A Review of Geometric, Topological and Graph Theory Apparatuses for the Modeling and Analysis of Biomolecular Data

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Geometric, Topological and Graph Theory Apparatuses for the Modeling and Analysis of Biomolecular Data A review of geometric, topological and graph theory apparatuses for the modeling and analysis of biomolecular data Kelin Xia1 ∗and Guo-Wei Wei2;3 y 1Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 2Department of Mathematics Michigan State University, MI 48824, USA 3Department of Biochemistry & Molecular Biology Michigan State University, MI 48824, USA January 31, 2017 Abstract Geometric, topological and graph theory modeling and analysis of biomolecules are of essential im- portance in the conceptualization of molecular structure, function, dynamics, and transport. On the one hand, geometric modeling provides molecular surface and structural representation, and offers the basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. On the other hand, it bridges the gap between molecular structural data and theoretical/mathematical mod- els. Topological analysis and modeling give rise to atomic critic points and connectivity, and shed light on the intrinsic topological invariants such as independent components (atoms), rings (pockets) and cavities. Graph theory analyzes biomolecular interactions and reveals biomolecular structure-function relationship. In this paper, we review certain geometric, topological and graph theory apparatuses for biomolecular data modeling and analysis. These apparatuses are categorized into discrete and continuous ones. For discrete approaches, graph theory, Gaussian network model, anisotropic network model, normal mode analysis, quasi-harmonic analysis, flexibility and rigidity index, molecular nonlinear dynamics, spectral graph the- ory, and persistent homology are discussed. For continuous mathematical tools, we present discrete to continuum mapping, high dimensional persistent homology, biomolecular geometric modeling, differential geometry theory of surfaces, curvature evaluation, variational derivation of minimal molecular surfaces, atoms in molecule theory and quantum chemical topology. Four new approaches, including analytical minimal molecular surface, Hessian matrix eigenvalue map, curvature map and virtual particle model, are introduced for the first time to bridge the gaps in biomolecular modeling and analysis. Emphasis is given to the connections of existing biophysical models/methods to mathematical theories, such as graph theory, Morse theory, Poicar´e-Hopf theorem, differential geometry, differential topology, algebraic topology and geometric topology. Potential new directions and standing open problems are briefly discussed. Key words: Molecular bioscience, Molecular biophysics, Graph theory, Graph spectral theory, Graph Lapla- cian, Differential geometry, Differential topology Persistent homology, Morse theory, Conley index, Poincar´e- Hopf index, Laplace-Beltrami operator, Dynamical system. ∗E-mail: [email protected] yE-mail: [email protected] 1 Contents 1 Introduction 4 2 Discrete apparatuses for biomolecules7 2.1 Graph theory related methodologies.................................8 2.1.1 Elementary graph theory...................................9 2.1.2 Gaussian network model (GNM)............................... 10 2.1.3 Anisotropic network model (ANM).............................. 11 Generalized GNM and generalized ANM........................... 12 2.1.4 Normal mode analysis (NMA) and quasi-harmonic analysis................ 13 Standard NMA......................................... 14 Essential dynamics and quasi-harmonic analysis....................... 14 2.1.5 Flexibility rigidity index (FRI)................................ 15 Multiscale FRI......................................... 16 Consistency between GNM and FRI............................. 16 Anisotropic FRI........................................ 17 2.1.6 Spectral graph theory..................................... 18 Graph decomposition and graph cut............................. 19 Ratio cut and Laplaician matrix............................... 20 Normalized cut and normalized Laplacian matrix...................... 21 Graph Laplacian and continuous Laplace operator..................... 22 Modularity........................................... 22 2.1.7 Molecular nonlinear dynamics................................. 24 Stability analysis........................................ 25 2.2 Persistent homology.......................................... 26 2.2.1 Simplicial homology and persistent homology........................ 26 Simplicial complex....................................... 26 Homology............................................ 27 Cechˇ complex, Rips complex and alpha complex...................... 28 General filtration processes.................................. 28 Persistent homology...................................... 29 2.2.2 Multiscale persistent homology................................ 30 2.2.3 Topology based quantitative modeling............................ 30 3 Continuous apparatuses for biomolecules 31 3.1 Geometric representation....................................... 31 Non-smooth biomolecular surface representations...................... 31 Smooth biomolecular surface representations........................ 31 Discrete to continuum mapping................................ 32 3.2 Multiresolution and multidimensional persistent homology..................... 32 Multiresolution persistent homology............................. 32 Multidimensional persistent homology............................ 