The Effects of Transforming Growth Factor-B2 on the Expression of Follistatin and Activin a in Normal and Glaucomatous Human Trabecular Meshwork Cells and Tissues
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recombinant Human TGF-Beta 2 Protein
ACROBiosystems Recombinant Human TGF-Beta 2 Protein Cat. # TG2-H4213 For Research and Further Cell Culture Manufacturing Use Source: Bioactivity: Recombinant Human TGF Beta 2 Protein (rhTGFB2) The bio-activity was determined by its ability to Ala 303 - Ser 414 (Accession # NP_003229.1) was inhibit IL-4 induced HT-2 cell proliferation. ED50<0.1 produced in human HEK293 cells at ACRObiosystems. ng/ml, corresponding to a specific activity of >1X107 Unit/mg Molecular Characterization: Formulation: rhTGFB2 contains no “tags” and has a calculated MW of 12.7 kDa (monomer). DTT-reduced protein migrates Lyophilized from 0.22 μm filtered solution in TFA, as a 13 kDa polypeptide and the non-reduced cystine- acetonitrile. Normally Mannitol or Trehalose are linked homodimer migrates as a 25 kDa protein. added as protectants before lyophilization. Contact us for customized product format or Endotoxin: formulation. Less than 1.0 EU per μg of the rhTGFB2 by the LAL Reconstitution : method. See Certificate of Analysis for details of Purity: reconstitution instruction and specific concentration. >98% as determined by SDS-PAGE of reduced (+) and Storage: non-reduced (-) rhTGFB2. Avoid repeated freeze-thaw cycles. No activity loss was observed after storage at: SDS-PAGE: • 4-8℃ for 1 year in lyophilized state The purity of rhTGFB2 • 4-8℃ for 1 month under sterile conditions after was determined by SDS- reconstitution PAGE of reduced (+) and • -20 ℃ to -70 ℃ for 3 months under sterile non-reduced (-) rhTGFB2 conditions after reconstitution and staining overnight with Coomassie Blue. Background: Transforming growth factor beta 2 ( TGFB2) is also known as TGF-β2, TGF-beta2, Glioblastoma-derived T-cell suppressor factor, G-TSF, BSC-1 cell growth inhibitor, Polyergin, Cetermin, and is a polypeptide member of the transforming growth factor beta superfamily of cytokines. -
Bone Morphogenetic Protein Antagonist Gremlin-1 Regulates Colon Cancer Progression
Biol. Chem. 2015; 396(2): 163–183 George S. Karagiannis, Natasha Musrap, Punit Saraon, Ann Treacy, David F. Schaeffer, Richard Kirsch, Robert H. Riddell and Eleftherios P. Diamandis* Bone morphogenetic protein antagonist gremlin-1 regulates colon cancer progression Abstract: Bone morphogenetic proteins (BMP) are phylo- E-cadherin-upregulation of N-cadherin) and overexpres- genetically conserved signaling molecules of the trans- sion of Snail. Collectively, our data support that GREM1 forming growth factor-beta (TGF-beta) superfamily of promotes the loss of cancer cell differentiation at the can- proteins, involved in developmental and (patho)physi- cer invasion front, a mechanism that may facilitate tumor ological processes, including cancer. BMP signaling has progression. been regarded as tumor-suppressive in colorectal cancer (CRC) by reducing cancer cell proliferation and invasion, Keywords: angiogenesis; bone morphogenetic protein; and by impairing epithelial-to-mesenchymal transition cancer-associated fibroblasts; colorectal cancer; epithe- (EMT). Here, we mined existing proteomic repositories lial-to-mesenchymal transition; gremlin-1; stroma; tumor to explore the expression of BMPs in CRC. We found that microenvironment. the BMP antagonist gremlin-1 (GREM1) is secreted from heterotypic tumor-host cell interactions. We then sought DOI 10.1515/hsz-2014-0221 to investigate whether GREM1 is contextually and mecha- Received June 26, 2014; accepted August 1, 2014; previously nistically associated with EMT in CRC. Using immunohis- published -
Gremlin1 Preferentially Binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 Over BMP-7
