -
Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters
pharmaceuticals Review Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters Teresa Iannaccone 1, Carmine Sellitto 1,2,* , Valentina Manzo 1,2 , Francesca Colucci 1, Valentina Giudice 1 , Berenice Stefanelli 1 , Antonio Iuliano 1, Giulio Corrivetti 3 and Amelia Filippelli 1,2 1 Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; [email protected] (T.I.); [email protected] (V.M.); [email protected] (F.C.); [email protected] (V.G.); [email protected] (B.S.); [email protected] (A.I.); afi[email protected] (A.F.) 2 Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy 3 European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-089673848 Abstract: Pharmacogenomics can identify polymorphisms in genes involved in drug pharma- cokinetics and pharmacodynamics determining differences in efficacy and safety and causing inter-individual variability in drug response. Therefore, pharmacogenomics can help clinicians in optimizing therapy based on patient’s genotype, also in psychiatric and neurological settings. Citation: Iannaccone, T.; Sellitto, C.; However, pharmacogenetic screenings for psychotropic drugs are not routinely employed in diagno- Manzo, V.; Colucci, F.; Giudice, V.; Stefanelli, B.; Iuliano, A.; Corrivetti, sis and monitoring of patients treated with mood stabilizers, such as carbamazepine and valproate, G.; Filippelli, A. Pharmacogenetics of because their benefit in clinical practice is still controversial. In this review, we summarize the current Carbamazepine and Valproate: Focus knowledge on pharmacogenetic biomarkers of these anticonvulsant drugs. -
Mclean, Chelsea.Pdf
COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Chelsea Marie McLean August 2009 © 2009 Chelsea Marie McLean COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES Chelsea Marie McLean, Ph.D. Cornell University 2009 Epigenetic modifications, including DNA methylation and covalent modifications to histone tails, are major contributors to the regulation of gene expression. These changes are reversible, yet can be stably inherited, and may last for multiple generations without change to the underlying DNA sequence. Genomic imprinting results in expression from one of the two parental alleles and is one example of epigenetic control of gene expression. So far, 60 to 100 imprinted genes have been identified in the human and mouse genomes, respectively. Identification of additional imprinted genes has become increasingly important with the realization that imprinting defects are associated with complex disorders ranging from obesity to diabetes and behavioral disorders. Despite the importance imprinted genes play in human health, few studies have undertaken genome-wide searches for new imprinted genes. These have used empirical approaches, with some success. However, computational prediction of novel imprinted genes has recently come to the forefront. I have developed generalized linear models using data on a variety of sequence and epigenetic features within a training set of known imprinted genes. The resulting models were used to predict novel imprinted genes in the mouse genome. After imposing a stringency threshold, I compiled an initial candidate list of 155 genes. -
Polymorphism of Paraoxonase-2 Gene Is Associated With
Molecular Psychiatry (2002) 7, 110–112 2002 Nature Publishing Group All rights reserved 1359-4184/02 $15.00 www.nature.com/mp ORIGINAL RESEARCH ARTICLE Codon 311 (Cys → Ser) polymorphism of paraoxonase-2 gene is associated with apolipoprotein E4 allele in both Alzheimer’s and vascular dementias Z Janka1, A Juha´sz1,A´ Rimano´czy1, K Boda2,JMa´rki-Zay3 and J Ka´lma´n1 1Department of Psychiatry; 2Medical Informatics, Albert Szent-Gyo¨rgyi Center for Medical and Pharmaceutical Sciences, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; 3Central Laboratory, Be´ke´s County Hospital, PO Box 46, H-5701, Gyula, Hungary Keywords: paraoxonase; apolipoprotein E; genetic mark- Table 1 Frequency distribution of PON2 and apoE geno- ers; Alzheimer’s disease; vascular dementia; DNA polymor- types and alleles in the control, Alzheimer’s and vascular phism dementia populations The gene of an esterase enzyme, called paraoxonase (PON, EC.3.1.8.1.) is a member of a multigene