COPYRIGHTED MATERIAL ➤CHAPTER 11: Collections, Comparisons, and Conversions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Non-Invasive Software Transactional Memory on Top of the Common Language Runtime
University of Neuchâtel Computer Science Department (IIUN) Master of Science in Computer Science Non-Invasive Software Transactional Memory on top of the Common Language Runtime Florian George Supervised by Prof. Pascal Felber Assisted by Patrick Marlier August 16, 2010 This page is intentionally left blank Table of contents 1 Abstract ................................................................................................................................................. 3 2 Introduction ........................................................................................................................................ 4 3 State of the art .................................................................................................................................... 6 4 The Common Language Infrastructure .................................................................................. 7 4.1 Overview of the Common Language Infrastructure ................................... 8 4.2 Common Language Runtime.................................................................................. 9 4.3 Virtual Execution System ........................................................................................ 9 4.4 Common Type System ........................................................................................... 10 4.5 Common Intermediate Language ..................................................................... 12 4.6 Common Language Specification..................................................................... -
Ironpython in Action
IronPytho IN ACTION Michael J. Foord Christian Muirhead FOREWORD BY JIM HUGUNIN MANNING IronPython in Action Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> IronPython in Action MICHAEL J. FOORD CHRISTIAN MUIRHEAD MANNING Greenwich (74° w. long.) Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact Special Sales Department Manning Publications Co. Sound View Court 3B fax: (609) 877-8256 Greenwich, CT 06830 email: [email protected] ©2009 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine. -
Opening Presentation
Mono Meeting. Miguel de Icaza [email protected] October 24, 2006 Mono, Novell and the Community. Mono would not exist without the community: • Individual contributors. • Companies using Mono. • Organizations using Mono. • Companies using parts of Mono. • Google Summer of Code. Introductions. 2 Goals of the Meeting. A chance to meet. • Most of the Novell/Mono team is here. • Many contributors are here. • Various breaks to talk. Talk to others! • Introduce yourself, ask questions. Talk to us! • Frank Rego, Mono's Product Manager is here. • Tell us what you need in Mono. • Tell us about how you use Mono. 3 Project Status Goals Originally: • Improve our development platform on Linux. As the community grew: • Expand to support Microsoft APIs. As Mono got more complete: • Provide a complete cross platform runtime. • Allow Windows developers to port to Linux. 5 Mono Stacks and Goals. MySMQySQLL//PPosstgtrgesrsess EvEovolluutitioonn# # ASP.NET Novell APIs: MMoozzillala Novell iFolder iFolder, LDAP, Identity ADO.NET ApAapchachee MMonoono DesktoGpTK#: GTK# OpNoevenlOl LfDfAiPce GCneomceil# Windows.Forms JavaJa vCa oCommpaatitbilbitiylity Google APIs Microsoft Compatibility Libraries Mono Libraries Mono Runtime (Implementation of ECMA #335) 6 Platforms, CIL, Code Generation. 7 API space Mono 1.0: July 2004 “T-Bone” Mono 1.2: November 2006 “Rump steak” Mono 1.2 bits. Reliability and C# 2.0, .NET 2.0 scalability: • Complete. • With VM support. • ZenWorks and iFolder • Some 2.0 API support. pushed Mono on the server. • IronPython works. • xsp 1.0: 8 request/second. • xsp 1.2: 250 Debugger: request/second. • x86 and x86-64 debugger. GUI • CLI-only, limited in scenarios (no xsp). -
Design and Implementation of Generics for the .NET Common Language Runtime