33 3.3 Differential geometry theory of surfaces............................... 34 Surface elements and immersion............................... 34 First fundamental form.................................... 34 Gauss map........................................... 34 Weingarten map........................................ 34 Second and third fundamental form............................. 35 Principal curvature....................................... 35 Gaussian and mean curvature................................. 35 3.4 Differential geometry modeling and computation.......................... 36 3.4.1 Minimal molecular surface.................................. 36 2 3.4.2 Scalar field curvature evaluation............................... 37 Algorithm I........................................... 37 Algorithm II.......................................... 38 3.4.3 Analytical minimal molecular surface............................. 39 3.5 Scalar and vector field topology.................................... 40 3.5.1 Critical points and their classification............................ 41 3.5.2 Vector field topology..................................... 42 Morse theory.......................................... 43 3.5.3 Topological characterization of chemical bonds....................... 43 The Laplacian of electron density............................... 43 Identifying noncovalent interactions............................. 44 3.6 Geometric-topological (Geo-Topo) fingerprints of scalar fields................... 44 3.6.1 Geo-Topo fingerprints of Hessian matrix eigenvalue maps................. 44 3.6.2 Geo-Topo fingerprints of curvature maps.......................... 46 Gaussian and mean curvature maps............................. 48 Maximal and minimal curvature maps............................ 48 3.7 Eigenvector field analysis....................................... 48 3.7.1 Virtual particle model..................................... 50 3.7.2 Eigenvector analysis...................................... 53 3.8 Demonstrations............................................. 53 3.8.1 Case studies........................................... 53 Fullerene C20 .......................................... 53 An α-helix structure...................................... 54 A β-sheet structure....................................... 56 3.8.2 Persistent homology for scalar field analysis......................... 56 4 Concluding remarks 58 3 1 Introduction Life science is regarded the last forefront in natural science and the 21st century will be the century of biological sciences. Molecular biology is the foundation of biologic sciences and molecular mechanism, which is governed by all the valid mechanics, including quantum mechanics when it is relevant, and is the ultimate truth of life science. One trend of biological sciences in the 21st century is that many traditional disciplines, such as epidemiology, neuroscience, zoology, physiology and population biology, are transforming from macroscopic and phenomenological to molecular-based sciences. Another trend is that biological sciences in the 21st century are transforming from qualitative and descriptive to quantitative and predictive, as many other disciplines in natural science have done in the past. Such a transformation creates unprecedented opportunities for mathematically driven advances in life science.287 Biomolecules, such as proteins and the nucleic acids, including DNA and RNA, are essential for all known forms of life, such as animals, fungi, protists, archaea, bacteria and plants. Indeed, proteins perform a vast variety of biological functions, including membrane channel transport, signal transduction, organism structure supporting, enzymatic catalysis for transcription and the cell cycle, and immune agents. In contrast, nucleic acids function in association with proteins and are essential players in encoding, transmitting and expressing genetic information, which is stored through nucleic acid sequences, i.e., DNA or RNA molecules and trans- mitted via transcription and translation processes.
Recommended publications
  • The Maximum Number of Cliques in a Graph Embedded in a Surface
    ON THE MAXIMUM NUMBER OF CLIQUES IN A GRAPH EMBEDDED IN A SURFACE VIDA DUJMOVIC,´ GASPERˇ FIJAVZ,ˇ GWENAEL¨ JORET, THOM SULANKE, AND DAVID R. WOOD Abstract. This paper studies the following question: Given a surface Σ and an integer n, what is the maximum number of cliques in an n-vertex graph embeddable in Σ? We characterise the extremal ! 5 ! ! graphs for this question, and prove that the answer is between 8(n − !) + 2 and 8n + 2 2 + o(2 ), where ! is the maximum integer such that the complete graph K! embeds in Σ. For the surfaces S0, S1, S2, N1, N2, N3 and N4 we establish an exact answer. MSC Classification: 05C10 (topological graph theory), 05C35 (extremal problems) 1. Introduction A clique in a graph1 is a set of pairwise adjacent vertices. Let c(G) be the number of cliques in a n graph G. For example, every set of vertices in the complete graph Kn is a clique, and c(Kn) = 2 . This paper studies the following question at the intersection of topological and extremal graph theory: Given a surface Σ and an integer n, what is the maximum number of cliques in an n-vertex graph embeddable in Σ? For previous bounds on the maximum number of cliques in certain graph families see [5,6, 13, 14, 22, 23] for example. For background on graphs embedded in surfaces see [11, 21]. Every surface is homeomorphic to Sg, the orientable surface with g handles, or to Nh, the non-orientable surface with h crosscaps. The Euler characteristic of Sg is 2 − 2g.
