INVERSE LIMIT of GRASSMANNIANS Introduction

Total Page:16

File Type:pdf, Size:1020Kb

INVERSE LIMIT of GRASSMANNIANS Introduction INVERSE LIMIT OF GRASSMANNIANS AMELIA ALVAREZ¶ Y PEDRO SANCHO Introduction Grothendieck de¯ned functorially the Grassmannian of the vector subspaces of ¯nite codimension of a vector space, and proved that this functor was representable by a scheme. However, for the construction of the Hilbert scheme of the closed varieties of a projective variety (see [G]), and the moduli of formal curves and soliton theory, etc., it is convenient to consider Grassmannians in a more general situation. M. Sato and Y. Sato, [SS] and Segal and Wilson, [SW] considere, given a vector subspace E0 ½ E, the topology on E, for which the set of the vector subspaces F ½ E such that F + E0=F \ E0 are ¯nite dimensional vector spaces is a neighbourhood basis at 0. Then they prove that the subset of vector subspaces F of the completion of E, such that E=F + E0 and F \ E0 are ¯nite dimensional vector spaces is a scheme. Alvarez-Mu~noz-Plaza,[AMP]¶ de¯ne and prove these results functorially. In this paper we prove that, if E is the inverse limit of linear maps fEi ! Ejg, with ¯nite dimensional kernels and cokernels, and if we consider the Grassmannian of ¯nite codimensional vector spaces of Ei, G(Ei), then we get an inverse system of rational morphisms fG(Ei) 99K G(Ej)g, which is representable by a scheme, whose points represent the vector subspaces of F ½ E, such that the morphism F ! Ei is injective and the cokernel is a ¯nite dimensional vector space (1.10). We obtain the results of Alvarez-Mu~noz-Plaza[AMP],¶ as a consequence of 1.10. 1. Grassmannians of inverse limit of vector spaces 1. Teorema Grothendieck, [GD]: Let E be a k-vector space. The functor on the category of noetherian k-algebras ½ ¾ A-submodules M ½ E = E ­ A whose cokernel Gr(E)(Spec A) := A k is a projective ¯nitely generated module is representable by a scheme and is covered by the a±ne open subsets ¢ ¤ Homk(E1¡n;En) := Spec S (E1¡n ­ En) where En ⊆ E, dimk En < 1 and E1¡n is any vector subspace of E such that En © E1¡n = E (such open subsets are de¯ned as being the set of vector supplementary subspaces of En with respect to E). ` Moreover, Gr(E) = Grn(E), where n2N ½ ¾ A-submodules M ½ E = E ­ A whose cokernel Gr (E)(Spec A) := A k n is a locally free ¯nitely generated module of rank n Date: 24-1-2004. 1 2 AMELIA ALVAREZ¶ Y PEDRO SANCHO 2. De¯nici¶on: Given V and W submodules of a module E, we will say that V and W are supplementary vector spaces with respect to E if E = V © W . In particular, both V and W are direct summands of E. 3. Proposici¶on: Let L be a free A-module and L0 ½ L a ¯nitely generated submodule. Then L0 is a direct summand of L if and only if L=L0 is a projective module, if and only if L0 is a submodule on ¯bers for every closed point of Spec A, and if and only if L0 ! L is a universally injective morphism. Therefore, the fact that a ¯nitely generated submodule of L is a direct summand is a local question in the Zariski topology, and it is also a question on ¯bers for every closed point. Proof. We must only prove that if L0 is a submodule on ¯bers for every closed point of Spec A, then L=L0 is a projective module. Because L0 is ¯nitely generated, it injects into a free ¯nitely generated submodule of L that is a direct summand of it, therefore we can assume that L is also ¯nitely generated. Then, L=L0 is of ¯nite presentation and it will be projective if and only if so is locally for every closed point of Spec A. Let A be a local ring of maximal m. By assumption 1 0 0 TorA(L=L ; A=m) = 0, then L=L is projective. ¤ : : 4. Notaci¶on: We denote (Spec A) as the functor (Spec A) (X) = Homk¡sch(X; Spec A). 