Understanding Android Financial Malware Attacks: Taxonomy, Characterization, and Challenges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identifying Threats Associated with Man-In-The-Middle Attacks During Communication Between a Mobile Device and the Back End Server in Mobile Banking Applications
IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. IX (Mar-Apr. 2014), PP 35-42 www.iosrjournals.org Identifying Threats Associated With Man-In-The-Middle Attacks during Communication between a Mobile Device and the Back End Server in Mobile Banking Applications Anthony Luvanda1,*Dr Stephen Kimani1 Dr Micheal Kimwele1 1. School of Computing and Information Technology, Jomo Kenyatta University of Agriculture and Technology, PO Box 62000-00200 Nairobi Kenya Abstract: Mobile banking, sometimes referred to as M-Banking, Mbanking or SMS Banking, is a term used for performing balance checks, account transactions, payments, credit applications and other banking transactions through a mobile device such as a mobile phone or Personal Digital Assistant (PDA). Mobile banking has until recently most often been performed via SMS or the Mobile Web. Apple's initial success with iPhone and the rapid growth of phones based on Google's Android (operating system) have led to increasing use of special client programs, called apps, downloaded to the mobile device hence increasing the number of banking applications that can be made available on mobile phones . This in turn has increased the popularity of mobile device use in regards to personal banking activities. Due to the characteristics of wireless medium, limited protection of the nodes, nature of connectivity and lack of centralized managing point, wireless networks tend to be highly vulnerable and more often than not they become subjects of attack. This paper proposes to identify potential threats associated with communication between a mobile device and the back end server in mobile banking applications. -
100169 V2 BCG Mobile Malware Infographic
KNOW THY With mobile usage at an all time high, malware specifically designed for smartphones has become more prevalent and sophisticated. MOBILE ENEMY. We’re here to help. Mobile malware can take on many different forms: POTENTIALLY UNWANTED SOFTWARE (PUS) The Basics How PUS Starts Signs of a PUS Attack • Often poses as • Users allow permission • Sudden increase in junk antivirus software because attack poses as SMS texts antivirus software • Similar to adware • Data stolen from your or spyware contacts list and shared with third parties • Millions of variations already exist RANSOMWARE The Basics Complete Anonymity Ransomware & Fear • Advanced cryptographic • Assailants demand • Most aren’t likely to report Accept threats that hold untraceable ransom ransomware acquired from les hostage payment (Bitcoin) embarrassing sources (ie. porn) • Ransom is due within • Attackers use Tor network a strict time limit to hide destination • Often payment doesn’t mean before les become of payment the bad guys uphold their permanently inaccessible end of the bargain • .onion addresses often used in ransom demands How Ransomware Starts • Installing risky mobile apps from insecure websites INFORMATION LEAKAGE Every Move is Monitored IMEI Identifier Broadcast Personal Privacy Threats Within Mobile Network • Often results from app • Can lead to cloned • Utilize GPS satellite designers who don’t phones where service systems to create digital encrypt or do it wrong is hijacked “breadcrumbs” showing activity • Reveal where people live, work, socialize, etc. using social networking options TOP TWO INFECTION VECTORS MIXING BUSINESS WITH PLEASURE Users now have one device for everything— #1 Porn #2Suspicious chances of personal use impacting business networks at 36% WebAd networks/large networks are higher than ever. -
Watch out for Fake Virus Alerts
State of West Virginia Cyber Security Tip ALERT West Virginia Office of Information Security and Controls – Jim Richards, WV Chief Information Security Officer WATCH OUT FOR FAKE VIRUS ALERTS Rogue security software, also known as "scareware," is software that appears to be beneficial from a security perspective (i.e. free virus scan) but provides limited or no security, generates erroneous or misleading alerts, or attempts to lure users into participating in fraudulent transactions. How does rogue security software get on my computer? Rogue security software designers create legitimate looking pop-up windows that advertise security update software. These windows might appear on your screen while you surf the web. The "updates" or "alerts" in the pop-up windows call for you to take some sort of action, such as clicking to install the software, accept recommended updates, or remove unwanted viruses or spyware. When you click, the rogue security software downloads to your computer. Rogue security software might also appear in the list of search results when you are searching for trustworthy antispyware software, so it is important to protect your computer. What does rogue security software do? Rogue security software might report a virus, even though your computer is actually clean. The software might also fail to report viruses when your computer is infected. Inversely, sometimes, when you download rogue security software, it will install a virus or other malicious software on your computer so that the software has something to detect. Some rogue security software might also: Lure you into a fraudulent transaction (for example, upgrading to a non-existent paid version of a program). -