    [Show full text]
  • Partial Duality and Closed 2-Cell Embeddings
    Partial duality and closed 2-cell embeddings To Adrian Bondy on his 70th birthday M. N. Ellingham1;3 Department of Mathematics, 1326 Stevenson Center Vanderbilt University, Nashville, Tennessee 37240, U.S.A. [email protected] Xiaoya Zha2;3 Department of Mathematical Sciences, Box 34 Middle Tennessee State University Murfreesboro, Tennessee 37132, U.S.A. [email protected] April 28, 2016; to appear in Journal of Combinatorics Abstract In 2009 Chmutov introduced the idea of partial duality for embeddings of graphs in surfaces. We discuss some alternative descriptions of partial duality, which demonstrate the symmetry between vertices and faces. One is in terms of band decompositions, and the other is in terms of the gem (graph-encoded map) representation of an embedding. We then use these to investigate when a partial dual is a closed 2-cell embedding, in which every face is bounded by a cycle in the graph. We obtain a necessary and sufficient condition for a partial dual to be closed 2-cell, and also a sufficient condition for no partial dual to be closed 2-cell. 1 Introduction In this paper a surface Σ means a connected compact 2-manifold without boundary. By an open or closed disk in Σ we mean a subset of the surface homeomorphic to such a subset of R2. By a simple closed curve or circle in Σ we mean an image of a circle in R2 under a continuous injective map; a simple arc is a similar image of [0; 1]. The closure of a set S is denoted S, and the boundary is denoted @S.
    [Show full text]
  • Geometry © 2003 Springer-Verlag New York Inc
    Discrete Comput Geom 30:311–320 (2003) Discrete & Computational DOI: 10.1007/s00454-003-0012-9 Geometry © 2003 Springer-Verlag New York Inc. Unavoidable Configurations in Complete Topological Graphs∗ J´anos Pach,1,2 J´ozsef Solymosi,2,3 and G´eza T´oth2 1Courant Institute, New York University, New York, NY 10012, USA [email protected] 2R´enyi Institute, Hungarian Academy of Sciences, Pf 127, H-1364 Budapest, Hungary {pach, solymosi, geza}@renyi.hu 3Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 Abstract. A topological graph is a graph drawn in the plane so that its vertices are represented by points, and its edges are represented by Jordan curves connecting the corre- sponding points, with the property that any two curves have at most one point in common. We define two canonical classes of topological complete graphs, and prove that every topo- logical complete graph with n vertices has a canonical subgraph of size at least c log1/8 n, which belongs to one of these classes. We also show that every complete topological graph with n vertices has a non-crossing subgraph isomorphic to any fixed tree with at most c log1/6 n vertices. 1. Introduction, Results A topological graph G is a graph drawn in the plane by Jordan curves, any two of which have at most one point in common. That is, it is defined as a pair (V (G), E(G)), where V (G) is a set of points in the plane and E(G) is a set of simple continuous arcs ∗ J´anos Pach was supported by NSF Grant CCR-00-98246 and PSC-CUNY Research Award 64421- 0034.
    [Show full text]
  • Analyzing Social Media Network for Students in Presidential Election 2019 with Nodexl
    ANALYZING SOCIAL MEDIA NETWORK FOR STUDENTS IN PRESIDENTIAL ELECTION 2019 WITH NODEXL Irwan Dwi Arianto Doctoral Candidate of Communication Sciences, Airlangga University Corresponding Authors: [email protected] Abstract. Twitter is widely used in digital political campaigns. Twitter as a social media that is useful for building networks and even connecting political participants with the community. Indonesia will get a demographic bonus starting next year until 2030. The number of productive ages that will become a demographic bonus if not recognized correctly can be a problem. The election organizer must seize this opportunity for the benefit of voter participation. This study aims to describe the network structure of students in the 2019 presidential election. The first debate was held on January 17, 2019 as a starting point for data retrieval on Twitter social media. This study uses data sources derived from Twitter talks from 17 January 2019 to 20 August 2019 with keywords “#pilpres2019 OR #mahasiswa since: 2019-01-17”. The data obtained were analyzed by the communication network analysis method using NodeXL software. Our Analysis found that Top Influencer is @jokowi, as well as Top, Mentioned also @jokowi while Top Tweeters @okezonenews and Top Replied-To @hasmi_bakhtiar. Jokowi is incumbent running for re-election with Ma’ruf Amin (Senior Muslim Cleric) as his running mate against Prabowo Subianto (a former general) and Sandiaga Uno as his running mate (former vice governor). This shows that the more concentrated in the millennial generation in this case students are presidential candidates @jokowi. @okezonenews, the official twitter account of okezone.com (MNC Media Group).