family that Control Alzheimer’s Vascular comprises three related genes PON1, PON2, and PON3 dementia dementia with structural homology clustering on the chromosome 7.1,2 The PON1 activity and the polymorphism of the PON2 genotype PON1 and PON2 genes have been found to be associa- CC 4 (8%) 2 (4%) 3 (6%) ted with risk of cardiovascular diseases such as hyper- CS 20 (39%) 23 (43%) 19 (34%) cholesterolaemia, non-insulin-dependent diabetes, coron- SS 27 (53%) 28 (53%) 33 (60%) ary heart disease (CHD) and myocardial infaction.3–8 The PON2 allele importance of cardiovascular risk factors in the patho- C (cys) 28 (27%) 27 (25%) 25 (23%) mechanism of Alzheimer’s disease (AD) and vascular S (ser) 74 (73%) 79 (75%) 85 (77%) dementia (VD)9–13 prompted us to examine the genetic ApoE genotype effect of PON2 gene codon 311 (Cys→Ser; PON2*S) 22 – – – polymorphism and the relationship between the PON2*S 2 3 6 (12%) 3 (6%) 6 (11%) allele and the other dementia risk factor, the apoE poly- 2 4 – – 1 (2%) morphism in these dementias. -
Idiopathic Infertility As a Feature of Genome Instability
life Review Idiopathic Infertility as a Feature of Genome Instability Agrita Puzuka 1,2, Baiba Alksere 1,3, Linda Gailite 1 and Juris Erenpreiss 1,3,* 1 Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia; [email protected] (A.P.); [email protected] (B.A.); [email protected] (L.G.) 2 Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia 3 EAA Andrology Centre, Clinic IVF-Riga, LV-1010 Riga, Latvia * Correspondence: [email protected] Abstract: Genome instability may play a role in severe cases of male infertility, with disrupted sper- matogenesis being just one manifestation of decreased general health and increased morbidity. Here, we review the data on the association of male infertility with genetic, epigenetic, and environmental alterations, the causes and consequences, and the methods for assessment of genome instability. Male infertility research has provided evidence that spermatogenic defects are often not limited to testicular dysfunction. An increased incidence of urogenital disorders and several types of cancer, as well as overall reduced health (manifested by decreased life expectancy and increased morbidity) have been reported in infertile men. The pathophysiological link between decreased life expectancy and male infertility supports the notion of male infertility being a systemic rather than an isolated condition. It is driven by the accumulation of DNA strand breaks and premature cellular senescence. We have presented extensive data supporting the notion that genome instability can lead to severe male infertility termed “idiopathic oligo-astheno-teratozoospermia.” We have detailed that genome instability in men with oligo-astheno-teratozoospermia (OAT) might depend on several genetic Citation: Puzuka, A.; Alksere, B.; and epigenetic factors such as chromosomal heterogeneity, aneuploidy, micronucleation, dynamic Gailite, L.; Erenpreiss, J. -
Comparative Genome Mapping in the Sequence-Based Era: Early Experience with Human Chromosome 7
Downloaded from genome.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press First Glimpses/Report Comparative Genome Mapping in the Sequence-based Era: Early Experience with Human Chromosome 7 James W. Thomas,1 Tyrone J. Summers,1 Shih-Queen Lee-Lin,1 Valerie V. Braden Maduro,1 Jacquelyn R. Idol,1 Stephen D. Mastrian,1 Joseph F. Ryan,1 D. Curtis Jamison,1 and Eric D. Green1,2 1Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 USA The success of the ongoing Human Genome Project has resulted in accelerated plans for completing the human genome sequence and the earlier-than-anticipated initiation of efforts to sequence the mouse genome. As a complement to these efforts, we are utilizing the available human sequence to refine human-mouse comparative maps and to assemble sequence-ready mouse physical maps. Here we describe how the first glimpses of genomic sequence from human chromosome 7 are directly facilitating these activities. Specifically, we are actively enhancing the available human-mouse comparative map by analyzing human chromosome 7 sequence for the presence of orthologs of mapped mouse genes. Such orthologs can then be precisely positioned relative to mapped human STSs and other genes. The chromosome 7 sequence generated to date has allowed us to more than double the number of genes that can be placed on the comparative map. The latter effort reveals that human chromosome 7 is represented by at least 20 orthologous segments of DNA in the mouse genome. A second component of our program involves systematically analyzing the evolving human chromosome 7 sequence for the presence of matching mouse genes and expressed-sequence tags (ESTs). -