5. Lema : Given a vector subspace E0 ½ E of ¯nite dimension, it holds that the set of vector subspaces of E00 ½ E, of ¯nite codimension such that E0 \ E00 = 0, is an open subset of the Grassmannian of subspaces of ¯nite codimension of E. Proof. The subfunctor U ½ Gr(E) from the statement is de¯ned by ½ ¾ M 2 Gr(E)(Spec A) such that M,! E =E0 U(Spec A) := A A is injective with projective cokernel ¢ ¢ We must prove that U £Gr(E) (Spec A) is an open subfunctor of (Spec A) . Given Spec A ! Gr(E), that is, an A-submodule M ½ EA with ¯nite projective cokernel, ¢ then by Proposition 1.3, U £Gr(E) (Spec A) is the open subset of the points of 0 Spec A where the morphism EA ,! EA=M is injective on ¯bers. ¤ Every linear application between vector spaces L : E1 ! E2, whose kernels and cokernels are of ¯nite dimension, induces a rational morphism between their Grassmannians LG : Gr(E1) 99K Gr(E2), V 7! L(V ). This morphism is de¯ned on 0 the open subset Gr (E1) of Gr(E1) made up by the vector subspaces V of E1 that do not intersect with ker L, more precisely, by the submodules V such that any of their supplementary submodules contain ker L, that is equivalent to saying that on 0 0 ¯bers ker L and V intersect in zero. Moreover, Grn(E1) = Grn(E1)\Gr (E1) is the maximal open subset of Grn(E1) where LG is de¯ned (for n > dimk ker L): Let us assume , for simplicity, that E1 is vector space of ¯nite dimension, V ½ E1 satis¯es 0 V \ker L = hwi and LG is de¯ned on V . Let be r+1 vectors of E1, v1; v1; v2; : : : ; vr, such that are linearly independents in E1= ker L and that V =< w; v2; : : : ; vr >. We would have that ¸!0 LG(< w; v2; : : : ; vr >) = LG(< w + ¸v1; v2; : : : ; vr >) = LG(< v1; : : : ; vr >) and ¸!0 0 0 LG(< w; v2; : : : ; vr >) = LG(< w + ¸v1; v2; : : : ; vr >) = LG(< v1; : : : ; vr >) INVERSE LIMIT OF GRASSMANNIANS 3 0 L that is, LG(< v1; : : : ; vr >) = LG(< v1; : : : ; vr >). But the morphism E1= ker L ,! 0 E2 is injective, so that L(< v¹1;:::; v¹r >) 6= L(< v¹ 1;:::; v¹r >), which leads to contradiction. 0 LG : Grn(E1) ! Gr(E2) is an a±ne morphism (for n > dimk ker L), because if U is the a±ne open subset of Gr(E2) of vector subspaces of E2 that are supplementary 0 ¡1 vector spaces of V , a subspace of E of ¯nite dimension, then LG (U) is the a±ne open subset of Gr(E1) of vector subspaces of E1 that are supplementary vector spaces of L¡1(V 0). For n · dimk ker L, LG is constant over Grn(E1) and its image is Im L 2 Gr(E2). 6. De¯nici¶on: Let f : X 99K Y be a rational morphism between schemes, being Y a separated one, and let g : T ! X, h : T ! Y be two morphisms of schemes. We shall say that f ± g = h if g values in the de¯nition domain of f and it holds, now with sense, that f ± g = h. We shall say that a scheme X = lim Xi is the inverse limit of the family of à i2I rational morphisms fXi 99K Xjgi>j if it holds that " # Homk¡sch(Y; X) = lim lim Homk¡sch(Y; Xi) ! à j2I i>j That is, giving a morphism Y ! X is equivalent to giving a family of morphisms Y ! Xi for all i greater than some j, satisfying the corresponding commutative diagrams, and we say two of these families are equal if the morphisms that value in the same Xi are equal. 7. Teorema : Let E = lim Ei be an inverse limit of vector spaces with kernels à i2I and cokernels of ¯nite dimension. Let us consider the projective system of rational morphisms fGr(Ei) 99K Gr(Ej)gi¸j. The scheme lim Gr(Ei) exists. à i2I " # Proof. The functor X à F (X) = lim lim Homk¡sch(X; Gr(Ei)) is a sheaf for ! à j2I i>j the Zariski topology, then to prove that it is representable it is su±cient to prove it locally. 0 Fixed an index j let us consider a subspace Vj of ¯nite dimension of Ej, and for 0 every morphism Ei ! Ej let us consider the vector subspace Vi of Ei inverse image 0 of Vj , and the a±ne schemes Ui ½ Gr(Ei), made up by the supplementary vector 0 spaces of V with respect to Ei. The inverse limit Gj = lim Ui, that is an a±ne i à i¸j scheme because lim Spec Ai = Spec lim Ai, turns out to be an open subfunctor of F : à ! i i ¢ Given a morphism (Spec A) ! F , that is, a family of morphisms Spec A ! Gr(Ei) for all i ¸ j0, where j0 is an index we can assume greater than j, we have to prove ¢ ¢ that Gj £F (Spec A) is an open subset of (Spec A) . The morphism Spec A ! ¢ Gr(Ej0 ) is de¯ned by a direct summand W of Ej0 A, and Gj £F (Spec A) identi¯es 0 with the open subset of the points of Spec A where the morphism V 0 ! Ej0 =W jA A is an isomorphism.