Mobile Malware
CS 155 Spring 2016 Mobile Malware John Mitchell Outline • Mobile malware • Identifying malware – Detect at app store rather than on platform • Classification study of mobile web apps – Entire Google Play market as of 2014 – 85% of approx 1 million apps use web interface • Target fragmentation in Android – Out-of-date Apps may disable more recent security platform patches Malware Trends W Based on FairPlay vulnerability • Requires malware on user PC, installation of malicious app in App Store • Continues to work after app removed from store • Silently installs app on phone Android malware 2015 Current Android Malware Description AccuTrack This application turns an Android smartphone into a GPS tracker. Ackposts This Trojan steals contact information from the compromised device and uploads them to a remote server. Acnetdoor This Trojan opens a backdoor on the infected device and sends the IP address to a remote server. Adsms This is a Trojan which is allowed to send SMS messages. The distribution channel ... is through a SMS message containing the download link. Airpush/StopSMS Airpush is a very aggresive Ad-Network. … BankBot This malware tries to steal users’ confidential information and money from bank and mobile accounts associated with infected devices. http://forensics.spreitzenbarth.de/android-malware/ Trends 2014-15 Android free antivirus apps … 1. Comodo Security & Antivirus 2. CM Security Antivirus AppLock 3. 360 Security - Antivirus Boost 4. Sophos Free Antivirus and Security 5. Malwarebytes Anti- Malware 6. Bitdefender Antivirus -
Mobile Malware Security Challenges and Cloud-Based Detection
Mobile Malware Security Challeges and Cloud-Based Detection Nicholas Penning, Michael Hoffman, Jason Nikolai, Yong Wang College of Business and Information Systems Dakota State University Madison, SD 57042 {nfpenning, mjhoffman13054, janikolai}@pluto.dsu.edu, [email protected] Abstract— Mobile malware has gained significant ground since the techniques, privilege escalation, remote control, financial dawning of smartphones and handheld devices. TrendLabs charge, and information collection, etc. The previous stated estimated that there were 718,000 malicious and high risk Android techniques provide a malicious attacker with a variety of options apps in the second quarter of 2013. Mobile malware malicious to utilize a compromised mobile device. infections arise through various techniques such as installing repackaged legitimate apps with malware, updating current apps Many mobile malware prevention techniques are ported from that piggy back malicious variants, or even a drive-by download. desktop or laptop computers. However, due to the uniqueness of The infections themselves will perform at least one or multiple of smartphones [6], such as multiple-entrance open system, the following techniques, privilege escalation, remote control, platform-oriented, central data management, vulnerability to financial charge, and information collection, etc. This paper theft and lost, etc., challenges are also encountered when porting summarizes mobile malware threats and attacks, cybercriminal existing anti-malware techniques to mobile devices. These motivations behind malware, existing prevention methods and challenges include, inefficient security solutions, limitations of their limitations, and challenges encountered when preventing signature-based mobile malware detection, lax control of third malware on mobile devices. The paper further proposes a cloud- party app stores, and uneducated or careless users, etc. -
Mobile Malware Network View Kevin Mcnamee : Alcatel-Lucent Agenda
Mobile Malware Network View Kevin McNamee : Alcatel-Lucent Agenda • Introduction • How the data is collected • Lies, Damn Lies and Statistics • Windows PC Malware • Android Malware • Network Impact • Examples of malware • DDOS Monitoring the Mobile Network • Monitor GTP-C traffic MOBILE NETWORK SECURITY ANALYTICS - Maps IMSI, APN & EMEI to IP address - Associates infection with a specific device or user Forensic Analysis • Monitor GTP-U traffic Alert - Malware C&C Aggregation & Analysis - Exploits Malware - DDOS Detection Sensor - Hacking 10GE or GE NodeB SGSN RAN Alternate Tap Recommended Alternate tap RNC (Iu-PS and S1-u) Tap (Gn and choice (Gi and Internet S5/8) SGi) GGSN/PGW eNodeB SGW 3 Monitoring the Mobile Network • Analytics Provides MOBILE NETWORK SECURITY ANALYTICS - Raw security alerts - Trigger packets - Infection history by device Forensic Analysis - Infection history by malware Alert • Reports Aggregation & Analysis - Most active malware Malware Detection - Network impact Sensor - Infection rates 10GE or GE NodeB SGSN RAN Alternate Tap Recommended Alternate tap RNC (Iu-PS and S1-u) Tap (Gn and choice (Gi and Internet S5/8) SGi) GGSN/PGW eNodeB SGW 4 Detection Rules Development Process MALWARE TRAFFIC SAMPLES POLICY MALWARE ZERO DAY RULES TRAFFIC BEHAVIORAL VIRUS VAULT SANDBOX DEVELOPMENT LIBRARY RULES LIBRARY RULES • 120K+ ANALYZED PER DAY • 30M+ Active samples RULE ACTIVATION RULES REPOSITORY DEPLOYMENT-SPECIFIC RULE SETS FEEDBACK FROM FIELD QUALITY TESTS TESTING FIELD TESTING IN LIVE NETWORKS 5 Infection Rate • C&C detection measures actual infections as seen from the network • Problem is growing (by 25% in 2014) • LTE device 5 times more likely to be infected 6 Estimates of Mobile Malware infection However… rates vary wildly - ALU, Lookout & Google report 0.4% to 0.6% - Verizon Breach Report quoted 0.03% - Damballa quoted 0.0064% at RSA. -