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen's University Research Portal Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7 Church, R. H., Krishnakumar, A., Urbanek, A., Geschwinder, S., Meneely, J., Bianchi, A., ... Brazil, D. P. (2015). Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7. Biochemical Journal, 466(1), 55-68. DOI: 10.1042/BJ20140771 Published in: Biochemical Journal Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights The final version of record is available at http://www.biochemj.org/bj/imps/abs/BJ20140771.htm General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:15. Feb. 2017 Differential Gremlin1 binding to Bone Morphogenetic Proteins Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7 Rachel H. -
Tumor Promoting Effect of BMP Signaling in Endometrial Cancer
International Journal of Molecular Sciences Article Tumor Promoting Effect of BMP Signaling in Endometrial Cancer Tomohiko Fukuda 1,* , Risa Fukuda 1, Kohei Miyazono 1,2,† and Carl-Henrik Heldin 1,*,† 1 Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; [email protected] (R.F.); [email protected] (K.M.) 2 Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan * Correspondence: [email protected] (T.F.); [email protected] (C.-H.H.); Tel.: +46-18-4714738 (T.F.); +46-18-4714738 (C.-H.H.) † These authors contributed equally to this work. Abstract: The effects of bone morphogenetic proteins (BMPs), members of the transforming growth factor-β (TGF-β) family, in endometrial cancer (EC) have yet to be determined. In this study, we analyzed the TCGA and MSK-IMPACT datasets and investigated the effects of BMP2 and of TWSG1, a BMP antagonist, on Ishikawa EC cells. Frequent ACVR1 mutations and high mRNA expressions of BMP ligands and receptors were observed in EC patients of the TCGA and MSK-IMPACT datasets. Ishikawa cells secreted higher amounts of BMP2 compared with ovarian cancer cell lines. Exogenous BMP2 stimulation enhanced EC cell sphere formation via c-KIT induction. BMP2 also induced EMT of EC cells, and promoted migration by induction of SLUG. The BMP receptor kinase inhibitor LDN193189 augmented the growth inhibitory effects of carboplatin. Analyses of mRNAs of several BMP antagonists revealed that TWSG1 mRNA was abundantly expressed in Ishikawa cells. -
Role of TGF-Β3 in the Regulation of Immune Responses T
Role of TGF-β3 in the regulation of immune responses T. Okamura1,2, K. Morita1, Y. Iwasaki1, M. Inoue1, T. Komai1, K. Fujio1, K. Yamamoto1 1Department of Allergy and ABSTRACT ences, indicating their non-redundancy Rheumatology, Graduate School of Transforming growth factor-betas (12-16). The TGF-βs have opposite ef- Medicine, The University of Tokyo, (TGF-βs) are multifunctional cytokines fects on tissue fibrosis. Wound-healing Tokyo, Japan; that have been implicated in the regu- experiments revealed that TGF-β1 2Max Planck-The University of Tokyo Center for Integrative Inflammology, lation of a broad range of biological and TGF-β2 cause fibrotic scarring The University of Tokyo, Tokyo, Japan. processes, including cell proliferation, responses and that TGF-β3 induces a Tomohisa Okamura, MD, PhD cell survival, and cell differentiation. scar-free response (17). Both TGF-β1 Kaoru Morita, MD The three isoforms identified in mam- and -β2 activate the collagen α2 (I) Yukiko Iwasaki, MD, PhD mals, TGF-β1, TGF-β2, and TGF-β3, gene promoter, resulting in increased Mariko Inoue, MD have high sequence homology, bind to collagen synthesis (18). It was also re- Toshihiko Komai, MD the same receptors, and show similar ported that TGF-β1, but not TGF-β3, is Keishi Fujio, MD, PhD biological functions in many in vitro a crucial factor in the development of Kazuhiko Yamamoto, MD, PhD studies. However, analysis of the in vivo pulmonary fibrosis (19). Most of the in- Please address correspondence to: functions of the three isoforms and mice formation on the immunological activ- Keishi Fujio, MD, PhD, deficient for each cytokine reveals strik- Department of Allergy and ity of TGF-βs derives from studies of Rheumatology, ing differences, illustrating their unique TGF-β1 and, in part, TGF-β2, whereas Graduate School of Medicine, biological importance and functional recent investigations have begun to il- The University of Tokyo, non-redundancy. -
Access AMH Instructions for Use Anti-Müllerian Hormone (AMH) © 2017 Beckman Coulter, Inc