Recommended publications
  • Derived Functors and Homological Dimension (Pdf)
    DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic.
    [Show full text]
  • Arxiv:2008.00486V2 [Math.CT] 1 Nov 2020
    Anticommutativity and the triangular lemma. Michael Hoefnagel Abstract For a variety V, it has been recently shown that binary products com- mute with arbitrary coequalizers locally, i.e., in every fibre of the fibration of points π : Pt(C) → C, if and only if Gumm’s shifting lemma holds on pullbacks in V. In this paper, we establish a similar result connecting the so-called triangular lemma in universal algebra with a certain cat- egorical anticommutativity condition. In particular, we show that this anticommutativity and its local version are Mal’tsev conditions, the local version being equivalent to the triangular lemma on pullbacks. As a corol- lary, every locally anticommutative variety V has directly decomposable congruence classes in the sense of Duda, and the converse holds if V is idempotent. 1 Introduction Recall that a category is said to be pointed if it admits a zero object 0, i.e., an object which is both initial and terminal. For a variety V, being pointed is equivalent to the requirement that the theory of V admit a unique constant. Between any two objects X and Y in a pointed category, there exists a unique morphism 0X,Y from X to Y which factors through the zero object. The pres- ence of these zero morphisms allows for a natural notion of kernel or cokernel of a morphism f : X → Y , namely, as an equalizer or coequalizer of f and 0X,Y , respectively. Every kernel/cokernel is a monomorphism/epimorphism, and a monomorphism/epimorphism is called normal if it is a kernel/cokernel of some morphism.
    [Show full text]
  • Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1
    Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1: A directed set I is a set with a partial order ≤ such that for every i; j 2 I there is k 2 I such that i ≤ k and j ≤ k. Let R be a ring. A directed system of R-modules indexed by I is a collection of R modules fMi j i 2 Ig with a R module homomorphisms µi;j : Mi ! Mj for each pair i; j 2 I where i ≤ j, such that (i) for any i 2 I, µi;i = IdMi and (ii) for any i ≤ j ≤ k in I, µi;j ◦ µj;k = µi;k. We shall denote a directed system by a tuple (Mi; µi;j). The direct limit of a directed system is defined using a universal property. It exists and is unique up to a unique isomorphism. Theorem 2 (Direct limits). Let fMi j i 2 Ig be a directed system of R modules then there exists an R module M with the following properties: (i) There are R module homomorphisms µi : Mi ! M for each i 2 I, satisfying µi = µj ◦ µi;j whenever i < j. (ii) If there is an R module N such that there are R module homomorphisms νi : Mi ! N for each i and νi = νj ◦µi;j whenever i < j; then there exists a unique R module homomorphism ν : M ! N, such that νi = ν ◦ µi. The module M is unique in the sense that if there is any other R module M 0 satisfying properties (i) and (ii) then there is a unique R module isomorphism µ0 : M ! M 0.
    [Show full text]
  • A Few Points in Topos Theory
    A few points in topos theory Sam Zoghaib∗ Abstract This paper deals with two problems in topos theory; the construction of finite pseudo-limits and pseudo-colimits in appropriate sub-2-categories of the 2-category of toposes, and the definition and construction of the fundamental groupoid of a topos, in the context of the Galois theory of coverings; we will take results on the fundamental group of étale coverings in [1] as a starting example for the latter. We work in the more general context of bounded toposes over Set (instead of starting with an effec- tive descent morphism of schemes). Questions regarding the existence of limits and colimits of diagram of toposes arise while studying this prob- lem, but their general relevance makes it worth to study them separately. We expose mainly known constructions, but give some new insight on the assumptions and work out an explicit description of a functor in a coequalizer diagram which was as far as the author is aware unknown, which we believe can be generalised. This is essentially an overview of study and research conducted at dpmms, University of Cambridge, Great Britain, between March and Au- gust 2006, under the supervision of Martin Hyland. Contents 1 Introduction 2 2 General knowledge 3 3 On (co)limits of toposes 6 3.1 The construction of finite limits in BTop/S ............ 7 3.2 The construction of finite colimits in BTop/S ........... 9 4 The fundamental groupoid of a topos 12 4.1 The fundamental group of an atomic topos with a point . 13 4.2 The fundamental groupoid of an unpointed locally connected topos 15 5 Conclusion and future work 17 References 17 ∗e-mail: [email protected] 1 1 Introduction Toposes were first conceived ([2]) as kinds of “generalised spaces” which could serve as frameworks for cohomology theories; that is, mapping topological or geometrical invariants with an algebraic structure to topological spaces.