MOBILE MALWARE EVOLUTION 2016 Contents the Year in Figures
MOBILE MALWARE EVOLUTION 2016 Contents The year in figures ......................................................................................................................................... 2 Trends of the year .......................................................................................................................................... 2 Malicious programs using super-user rights ............................................................................................. 3 Cybercriminals continue their use of Google Play..................................................................................... 4 Bypassing Android’s protection mechanisms ............................................................................................ 6 Mobile ransomware................................................................................................................................... 7 A glance into the Dark Web. Contribution from INTERPOL’s Global Complex for Innovation. ..................... 8 Marketplaces ................................................................................................................................................. 8 Vendor shops, forums and social media ....................................................................................................... 9 Statistics ....................................................................................................................................................... 10 Geography of mobile threats .................................................................................................................. -
Android Malware Category and Family Detection and Identification Using Machine Learning
Android Malware Category and Family Detection and Identification using Machine Learning Ahmed Hashem El Fiky1*, Ayman El Shenawy1, 2, Mohamed Ashraf Madkour1 1 Systems and Computer Engineering Dept., Faculty of Engineering, Al-Azhar University, Cairo, Egypt. 1 Systems and Computer Engineering Dept., Faculty of Engineering, Al-Azhar University, Cairo, Egypt. 2 Software Engineering and Information Technology, Faculty of Engineering and Technology, Egyptian Chinese University, Cairo, Egypt. [email protected] [email protected] [email protected] Abstract: Android malware is one of the most dangerous threats on the internet, and it's been on the rise for several years. Despite significant efforts in detecting and classifying android malware from innocuous android applications, there is still a long way to go. As a result, there is a need to provide a basic understanding of the behavior displayed by the most common Android malware categories and families. Each Android malware family and category has a distinct objective. As a result, it has impacted every corporate area, including healthcare, banking, transportation, government, and e-commerce. In this paper, we presented two machine- learning approaches for Dynamic Analysis of Android Malware: one for detecting and identifying Android Malware Categories and the other for detecting and identifying Android Malware Families, which was accomplished by analyzing a massive malware dataset with 14 prominent malware categories and 180 prominent malware families of CCCS-CIC- AndMal2020 dataset on Dynamic Layers. Our approach achieves in Android Malware Category detection more than 96 % accurate and achieves in Android Malware Family detection more than 99% accurate. Our approach provides a method for high-accuracy Dynamic Analysis of Android Malware while also shortening the time required to analyze smartphone malware. -
Not So Secure! Research Report on End-Point Compromises and the Risk to Internet Banking
Not so secure! Research report on end-point compromises and the risk to Internet banking Special research report. August 2016 Internet Banking has grown by leaps and bounds in India. India had over 400 million Internet users by the beginning of 2016 as per a report by IAMAI and IMRB. This is the highest number of Internet banking users in any country. While having a high number of Internet banking users indicates healthy adoption of IT and reduced costs for banks, it also means that this population is vulnerable to cyberthreats which can put their hard-earned money at risk. One of the biggest addressable risks which users face is man-in-the-browser and end-point compromise attacks. “Virtual keyboards are ineffective in preventing the theft of end-user credentials and banks need to look at end point security more holistically. End-point compromise is an attack in which the end user’s computer and, in many cases these days, a browser is compromised using a simple program—generally a browser plugin or browser extension. The program is designed to steal the Internet banking credentials of the end users. Our security research team looked at the Internet banking websites of 26 banks in India. We found that over 21 banks have inadequate mechanisms to detect or prevent attacks which could compromise the end user credentials. This finding has significant implications as the end user is generally gullible, and many users can be made to download a browser extension/plugin which is capable of capturing banking credentials. Mechanisms which are currently prevalent, such as the virtual keyboard, which were long considered a protection against such attacks, were found to be inadequate to prevent these attacks. -