ACCESS Immunoassay Systems Access AMH Instructions For Use Anti-Müllerian hormone (AMH) © 2017 Beckman Coulter, Inc. All rights reserved. B13127 FOR PROFESSIONAL USE ONLY Rx Only ANNUAL REVIEW Reviewed by Date Reviewed by Date PRINCIPLE INTENDED USE The Access AMH assay is a paramagnetic particle chemiluminescent immunoassay for the quantitative determination of anti-Müllerian hormone (AMH) levels in human serum and lithium heparin plasma using the Access Immunoassay Systems as an aid in the assessment of ovarian reserve in women presenting to fertility clinics. This system is intended to distinguish between women presenting with AFC (antral follicle count) values > 15 (high ovarian reserve) and women with AFC values ≤ 15 (normal or diminished ovarian reserve). The Access AMH is intended to be used in conjunction with other clinical and laboratory findings such as antral follicle count, before starting fertility therapy. The Access AMH is not intended to be used for monitoring of women undergoing controlled ovarian stimulation in an Assisted Reproduction Technology program. SUMMARY AND EXPLANATION Anti-Müllerian hormone (AMH) is a glycoprotein, which circulates as a dimer composed of two identical 72 kDa monomers that are linked by disulfide bridges. AMH belongs to the transforming growth factor-β family.1,2 AMH is named for its first described function in fetal sexual differentiation: a regression of the Müllerian ducts in males during early fetal life. In males, AMH is secreted by Sertoli cells of the testes. AMH concentrations are high -
Follistatin and Noggin Are Excluded from the Zebrafish Organizer
DEVELOPMENTAL BIOLOGY 204, 488–507 (1998) ARTICLE NO. DB989003 Follistatin and Noggin Are Excluded from the Zebrafish Organizer Hermann Bauer,* Andrea Meier,* Marc Hild,* Scott Stachel,†,1 Aris Economides,‡ Dennis Hazelett,† Richard M. Harland,† and Matthias Hammerschmidt*,2 *Max-Planck Institut fu¨r Immunbiologie, Stu¨beweg 51, 79108 Freiburg, Germany; †Department of Molecular and Cell Biology, University of California, 401 Barker Hall 3204, Berkeley, California 94720-3204; and ‡Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707 The patterning activity of the Spemann organizer in early amphibian embryos has been characterized by a number of organizer-specific secreted proteins including Chordin, Noggin, and Follistatin, which all share the same inductive properties. They can neuralize ectoderm and dorsalize ventral mesoderm by blocking the ventralizing signals Bmp2 and Bmp4. In the zebrafish, null mutations in the chordin gene, named chordino, lead to a severe reduction of organizer activity, indicating that Chordino is an essential, but not the only, inductive signal generated by the zebrafish organizer. A second gene required for zebrafish organizer function is mercedes, but the molecular nature of its product is not known as yet. To investigate whether and how Follistatin and Noggin are involved in dorsoventral (D-V) patterning of the zebrafish embryo, we have now isolated and characterized their zebrafish homologues. Overexpression studies demonstrate that both proteins have the same dorsalizing properties as their Xenopus homologues. However, unlike the Xenopus genes, zebrafish follistatin and noggin are not expressed in the organizer region, nor are they linked to the mercedes mutation. Expression of both genes starts at midgastrula stages. -
The Novel Cer-Like Protein Caronte Mediates the Establishment of Embryonic Left±Right Asymmetry
articles The novel Cer-like protein Caronte mediates the establishment of embryonic left±right asymmetry ConcepcioÂn RodrõÂguez Esteban*², Javier Capdevila*², Aris N. Economides³, Jaime Pascual§,AÂ ngel Ortiz§ & Juan Carlos IzpisuÂa Belmonte* * The Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037, USA ³ Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA § Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA ² These authors contributed equally to this work ............................................................................................................................................................................................................................................................................ In the chick embryo, left±right asymmetric