    [Show full text]
  • (Lec 8) Multilevel Min. II: Cube/Cokernel Extract Copyright
    (Lec(Lec 8) 8) MultilevelMultilevel Min.Min. II:II: Cube/CokernelCube/Cokernel Extract Extract ^ What you know X 2-level minimization a la ESPRESSO X Boolean network model -- let’s us manipulate multi-level structure X Algebraic model -- simplified model of Boolean eqns lets us factor stuff X Algebraic division / Kerneling: ways to actually do Boolean division ^ What you don’t know X Given a big Boolean network... X ... how do we actually extract a good set of factors over all the nodes? X What’s a good set of factors to try to find? ^ This is “extraction” X Amazingly enough, there is a unifying “covering” problem here whose solution answers all these extraction problems (Concrete examples from Rick Rudell’s 1989 Berkeley PhD thesis) © R. Rutenbar 2001 18-760, Fall 2001 1 CopyrightCopyright NoticeNotice © Rob A. Rutenbar 2001 All rights reserved. You may not make copies of this material in any form without my express permission. © R. Rutenbar 2001 18-760, Fall 2001 2 Page 1 WhereWhere AreAre We?We? ^ In logic synthesis--how multilevel factoring really works M T W Th F Aug 27 28 29 30 31 1 Introduction Sep 3 4 5 6 7 2 Advanced Boolean algebra 10 11 12 13 14 3 JAVA Review 17 18 19 20 21 4 Formal verification 24 25 26 27 28 5 2-Level logic synthesis Oct 1 2 3 4 5 6 Multi-level logic synthesis 8 9 10 11 12 7 Technology mapping 15 16 17 18 19 8 Placement 22 23 24 25 26 9 Routing 29 30 31 1 2 10 Static timing analysis Nov 5 6 7 8 9 11 12 13 14 15 16 12 Electrical timing analysis Thnxgive 19 20 21 22 23 13 Geometric data structs & apps 26 27 28 29 30 14 Dec 3 4 5 6 7 15 10 11 12 13 14 16 © R.
    [Show full text]
  • Abelian Categories
    Abelian Categories Lemma. In an Ab-enriched category with zero object every finite product is coproduct and conversely. π1 Proof. Suppose A × B //A; B is a product. Define ι1 : A ! A × B and π2 ι2 : B ! A × B by π1ι1 = id; π2ι1 = 0; π1ι2 = 0; π2ι2 = id: It follows that ι1π1+ι2π2 = id (both sides are equal upon applying π1 and π2). To show that ι1; ι2 are a coproduct suppose given ' : A ! C; : B ! C. It φ : A × B ! C has the properties φι1 = ' and φι2 = then we must have φ = φid = φ(ι1π1 + ι2π2) = ϕπ1 + π2: Conversely, the formula ϕπ1 + π2 yields the desired map on A × B. An additive category is an Ab-enriched category with a zero object and finite products (or coproducts). In such a category, a kernel of a morphism f : A ! B is an equalizer k in the diagram k f ker(f) / A / B: 0 Dually, a cokernel of f is a coequalizer c in the diagram f c A / B / coker(f): 0 An Abelian category is an additive category such that 1. every map has a kernel and a cokernel, 2. every mono is a kernel, and every epi is a cokernel. In fact, it then follows immediatly that a mono is the kernel of its cokernel, while an epi is the cokernel of its kernel. 1 Proof of last statement. Suppose f : B ! C is epi and the cokernel of some g : A ! B. Write k : ker(f) ! B for the kernel of f. Since f ◦ g = 0 the map g¯ indicated in the diagram exists.