A Poisoned Apple: the Analysis of Macos Malware Shlayer By: Minh D
A Poisoned Apple: The Analysis of macOS Malware Shlayer by: Minh D. Nguyen Abstract Historically, the Microsoft Windows operating system family, which currently runs on more than 70 percent of computers in the world,7 has been the main target for malware. However, with the growing popularity of Apple’s MacBook products, the macOS operating system has become a new platform for attackers to target the general computer users. According to the 2016/2017 Security Report of AV-TEST, the number of malware samples for macOS detected in 2016 has increased by an astonishing 370 percent compared to the same figure in 2015.3 In order to address the rising interest of attackers in the macOS operating system, this project provides an analysis of a newly discovered malware for macOS, Shlayer, to reveal a well- known tactic that attackers can utilize to infect machines running on any operating system, and discusses possible countermeasures for this strategy. I. Introduction macOS is often hailed as a more secure operating system compared to its counterpart Microsoft Windows.2 However, in reality, many attacking techniques targeting Windows machines can also be applied to macOS machines. The analysis of the new Shlayer malware, discovered by researchers of Intego in February 2018,1 will reveal a familiar strategy that attackers often utilize to target victim machines without regards of the operating system. With the worldwide growth of macOS usage, it is important to recognize this attacking method and understand that in many cases, the success of an attack does not depend on the security of the operating system but on the awareness of the user. -
Cyren's 2016 Cyberthreat Report
2016 CYBERTHREAT Report AUTOMATED THREAT INTELLIGENCE: The Key to Preventing, Mitigating, and Identifying Cyber Breaches Introduction .................................................................................................4 The Cloud Sandbox Array: A New Tool Against Cybercrime .....................6 The Benefits of Big Data .......................................................................... 12 2016 Predictions....................................................................................... 14 Malware Newsmakers of 2015 ................................................................ 16 The Criminal Power of the Unknown ...................................................... 22 2015 Statistics: Android, Phishing, Malware, Spam ............................... 26 Table of Contents Table CYREN 2016 CYBERTHREAT REPORT 3 INTRODUCTION Lior Kohavi Chief Technical Officer, CYREN, Inc. There is a false perception that sophisticated attacks are too difficult to prevent and the only alternative is detection. But detection is NOT the new prevention. Cybersecurity professionals must make it their mission to STOP attacks, not just become proficient at detecting them. It's no secret that cybercriminals are willing to spend a lot of time and money to obtain the information they desire. And, the risk that these criminals will be caught and convicted is relatively low. Despite well-publicized botnet takedowns, like that of Darknode this past July, researchers estimate that less than 1% of cybercrimes receive a corresponding conviction. -
Mobile Malware and Spyware: Working Through the Bugs
Mobile Malware and Spyware: Working Through the Bugs Detective Cindy Murphy 608-267-8824 [email protected] The Mobile Malware Threat Year to Year Change in Number of • 155% increase in mobile Mobile Malware Samples malware from 2010 to 276259 2011 • 614% increase in mobile malware from March 2012 to March 2013 38689 28472 • Total samples across all 11138 platforms Feb 2010 Feb 2011 March 2012 March 2013 • Android represents for http://www.juniper.net/us/en/local/pdf/additional-resources/3rd- 92% all known mobile jnpr-mobile-threats-report-exec-summary.pdf malware infections Types of Mobile Malware & Potentially Unwanted Applications • Malware • Backdoor • Trojan • Worm • Ransomware • Potentially Unwanted Applications (PUA) • Adware • Trackware • Spyware Mobile Malware Infection Vectors • Third-party App Store repositories • Androids with outdated OS versions • Jailbroken iPhones • Unlocked Windows Phones • Malicious websites - “drive-by” download installation • Direct victim targeting through e-mail, SMS, and MMS • “Smishing” • Official App Stores • Emerging Methods • QR Codes • NFC Chips Signs & Symptoms of Mobile Malware Infection • Poor Battery Life • Dropped Calls and Call Disruption • Unusually Large Phone Bills • Data Plan Spikes • Performance Problems • Unexpected Device Behaviors • RISKY user behavior • Pirated apps for free • Porn surfing • “Free” Money Apps • AT RISK users OUCH!? • What are the implications of + hits on a case? • Can the presence of malware or spyware actually potentially help the investigation? Mobile