Design and Implementation of Generics for the .NET Common Language Runtime Andrew Kennedy Don Syme Microsoft Research, Cambridge, U.K. fakeÒÒ¸d×ÝÑeg@ÑicÖÓ×ÓfغcÓÑ Abstract cally through an interface definition language, or IDL) that is nec- essary for language interoperation. The Microsoft .NET Common Language Runtime provides a This paper describes the design and implementation of support shared type system, intermediate language and dynamic execution for parametric polymorphism in the CLR. In its initial release, the environment for the implementation and inter-operation of multiple CLR has no support for polymorphism, an omission shared by the source languages. In this paper we extend it with direct support for JVM. Of course, it is always possible to “compile away” polymor- parametric polymorphism (also known as generics), describing the phism by translation, as has been demonstrated in a number of ex- design through examples written in an extended version of the C# tensions to Java [14, 4, 6, 13, 2, 16] that require no change to the programming language, and explaining aspects of implementation JVM, and in compilers for polymorphic languages that target the by reference to a prototype extension to the runtime. JVM or CLR (MLj [3], Haskell, Eiffel, Mercury). However, such Our design is very expressive, supporting parameterized types, systems inevitably suffer drawbacks of some kind, whether through polymorphic static, instance and virtual methods, “F-bounded” source language restrictions (disallowing primitive type instanti- type parameters, instantiation at pointer and value types, polymor- ations to enable a simple erasure-based translation, as in GJ and phic recursion, and exact run-time types. -
CLS Compliance Rules
Language Independence and Language-Independent Components https://msdn.microsoft.com/en-us/library/12a7a7h3(d=printer,v=vs.110).aspx Language Independence and Language- Independent Components .NET Framework (current version) The .NET Framework is language independent. This means that, as a developer, you can develop in one of the many languages that target the .NET Framework, such as C#, C++/CLI, Eiffel, F#, IronPython, IronRuby, PowerBuilder, Visual Basic, Visual COBOL, and Windows PowerShell. You can access the types and members of class libraries developed for the .NET Framework without having to know the language in which they were originally written and without having to follow any of the original language's conventions. If you are a component developer, your component can be accessed by any .NET Framework app regardless of its language. Note This first part of this article discusses creating language-independent components—that is, components that can be consumed by apps that are written in any language. You can also create a single component or app from source code written in multiple languages; see Cross-Language Interoperability in the second part of this article. To fully interact with other objects written in any language, objects must expose to callers only those features that are common to all languages. This common set of features is defined by the Common Language Specification (CLS), which is a set of rules that apply to generated assemblies. The Common Language Specification is defined in Partition I, Clauses 7 through 11 of the ECMA-335 Standard: Common Language Infrastructure . If your component conforms to the Common Language Specification, it is guaranteed to be CLS-compliant and can be accessed from code in assemblies written in any programming language that supports the CLS. -
CNT6008 Network Programming Module - 11 Objectives
CNT6008 Network Programming Module - 11 Objectives Skills/Concepts/Assignments Objectives ASP.NET Overview • Learn the Framework • Understand the different platforms • Compare to Java Platform Final Project Define your final project requirements Section 21 – Web App Read Sections 21 and 27, pages 649 to 694 and 854 Development and ASP.NET to 878. Section 27 – Web App Development with ASP.NET Overview of ASP.NET Section Goals Goal Course Presentation Understanding Windows Understanding .NET Framework Foundation Project Concepts Creating a ASP.NET Client and Server Application Understanding the Visual Creating a ASP Project Studio Development Environment .NET – What Is It? • Software platform • Language neutral • In other words: • .NET is not a language (Runtime and a library for writing and executing written programs in any compliant language) What Is .NET • .Net is a new framework for developing web-based and windows-based applications within the Microsoft environment. • The framework offers a fundamental shift in Microsoft strategy: it moves application development from client-centric to server- centric. .NET – What Is It? .NET Application .NET Framework Operating System + Hardware Framework, Languages, And Tools VB VC++ VC# JScript … Common Language Specification Visual Studio.NET Visual ASP.NET: Web Services Windows and Web Forms Forms ADO.NET: Data and XML Base Class Library Common Language Runtime The .NET Framework .NET Framework Services • Common Language Runtime • Windows Communication Framework (WCF) • Windows® Forms • ASP.NET (Active Server Pages) • Web Forms • Web Services • ADO.NET, evolution of ADO • Visual Studio.NET Common Language Runtime (CLR) • CLR works like a virtual machine in executing all languages. • All .NET languages must obey the rules and standards imposed by CLR. -
C++/CLI Tutorial