    [Show full text]
  • Topology of Differentiable Manifolds
    TOPOLOGY OF DIFFERENTIABLE MANIFOLDS D. MART´INEZ TORRES Contents 1. Introduction 1 1.1. Topology 2 1.2. Manifolds 3 2. More definitions and basic results 5 2.1. Submanifold vs. embedding 7 2.2. The tangent bundle of a Cr-manifold, r ≥ 1. 7 2.3. Transversality and submanifolds 9 2.4. Topology with Cr-functions. 9 2.5. Manifolds with boundary 13 2.6. 1-dimensional manifolds 16 3. Function spaces 19 4. Approximations 27 5. Sard's theorem and transversality 32 5.1. Transversality 35 6. Tubular neighborhoods, homotopies and isotopies 36 6.1. Homotopies, isotopies and linearizations 38 6.2. Linearizations 39 7. Degree, intersection number and Euler characteristic 42 7.1. Orientations 42 7.2. The degree of a map 43 7.3. Intersection number and Euler characteristic 45 7.4. Vector fields 46 8. Isotopies and gluings and Morse theory 47 8.1. Gluings 48 8.2. Morse functions 49 8.3. More on k-handles and smoothings 57 9. 2 and 3 dimensional compact oriented manifolds 60 9.1. Compact, oriented surfaces 60 9.2. Compact, oriented three manifolds 64 9.3. Heegard decompositions 64 9.4. Lens spaces 65 9.5. Higher genus 66 10. Exercises 66 References 67 1. Introduction Let us say a few words about the two key concepts in the title of the course, topology and differentiable manifolds. 1 2 D. MART´INEZ TORRES 1.1. Topology. It studies topological spaces and continuous maps among them, i.e. the category TOP with objects topological spaces and arrows continuous maps.
    [Show full text]
  • Groups and Categories
    \chap04" 2009/2/27 i i page 65 i i 4 GROUPS AND CATEGORIES This chapter is devoted to some of the various connections between groups and categories. If you already know the basic group theory covered here, then this will give you some insight into the categorical constructions we have learned so far; and if you do not know it yet, then you will learn it now as an application of category theory. We will focus on three different aspects of the relationship between categories and groups: 1. groups in a category, 2. the category of groups, 3. groups as categories. 4.1 Groups in a category As we have already seen, the notion of a group arises as an abstraction of the automorphisms of an object. In a specific, concrete case, a group G may thus consist of certain arrows g : X ! X for some object X in a category C, G ⊆ HomC(X; X) But the abstract group concept can also be described directly as an object in a category, equipped with a certain structure. This more subtle notion of a \group in a category" also proves to be quite useful. Let C be a category with finite products. The notion of a group in C essentially generalizes the usual notion of a group in Sets. Definition 4.1. A group in C consists of objects and arrows as so: m i G × G - G G 6 u 1 i i i i \chap04" 2009/2/27 i i page 66 66 GROUPSANDCATEGORIES i i satisfying the following conditions: 1.
    [Show full text]
  • Homological Algebra Lecture 1
    Homological Algebra Lecture 1 Richard Crew Richard Crew Homological Algebra Lecture 1 1 / 21 Additive Categories Categories of modules over a ring have many special features that categories in general do not have. For example the Hom sets are actually abelian groups. Products and coproducts are representable, and one can form kernels and cokernels. The notation of an abelian category axiomatizes this structure. This is useful when one wants to perform module-like constructions on categories that are not module categories, but have all the requisite structure. We approach this concept in stages. A preadditive category is one in which one can add morphisms in a way compatible with the category structure. An additive category is a preadditive category in which finite coproducts are representable and have an \identity object." A preabelian category is an additive category in which kernels and cokernels exist, and finally an abelian category is one in which they behave sensibly. Richard Crew Homological Algebra Lecture 1 2 / 21 Definition A preadditive category is a category C for which each Hom set has an abelian group structure satisfying the following conditions: For all morphisms f : X ! X 0, g : Y ! Y 0 in C the maps 0 0 HomC(X ; Y ) ! HomC(X ; Y ); HomC(X ; Y ) ! HomC(X ; Y ) induced by f and g are homomorphisms. The composition maps HomC(Y ; Z) × HomC(X ; Y ) ! HomC(X ; Z)(g; f ) 7! g ◦ f are bilinear. The group law on the Hom sets will always be written additively, so the last condition means that (f + g) ◦ h = (f ◦ h) + (g ◦ h); f ◦ (g + h) = (f ◦ g) + (f ◦ h): Richard Crew Homological Algebra Lecture 1 3 / 21 We denote by 0 the identity of any Hom set, so the bilinearity of composition implies that f ◦ 0 = 0 ◦ f = 0 for any morphism f in C.