patterns of gene expression in the lateral plate mesoderm are initiated by signals located in and around Hensen's node. Here we show that Caronte (Car), a secreted protein encoded by a member of the Cerberus/ Dan gene family, mediates the Sonic hedgehog (Shh)-dependent induction of left-speci®c genes in the lateral plate mesoderm. Car is induced by Shh and repressed by ®broblast growth factor-8 (FGF-8). Car activates the expression of Nodal by antagonizing a repressive activity of bone morphogenic proteins (BMPs). Our results de®ne a complex network of antagonistic molecular interactions between Activin, FGF-8, Lefty-1, Nodal, BMPs and Car that cooperate to control left±right asymmetry in the chick embryo. Many of the cellular and molecular events involved in the establish- If the initial establishment of asymmetric gene expression in the ment of left±right asymmetry in vertebrates are now understood. LPM is essential for proper development, it is equally important to Following the discovery of the ®rst genes asymmetrically expressed ensure that asymmetry is maintained throughout embryogenesis. -
The BMP Antagonists Follistatin and Gremlin in Normal and Early Osteoarthritic Cartilage: an Immunohistochemical Study G
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Osteoarthritis and Cartilage (2009) 17, 263e270 ª 2008 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.joca.2008.06.022 International Cartilage Repair Society The BMP antagonists follistatin and gremlin in normal and early osteoarthritic cartilage: an immunohistochemical study G. Tardif Ph.D., J.-P. Pelletier M.D., C. Boileau Ph.D. and J. Martel-Pelletier Ph.D.* Osteoarthritis Research Unit, University of Montreal Hospital Centre, Notre-Dame Hospital, Montreal, Quebec, Canada Summary Objective: Bone morphogenic protein (BMP) activities are controlled in part by antagonists. In human osteoarthritic (OA) cartilage, the BMP antagonists follistatin and gremlin are increased but differentially regulated. Using the OA dog model, we determined if these BMP antagonists were produced at different stages during the disease process by comparing their in situ temporal and spatial distribution. Methods: Dogs were sacrificed at 4, 8, 10 and 12 weeks after surgery; normal dogs served as control. Cartilage was removed, differentiating fibrillated and non-fibrillated areas. Immunohistochemistry and morphometric analyses were performed for follistatin, gremlin, BMP-2/4 and IL-1b. Growth factor-induced gremlin expression was assessed in dog chondrocytes. Results: Follistatin and gremlin production were very low in normal cartilage. Gremlin was significantly up-regulated in both non-fibrillated and fibrillated areas at 4 weeks, and only slightly increased with disease progression. Follistatin showed a time-dependent increased level in the non-fibrillated areas with significance reached at 8e12 weeks; in the fibrillated areas significant high levels were seen as early as 4 weeks. -
Transforming Growth Factor-Β Soluble Receptor III (TGF-Β Sriii)
Transforming Growth Factor-b Soluble Receptor III (TGF-b sRIII) Human, Recombinant Expressed in mouse NSO cells Product Number T4567 Product Description Reagent Transforming Growth Factor-b soluble Receptor III Recombinant human TGF-b sRIII is supplied as (TGF-b sRIII) is produced from a DNA sequence approximately 100 mg of protein lyophilized from a encoding the amino terminal (781 amino acid residue) 0.2 mm filtered solution in phosphate buffered saline extracellular domain of human TGF-b receptor type III (PBS) containing 5 mg of bovine serum albumin. protein.1 Mature human TGF-b sRIII, a 760 amino acid residue protein generated after cleavage of a 21 amino Preparation Instructions acid residue signal peptide, has a predicted molecular Reconstitute the contents of the vial using sterile mass of approximately 84 kDa. As a result of glycosy- phosphate-buffered saline (PBS) containing at least lation, recombinant TGF-b sRIII migrates as a 100 kDa 0.1% human serum albumin or bovine serum albumin. protein in SDS-PAGE. Prepare a stock solution of no less than 20 mg/ml. The transforming growth factor-b (TGF-b) family of Storage/Stability cytokines are multifunctional peptides; capable of Store at -20 °C. Upon reconstitution, store at 2 °C to influencing cell proliferation, growth, differentiation, and 8 °C for one month. For extended storage, freeze in other functions in a wide range of cell types. Most working aliquots. Repeated freezing and thawing is not mammalian cells express three abundant high affinity recommended. Do not store in a frost-free freezer. TGF receptors, which can bind and be cross-linked to 2 TGF-b. -