CC++++//CCLLII TTuuttoorriiaall Author: Adam Sawicki, [email protected], www.asawicki.info Version 1.0, December 2011 Table of Contents Table of Contents .............................................................................................................................................................. 1 Introduction ...................................................................................................................................................................... 2 What is C++/CLI? ............................................................................................................................................................... 2 Why Use C++/CLI? ......................................................................................................................................................... 2 What C++/CLI is Not? .................................................................................................................................................... 2 Hello World Example ........................................................................................................................................................ 3 Project Properties ............................................................................................................................................................. 3 Namespaces ..................................................................................................................................................................... -
Introduction to Managed Code
McGrath.book Page 89 Thursday, December 7, 2006 10:04 AM 3 Introduction to Managed Code Technology is dominated by two types of people: those who understand what they do not manage, and those who manage what they do not understand. —PUTT’S LAW Topics Covered in This Chapter What Is Managed Code? Introduction to Object-Oriented Programming Exploring the .NET Framework VSTO and Managed Code Summary Review Questions What Is Managed Code? Code that runs within the .NET Framework is considered managed code. This includes applications written in languages such as Visual C# and Visual Basic 2005. Code that is not managed by the .NET Frame- work is typically referred to as unmanaged code. This includes applica- tions written in programming languages such as C++, Visual Basic 6.0, and VBA. All Office solutions created using VSTO are written in managed code. VSTO supports both Visual Basic 2005 and Visual C#; however, we refer only to Visual Basic 2005 in text and in code examples in this book 89 McGrath.book Page 90 Thursday, December 7, 2006 10:04 AM 90 Chapter 3 Introduction to Managed Code because we believe it is easier to transition from VBA to Visual Basic 2005. Keep in mind that there is much to learn about the .NET Frame- work and managed code; this chapter only scratches the surface. Following are some benefits of using managed code: • Improved security. Often, security permissions are enabled or disabled by end users or determined by the identity of the user who is attempting to run code. However, code managed by the .NET Framework uses the security model code access security (CAS), which is based on the code’s identity and location. -
Programming for Application Development (R18) IV- I Sem
Programming for Application Development (R18) IV- I Sem DIGITAL NOTES ON Programming for Application Development (R18A1206) B.TECH IV YEAR - I SEM (2021-22) DEPARTMENT OF INFORMATION TECHNOLOGY MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, INDIA. Dept. of Information Technology, MRCET Programming for Application Development (R18) IV- I Sem (R18A1206) PROGRAMMING FOR APPLICATION DEVELOPMENT Course Objectives: 1. To get an overview of the various technologies, which can help in the implementation of the various liveProject. 2. To Understand the Basic Concepts ofC# 3. To Understand the Exception HandlingMechanisms 4. To Understand the Various Concepts of .netAssemblies UNIT I: MS.NET Framework Introduction: The .NET Framework - an Overview- Framework Components – Framework Versions-Types of Applications ,MS.NET Namespaces - MSIL / Metadata and PE files- Common Language Runtime (CLR) - Managed Code -MS.NET Memory Management / Garbage Collection -Common Type System (CTS) - Common Language Specification (CLS)- Types of JIT Compilers. UNIT II: Developing Console Application: Introduction to Project and Solution in Studio- Entry point method - Main. - Compiling and Building Projects -Using Command Line Arguments - Importance of Exit code of an application- Different valid forms of Main- Compiling -
Visual Basic .NET and the .NET Platform: an Advanced Guide