    [Show full text]
  • Arxiv:1909.00223V1 [Cs.CG] 31 Aug 2019
    Simple k-Planar Graphs are Simple (k + 1)-Quasiplanar∗ Patrizio Angeliniy Michael A. Bekosy Franz J. Brandenburgz Giordano Da Lozzox Giuseppe Di Battistax Walter Didimo{ Michael Hoffmannk Giuseppe Liotta{ Fabrizio Montecchiani{ Ignaz Rutterz Csaba D. T´oth∗∗ yy y Universit¨atT¨ubingen,T¨ubingen,Germany fangelini,[email protected] z University of Passau, Passau, Germany fbrandenb,[email protected] x Roma Tre University, Rome, Italy fgiordano.dalozzo,[email protected] { Universit´adegli Studi di Perugia, Perugia, Italy fwalter.didimo,giuseppe.liotta,[email protected] k Department of Computer Science, ETH Z¨urich, Z¨urich, Switzerland [email protected] ∗∗ California State University Northridge, Los Angeles, CA, USA [email protected] yy Tufts University, Medford, MA, USA Abstract A simple topological graph is k-quasiplanar (k ≥ 2) if it contains no k pairwise crossing edges, and k-planar if no edge is crossed more than k times. In this paper, we explore the relationship between k-planarity and k-quasiplanarity to show that, for k ≥ 2, every k-planar simple topological graph can be transformed into a (k + 1)-quasiplanar simple topological graph. arXiv:1909.00223v1 [cs.CG] 31 Aug 2019 ∗Preliminary versions of the results presented in this paper appeared at WG 2017 [6] and MFCS 2017 [19]. 1 (a) (b) (c) (d) Figure 1: (a) A crossing configuration that is forbidden in a 3-planar topological graph. (b) A 3-planar topological graph. (c) A crossing configuration that is forbidden in a 4-quasiplanar topological graph. (d) A 4-quasiplanar topological graph obtained from the one of Figure (b) by suitably rerouting the thick edge.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Combinatorics
    Mathematisches Forschungsinstitut Oberwolfach Report No. 1/2006 Combinatorics Organised by L´aszl´oLov´asz (Redmond) Hans J¨urgen Pr¨omel (Berlin) January 1st – January 7th, 2006 Abstract. This is the report on the Oberwolfach workshop on Combina- torics, held 1–7 January 2006. Combinatorics is a branch of mathematics studying families of mainly, but not exclusively, finite or countable struc- tures – discrete objects. The discrete objects considered in the workshop were graphs, set systems, discrete geometries, and matrices. The programme consisted of 15 invited lectures, 18 contributed talks, and a problem ses- sion focusing on recent developments in graph theory, coding theory, discrete geometry, extremal combinatorics, Ramsey theory, theoretical computer sci- ence, and probabilistic combinatorics. Mathematics Subject Classification (2000): 05Cxx, 05Dxx, 52Bxx, 68Rxx. Introduction by the Organisers The workshop Combinatorics organised by L´aszl´oLov´asz (Redmond) and Hans J¨urgen Pr¨omel (Berlin) was held January 1st–January 7th, 2006. This meeting was very well attended with 48 participants from many different countries. The pro- gramme consisted of 15 plenary lectures, accompanied by 18 shorter contributions and a vivid problem session led by Vera T. S´os. The plenary lectures provided a very good overview over the current develop- ments in several areas of combinatorics and discrete mathematics. We were very fortunate that some of the speaker reported on essential progress on longstanding open problems. In particular, Ajtai, Koml´os, Simonovits, and Szemer´edi solved the Erd˝os–T. S´os conjecture on trees (for large trees) and Tao and Vu greatly improved the asymptotic upper bound on the probability that a Bernoulli ma- trix is singular.