Transcription Activation of FLRG and Follistatin by Activin A, Through Smad Proteins, Participates in a Negative Feedback Loop to Modulate Activin a Function
Oncogene (2002) 21, 2227 ± 2235 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc Transcription activation of FLRG and follistatin by activin A, through Smad proteins, participates in a negative feedback loop to modulate activin A function Laurent Bartholin1,3,Ve ronique Maguer-Satta1,3, Sandrine Hayette1,2, Sylvie Martel1, MyleÁ ne Gadoux2, Laura Corbo1, Jean-Pierre Magaud1,2 and Ruth Rimokh*,1 1INSERM U453, Centre LeÂon BeÂrard, 69373 Lyon, France; 2Laboratoire de CytogeÂneÂtique MoleÂculaire, HoÃpital Edouard Herriot, 69437 Lyon, France Signaling of TGFb family members such as activin is location (Hayette et al., 1998). FLRG is a secreted tightly regulated by soluble binding proteins. Follistatin glycoprotein which is highly homologous to follistatin, binds to activin A with high anity, and prevents activin a protein known to bind to activin, a member of the binding to its own receptors, thereby blocking its transforming growth factor b (TGFb) superfamily signaling. We previously identi®ed FLRG gene from a (Nakamura et al., 1990). Activin and follistatin B-cell leukemia carrying a t(11;19)(q13;p13) transloca- proteins were originally isolated from ovarian ¯uid as tion. We and others have already shown that FLRG, a result of their ability to stimulate and inhibit, which is highly homologous to follistatin, may be respectively, the secretion of follicle-stimulating hor- involved in the regulation of the activin function through mone from the pituitary gland (Phillips and de Kretser, its binding to activin. In this study, we found that, like 1998). Further studies have revealed that activin, a follistatin, FLRG protein inhibited activin A signaling as secreted protein produced by a variety of tissues, has demonstrated by the use of a transcriptional reporter important endocrine and paracrine roles. -
Novel Roles of Follistatin/Myostatin in Transforming Growth Factor-Β
UCLA UCLA Previously Published Works Title Novel Roles of Follistatin/Myostatin in Transforming Growth Factor-β Signaling and Adipose Browning: Potential for Therapeutic Intervention in Obesity Related Metabolic Disorders. Permalink https://escholarship.org/uc/item/2sv437dw Authors Pervin, Shehla Reddy, Srinivasa T Singh, Rajan Publication Date 2021 DOI 10.3389/fendo.2021.653179 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW published: 09 April 2021 doi: 10.3389/fendo.2021.653179 Novel Roles of Follistatin/Myostatin in Transforming Growth Factor-b Signaling and Adipose Browning: Potential for Therapeutic Intervention in Obesity Related Metabolic Disorders Shehla Pervin 1,2, Srinivasa T. Reddy 3,4 and Rajan Singh 1,2,5* 1 Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States, 2 Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Edited by: Science, Los Angeles, CA, United States, 3 Department of Molecular and Medical Pharmacology, David Geffen School of Xinran Ma, Medicine at UCLA, Los Angeles, CA, United States, 4 Department of Medicine, Division of Cardiology, David Geffen School of East China Normal University, China Medicine, University of California Los Angeles, Los Angeles, CA, United States, 5 Department of Endocrinology, Men’s ’ Reviewed by: Health: Aging and Metabolism, Brigham and Women s Hospital, Boston, MA, United States Meng Dong, Institute of Zoology, Chinese Obesity is a global health problem and a major risk factor for several metabolic conditions Academy of Sciences (CAS), China Abir Mukherjee, including dyslipidemia, diabetes, insulin resistance and cardiovascular diseases.