Visual Basic .NET and the .NET Platform: An Advanced Guide ANDREWTROELSEN APress Media, LLC Visual Basic .NET and the .NET Platform: An Advanced Guide Copyright ©2002 by Andrew'Ii'oelsen Originally published by Apress in 2002 All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher. ISBN 978-1-893115-26-2 ISBN 978-1-4302-0849-5 (eBook) DOI 10.1007/978-1-4302-0849-5 Trademarked names may appear in this book. Rather than use a trademark sym bol with every occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Karen Watterson Technical Reviewers: Pamela Fanstill, Rob Macdonald, Dan Appleman, William Oellermann Managing Editor: Grace Wong Copy Editors: Anne Friedman, Nicole LeClerc Production Editors: Janet Vail with Kari Brooks and Anne Friedman Composition and Art Services: Impressions Book and Journal Services, Inc. Indexer: Carol Burbo Cover Designer: Tom Debolski Marketing Manager: Stephanie Rodriguez Distributed to the book trade in the United States by Springer-Verlag New York, lnc.,175 Fifth Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany In the United States, phone 1-800-SPRINGER, email orders@springer-ny. -
INTRODUCTION to .NET FRAMEWORK NET Framework .NET Framework Is a Complete Environment That Allows Developers to Develop, Run, An
INTRODUCTION TO .NET FRAMEWORK NET Framework .NET Framework is a complete environment that allows developers to develop, run, and deploy the following applications: Console applications Windows Forms applications Windows Presentation Foundation (WPF) applications Web applications (ASP.NET applications) Web services Windows services Service-oriented applications using Windows Communication Foundation (WCF) Workflow-enabled applications using Windows Workflow Foundation (WF) .NET Framework also enables a developer to create sharable components to be used in distributed computing architecture. NET Framework supports the object-oriented programming model for multiple languages, such as Visual Basic, Visual C#, and Visual C++. NET Framework supports multiple programming languages in a manner that allows language interoperability. This implies that each language can use the code written in some other language. The main components of .NET Framework? The following are the key components of .NET Framework: .NET Framework Class Library Common Language Runtime Dynamic Language Runtimes (DLR) Application Domains Runtime Host Common Type System Metadata and Self-Describing Components Cross-Language Interoperability .NET Framework Security Profiling Side-by-Side Execution Microsoft Intermediate Language (MSIL) The .NET Framework is shipped with compilers of all .NET programming languages to develop programs. Each .NET compiler produces an intermediate code after compiling the source code. 1 The intermediate code is common for all languages and is understandable only to .NET environment. This intermediate code is known as MSIL. IL Intermediate Language is also known as MSIL (Microsoft Intermediate Language) or CIL (Common Intermediate Language). All .NET source code is compiled to IL. IL is then converted to machine code at the point where the software is installed, or at run-time by a Just-In-Time (JIT) compiler. -
Why and How to Migrate from .NET to .NET Core. - Oliver Ray, Managing Director @ Number8
Why and How to Migrate from .NET to .NET Core. - Oliver Ray, Managing Director @ number8 There’s no time like the present when it comes to paying down technical debt, investing in high-value features, and keeping up with development house-keeping. These practices allow development velocity to skyrocket. And For most companies still utilizing .NET, migrating to .NET Core is the most impactful technical investment they can make right now. This transition will simplify your teams’ development cycles and have a measurable impact on your bottom-line. However, it can also include unforeseen complexities and dependencies, so it’s crucial that the planning and prep work is done throughly. Our team at number8 took the time to detail a few high-level benefits that every team should consider during this transition. So, let’s get started. Why migrate from .NET to .NET Core? .NET Core 1.0 was announced in 2014 and aimed to bring the .NET framework into the open source world. The ultimate goal of this initiative was to make .NET projects more portable to other platforms. With the explosion of commodity platforms like Linux and ARM64 processors, .NET had to become more open to survive. From it’s initial release .NET Core has continued to evolve to leverage a wide range of technologies that allow teams to develop systems in whatever way they see fit. A significant example of this forward thinking was early support for Docker containers and Kubernetes. Teams Start Planning everywhere are trying to rethink core enterprise Now applications to fully see the benefit of cloud tooling.