    [Show full text]
  • A Multigraph Approach to Social Network Analysis
    1 Introduction Network data involving relational structure representing interactions between actors are commonly represented by graphs where the actors are referred to as vertices or nodes, and the relations are referred to as edges or ties connecting pairs of actors. Research on social networks is a well established branch of study and many issues concerning social network analysis can be found in Wasserman and Faust (1994), Carrington et al. (2005), Butts (2008), Frank (2009), Kolaczyk (2009), Scott and Carrington (2011), Snijders (2011), and Robins (2013). A common approach to social network analysis is to only consider binary relations, i.e. edges between pairs of vertices are either present or not. These simple graphs only consider one type of relation and exclude the possibility for self relations where a vertex is both the sender and receiver of an edge (also called edge loops or just shortly loops). In contrast, a complex graph is defined according to Wasserman and Faust (1994): If a graph contains loops and/or any pairs of nodes is adjacent via more than one line the graph is complex. [p. 146] In practice, simple graphs can be derived from complex graphs by collapsing the multiple edges into single ones and removing the loops. However, this approach discards information inherent in the original network. In order to use all available network information, we must allow for multiple relations and the possibility for loops. This leads us to the study of multigraphs which has not been treated as extensively as simple graphs in the literature. As an example, consider a network with vertices representing different branches of an organ- isation.
    [Show full text]
  • The Theory of Combinatorial Maps and Its Use in the Graph-Topological Computations
    The theory of combinatorial maps and its use in the graph-topological computations. Dainis Zeps To cite this version: Dainis Zeps. The theory of combinatorial maps and its use in the graph-topological computations.. Mathematics [math]. Institute of Mathematics and Computer Science. University of Latvia, 1998. English. tel-00417773 HAL Id: tel-00417773 https://tel.archives-ouvertes.fr/tel-00417773 Submitted on 18 Sep 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. University of Latvia The theory of combinatorial maps and its use in the graph-topological computations Dr. Math. Dissertation Dainis Zeps Institute of Mathematics and Computer Science University of Latvia Rai»nabulv., 29, R¹³ga,LV-1459 Latvia R¹³ga,1997 Dainis ZEPS 2 The theory of combinatorial maps and its use in the graph-topological computations. Dainis ZEPS ¤ y ¤This research is supported by the grant 96.0247 of Latvian Council of Science. yAuthor's address: Institute of Mathematics and Computer Science, University of Latvia, 29 Rainis blvd., Riga, Latvia. [email protected] 1 Abstract In this work we investigate combinatorial maps, see [2, 11, 12, 18, 19, 22, 23], applying the ge- ometrical idea of considering the corners between the edges in the embedding of the graph on the surface to be the elements on which the permutations act [58].
    [Show full text]
  • Social Networking Analysis to Analyze the Function of Collaborative Care Teams in an Online Social Networking Tool
    Using Social Networking Analysis to Analyze the Function of Collaborative Care Teams in an Online Social Networking Tool By William Trevor Jamieson B.Math(CS) M.D. FRCPC A CAPSTONE PROJECT Presented to the Department of Medical Informatics and Clinical Epidemiology and the Oregon Health & Sciences University School of Medicine In partial fulfillment of the requirements for the degree of Master of Biomedical Informatics December 2015 1 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is to certify that the Master’s Capstone Project of William Trevor Jamieson “USING SOCIAL NETWORKING ANALYSIS TO ANALYZE THE FUNCTION OF COLLABORATIVE CARE TEAMS IN AN ONLINE SOCIAL NETWORKING TOOL” Has been approved Michael F. Chiang, M.D. Capstone Advisor 2 ACKNOWLEDGEMENTS ............................................................................................................ 5 ABSTRACT ................................................................................................................................ 6 INTRODUCTION ....................................................................................................................... 7 LOOP – A PATIENT-CENTERED ONLINE COLLABORATION TOOL .............................................. 10 DESIGN, DEVELOPMENT AND BASIC FUNCTIONALITY OF LOOP ............................................................. 10 EVALUATION OF LOOP THROUGH A PRAGMATIC RANDOMIZED-CONTROLLED TRIAL ................................ 15 SOCIAL NETWORKING ANALYSIS – AN EVALUATION TECHNIQUE
    [Show full text]