BRG1/SMARCA4 Inactivation Promotes Non–Small Cell Lung Cancer Aggressiveness by Altering Chromatin Organization
Published OnlineFirst August 12, 2014; DOI: 10.1158/0008-5472.CAN-14-0061 Cancer Molecular and Cellular Pathobiology Research BRG1/SMARCA4 Inactivation Promotes Non–Small Cell Lung Cancer Aggressiveness by Altering Chromatin Organization Tess Orvis1, Austin Hepperla1,2, Vonn Walter1, Shujie Song1,3, Jeremy Simon1,4, Joel Parker1,5, Matthew D. Wilkerson1,5, Nisarg Desai1, Michael B. Major1,6, D. Neil Hayes1,7, Ian J. Davis1,5,8, and Bernard Weissman1,9 Abstract SWI/SNF chromatin remodeling complexes regulate critical cellular processes, including cell-cycle control, programmed cell death, differentiation, genomic instability, and DNA repair. Inactivation of this class of chromatin remodeling complex has been associated with a variety of malignancies, including lung, ovarian, renal, liver, and pediatric cancers. In particular, approximately 10% of primary human lung non–small cell lung cancers (NSCLC) display attenuations in the BRG1 ATPase, a core factor in SWI/SNF complexes. To evaluate the role of BRG1 attenuation in NSCLC development, we examined the effect of BRG1 silencing in primary and established human NSCLC cells. BRG1 loss altered cellular morphology and increased tumorigenic potential. Gene expression analyses showed reduced expression of genes known to be associated with progression of human NSCLC. We demonstrated that BRG1 losses in NSCLC cells were associated with variations in chromatin structure, including differences in nucleosome positioning and occupancy surrounding transcriptional start sites of disease-relevant genes. Our results offer direct evidence that BRG1 attenuation contributes to NSCLC aggressiveness by altering nucleosome positioning at a wide range of genes, including key cancer-associated genes. Cancer Res; 74(22); 1–13. Ó2014 AACR. -
Snps Genotyping Technologies and Their Applications in Farm Animals Breeding Programs: Review
87 Vol.57, n.1: pp. 87-95, January/February 2014 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL SNPs Genotyping Technologies and Their Applications in Farm Animals Breeding Programs: Review Hamed Kharrati Koopaee 1* and Ali Esmailizadeh Koshkoiyeh 2 1Institute of Biotechnology; Shiraz University - Iran. 2Department of Animal Science; Shahid Bahonar University of Kerman; Kerman - Iran ABSTRACT Single nucleotide polymorphisms (SNPs) are DNA sequence variations that occur when a single nucleotide: adenine (A), thymine (T), cytosine (C) or guanine (G) in the genome sequence is altered. Traditional and high throughput methods are two main strategies for SNPs genotyping. The SNPs genotyping technologies provide powerful resources for animal breeding programs.Genomic selection using SNPs is a new tool for choosing the best breeding animals. In addition, the high density maps using SNPs can provide useful genetic tools to study quantitative traits genetic variations. There are many sources of SNPs and exhaustive numbers of methods of SNP detection to be considered. For many traits in farm animals, the rate of genetic improvement can be nearly doubled when SNPs information is used compared to the current methods of genetic evaluation. The goal of this review is to characterize the SNPs genotyping methods and their applications in farm animals breeding. Key words: SNPs genotyping, Traditional and high throughput methods, Animal breeding INTRODUCTION microsatellites and SNPs, ii) Non-PCR based markers. In the later group, the restricted enzymes DNA markers have a main potential role in animal have main role for their amplification and breeding programs. The use of DNA markers has a production for example, restricted fragment length revolutionary impact on gene mapping and polymorphism, or RFLP markers (Avise 2004).