    [Show full text]
  • A Short Introduction to Category Theory
    A SHORT INTRODUCTION TO CATEGORY THEORY September 4, 2019 Contents 1. Category theory 1 1.1. Definition of a category 1 1.2. Natural transformations 3 1.3. Epimorphisms and monomorphisms 5 1.4. Yoneda Lemma 6 1.5. Limits and colimits 7 1.6. Free objects 9 References 9 1. Category theory 1.1. Definition of a category. Definition 1.1.1. A category C is the following data (1) a class ob(C), whose elements are called objects; (2) for any pair of objects A; B of C a set HomC(A; B), called set of morphisms; (3) for any three objects A; B; C of C a function HomC(A; B) × HomC(B; C) −! HomC(A; C) (f; g) −! g ◦ f; called composition of morphisms; which satisfy the following axioms (i) the sets of morphisms are all disjoints, so any morphism f determines his domain and his target; (ii) the composition is associative; (iii) for any object A of C there exists a morphism idA 2 Hom(A; A), called identity morphism, such that for any object B of C and any morphisms f 2 Hom(A; B) and g 2 Hom(C; A) we have f ◦ idA = f and idA ◦ g = g. Remark 1.1.2. The above definition is the definition of what is called a locally small category. For a general category we should admit that the set of morphisms is not a set. If the class of object is in fact a set then the category is called small. For a general category we should admit that morphisms form a class.
    [Show full text]
  • Grothendieck-Topological Group Objects
    GROTHENDIECK-TOPOLOGICAL GROUP OBJECTS JOAQU´IN LUNA-TORRES In memory of Carlos J. Ruiz Salguero Abstract. In analogy with the classical theory of topological groups, for finitely complete categories enriched with Grothendieck topologies, we provide the concepts of localized G-topological space, initial Grothendieck topologies and continuous morphisms, in order to obtain the concepts of G-topological monoid and G-topological group objects. 1. Introduction Topological groups (monoids) are very important mathematical objects with not only applications in mathematics, for example in Lie group theory, but also in physics. Topological groups are defined on topological spaces that involve points as fundamental objects of such topological spaces. The aim of this paper is to introduce a topological theory of groups within any category, finitely complete, enriched with Grothendieck topologies. The paper is organized as follows: We describe, in section 2, the notion of Grothendieck topology as in S. MacLane and I. Moerdijk [8] . In section 3, we present the concepts of localized G-topological space, initial Grothendieck topologies and continuous morphisms, and we study the lattice structure of all Grothendieck topologies on a category C ; after that, in section 4, as in M. Forrester-Baker [3], we present the concepts of monoid and group objects. In section 5 we present the concepts of G-topological monoid and G-topological group objects; finally, in section 6 we give some examples of arXiv:1909.11777v1 [math.CT] 25 Sep 2019 these ideas. 2. Theoretical Considerations Throughout this paper, we will work within an ambient category C which is finitely complete. From S. MacLane and I.
    [Show full text]
  • Basic Categorial Constructions 1. Categories and Functors
    (November 9, 2010) Basic categorial constructions Paul Garrett [email protected] http:=/www.math.umn.edu/~garrett/ 1. Categories and functors 2. Standard (boring) examples 3. Initial and final objects 4. Categories of diagrams: products and coproducts 5. Example: sets 6. Example: topological spaces 7. Example: products of groups 8. Example: coproducts of abelian groups 9. Example: vectorspaces and duality 10. Limits 11. Colimits 12. Example: nested intersections of sets 13. Example: ascending unions of sets 14. Cofinal sublimits Characterization of an object by mapping properties makes proof of uniqueness nearly automatic, by standard devices from elementary category theory. In many situations this means that the appearance of choice in construction of the object is an illusion. Further, in some cases a mapping-property characterization is surprisingly elementary and simple by comparison to description by construction. Often, an item is already uniquely determined by a subset of its desired properties. Often, mapping-theoretic descriptions determine further properties an object must have, without explicit details of its construction. Indeed, the common impulse to overtly construct the desired object is an over- reaction, as one may not need details of its internal structure, but only its interactions with other objects. The issue of existence is generally more serious, and only addressed here by means of example constructions, rather than by general constructions. Standard concrete examples are considered: sets, abelian groups, topological spaces, vector spaces. The real reward for developing this viewpoint comes in consideration of more complicated matters, for which the present discussion is preparation. 1. Categories and functors A category is a batch of things, called the objects in the category, and maps between them, called morphisms.
    [Show full text]