  • Topological Graph Theory Lecture 16-17 : Width of Embeddings
    Topological Graph Theory∗ Lecture 16-17 : Width of embeddings Notes taken by Drago Bokal Burnaby, 2006 Summary: These notes cover the ninth week of classes. The newly studied concepts are homotopy, edge-width and face-width. We show that embeddings with large edge- or face-width have similar properties as planar embeddings. 1 Homotopy It is beyond the purpose of these lectures to deeply study homotopy, but as we will need this concept, we mention it briefly. Two closed simple curves in a given surface are homotopic, if one can be continuously deformed into the other. For instance, on the sphere any two such curves are (freely) homotopic, whereas on the torus S1 × S1 we have two homotopy classes: S1 × {x} and {y}× S1. Formally: Definition 1.1. Let γ0, γ1 : I → Σ be two closed simple curves. A homotopy from γ0 to γ1 is a continuous mapping H : I × I → Σ, such that H(0,t)= γ0(t) and H(1,t)= γ1(t). The following proposition may be of interest: Proposition 1.2. Let C be the family of disjoint non-contractible cycles of a graph G embedded in a surface Σ of Euler genus g, such that no two cycles of C are homotopic. Then |C| ≤ 3g − 3, for g ≥ 2, and |C |≤ g, for g ≤ 1. 2 Edge-width Definition 2.1. Let Π be an embedding of a graph G in a surface Σ of Euler genus g. If g ≥ 1 we define the edge-width of Π, ew(G, Π) = ew(Π), to be the length of the shortest Π-non-contractible cycle in G.
    [Show full text]
  • Topological Graph Theory
    Topological Graph Theory Bojan Mohar Simon Fraser University Intensive Research Program in Discrete, Combinatorial and Computational Geometry Advanced Course II: New Results in Combinatorial & Discrete Geometry Barcelona, May 7{11, 2018 Abstract The course will outline fundamental results about graphs embed- ded in surfaces. It will briefly touch on obstructions (minimal non- embeddable graphs), separators and geometric representations (circle packing). Time permitting, some applications will be outlined concern- ing homotopy or homology classification of cycles, crossing numbers and Laplacian eigenvalues. 1 The course will follow the combinatorial approach to graphs embedded in surfaces after the monograph written by Carsten Thomassen and the lec- turer [MT01]. 1 Planar graphs Connectivity, drawings, Euler's Formula • Tutte's definition of connectivity. • Blocks, ear-decomposition, contractible edges in 3-connected graphs. Proposition 1. If G is a 2-connected graph, then it can be obtained from a cycle of length at least three by successively adding a path having only its ends in common with the current graph. The decomposition of a 2-connected graph in a cycle and a sequence of paths is called an ear decomposition of the graph. Proposition 1 has an analogue for 3-connected graphs. Theorem 2 (Tutte [Tu61, Tu66]). Every 3-connected graph can be obtained from a wheel by a sequence of vertex splittings and edge- additions so that all intermediate graphs are 3-connected. Thomassen [Th80] showed that the following \generalized contraction" operation is sufficient to reduce every 3-connected graph to K4. If G is a graph and e 2 E(G), let G==e be the graph obtained from the edge-contracted graph G=e by replacing all multiple edges by single edges joining the same pairs of vertices.
    [Show full text]
  • Embeddings of Graphs
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 124 (1994) 217-228 217 North-Holland Embeddings of graphs Carsten Thomassen Mathematisk Institut, Danmarks Tekniske Hojskoie. Bygning 303, DK-Lyngby. Denmark Received 2 June 1990 Abstract We survey some recent results on graphs embedded in higher surfaces or general topological spaces. 1. Introduction A graph G is embedded in the topological space X if G is represented in X such that the vertices of G are distinct elements in X and an edge in G is a simple arc connecting its two ends such that no two edges intersect except possibly at a common end. Graph embeddings in a broad sense have existed since ancient time. Pretty tilings of the plane have been produced for aestetic or religious reasons (see e.g. [7]). The characterization of the Platonic solids may be regarded as a result on tilings of the sphere. The study of graph embeddings in a more restricted sense began with the 1890 conjecture of Heawood [S] that the complete graph K, can be embedded in the orientable surface S, provided Euler’s formula is not violated. That is, g >&(n - 3)(n -4). Much work on graph embeddings has been inspired by this conjecture the proof of which was not completed until 1968. A complete proof can be found in Ringel’s book [12]. Graph embedding problems also arise in the real world, for example in connection with the design of printed circuits. Also, algorithms involving graphs may be very sensitive to the way in which the graphs are represented.
    [Show full text]