Medieval Europe 3000 BC 2000 BC 1000 BC 0 1000 CE 2000 CE

Total Page:16

File Type:pdf, Size:1020Kb

Medieval Europe 3000 BC 2000 BC 1000 BC 0 1000 CE 2000 CE Medieval Europe 3000 BC 2000 BC 1000 BC 0 1000 CE 2000 CE Bablyon Meso. Sumeria Persia Akkadia Assyria Egypt Old Middle New Ptolemies Kingdom Kingdom Kingdom Archaic Roman Greece Minoan Mycenaean Classical Byzantine Hellenistic Indus Vedic India Valley Jaina Gutpas Kerala Qin 3K,Jin Song China Shang Zhou Warring Han N/S Dyn Yuan Ming States 9 Chapt. Sui, Tang Qing Omar Islam House of Wisdom Al Tusi Western Hello! Rest of Europe Course Ancient Middle Modern Li Zhi Zhu Shijie Qin Jiushao Yang Hui Aryabhata Brahmagupta Bhaskara House of Wisdom, Al‐ Khwarizmi Khayyam Al Tusi Al Kashi Gerard of Cremona Jordanus Levi ben Seville Adelard de Nemore Gerson Gerbert of Bath Bradwardine Fibonacci Oresme Boethius Cassiodoris Isadore of 500 600 700 800 900 1000 1100 1200 1300 1400 Charlemagne The Crusades Black Death Oxford Cambridge Thomas Bologna Aquinas Paris Medieval Times • Early Middle Ages –Dark ages (c.450–750): – Medieval Europe was a large geographical region divided into smaller and culturally diverse political units that were never totally dominated by any one authority. – Feudalism – No traveling – No new math to get excited about – Gregorian Chants! Boethius (480 – 524) • Boethius became an orphan when he was seven years old. • He was extremely well educated. • Boethius was a philosopher, poet, mathematician, statesman, and (perhaps) martyr. Boethius (480 – 524) • He is best known as a translator of and commentator on Greek writings on logic and mathematics (Plato, Aristotle, Nichomachus). • His mathematics texts were the best available and were used for many centuries at a time when mathematical achievement in Europe was at a low point. • Boethius’ Arithmetic taught medieval scholars about Pythagorean number theory. Boethius (480 – 524) • His writings and translations were the main works on logic in Europe becoming known collectively as Logica vetus. • One of the first musical works to be printed was Boethius's De institutione musica, written in the early sixth century. • It was for medieval authors, from around the ninth century on, the authoritative document on Greek music‐theoretical thought and systems. For example, Franchino Gaffurio in Theorica musica (1492) acknowledged Boethius as the authoritative source on music theory. Medieval Times • (Middle) Middle Ages (750 ‐ 1000 CE) • The Church became the standard bearer of civilization and education • The Papacy became the most important secular power. • Monasteries became places where ancient learning was preserved. • Carolingian Empire (Charlemagne) Names from Carolingian Empire • Pippin III • Carloman • Charles the Great –Charlemagne – Alcuin • Louis the Pious • Charles the Bald • Charles the Fat Medieval Times • High Middle Ages (1000‐ 1300 CE) • The Church was the unifying institution • The Crusades • Church developed universities – Universities of Paris, Oxford, and Cambridge were founded • Scholasticism (Thomas Aquinas) Medieval Times • Crusades – Brought Europe into contact with the Arabic world and the Greek writings which had been preserved, as well as the work of the Arabic mathematicians and astronomers. • Scholasticism – incorporated the Greek philosophies into the Church. Thomas Aquinas particularly liked Aristotle. Thomas Aquinas (1225 – 1272) • St. Thomas Aquinas was an Italian philosopher and theologian, Doctor of the Church, known as the Angelic Doctor. • He is the greatest figure of scholasticism ‐ philosophical study as practiced by Christian thinkers in medieval universities. Thomas Aquinas (1225 – 1272) • He is one of the principal saints of the Roman Catholic Church, and founder of the system declared by Pope Leo XIII to be the official Catholic philosophy. • St. Thomas Aquinas held that reason and faith constitute two harmonious realms in which the truths of faith complement those of reason; both are gifts of God, but reason has an autonomy of its own. Leonardo of Pisa (1170‐1250) • Also known as Fibbonaci (from filius Bonaccia, “son of Bonnaccio”) • The greatest mathematician of the middle ages. • He traveled widely in the Mediterranean with his father while young. • Studied under a Muslim teacher. Fibonacci • Published Liber abaci (Book of the abacus) in 1202. But it isn’t about abaci. • Summarizes Arabic arithmetic knowledge, and explains the merits of the “Hindu‐Arabic” number system, the “nine Indian figures” together with a 0, or zephirum*, in Arabic. * Root of both zero and cipher. Liber abaci • After summarizing arithmetic knowledge, lays out a series of problems, including commercial transactions, exchanges of currency, etc. • Uses fractions, but curiously does not use decimal fractions. Instead, he uses common fractions, sexagesimal fractions, and unit fractions, particularly sums of unit fractions in the Egyptian style. Liber abaci • Has tables to convert common fractions to unit fractions, e.g. , (the +’s are implied by juxtaposition here). • He also used another strange notation for fractions: . ∙∙ ∙ • This led to the following kinds of headache‐ inducing reading: Liber abaci • If of a rotulus is worth of a bizantium, then of a bizantium is worth of a rotulus. • I hope that clears up the rotulus – bizantium question. Liber abaci • There were some interesting problems included as well: – Seven old women went to Rome; each woman had seven mules; each mule carried seven sacks; each sack contained seven loaves; and with each loaf there were seven knives; each knife was put up in seven sheathes. – Ahmes would have been proud. Liber abaci • The most famous problem in the book: – A certain man put a pair of rabbits in a place surrounded on all sides by a wall. How many pairs of rabbits can be produced from that pair in a year if it is supposed that every month each pair begets a new pair which from the second month on becomes productive? • The solution gives rise to the celebrated Fibonacci sequence. Liber abaci • Other types of problems in the third section of Liber abaci include: – A spider climbs so many feet up a wall each day and slips back a fixed number each night; how many days does it take him to climb the wall? – A hound whose speed increases arithmetically chases a hare whose speed also increases arithmetically. How far do they travel before the hound catches the hare? – Calculate the amount of money two people have after a certain amount changes hands and the proportional increase and decrease are given. Liber abaci • There are also problems involving perfect numbers, the Chinese remainder theorem and problems involving the summing of arithmetic and geometric series. • In the fourth section, he deals with irrational numbers both with rational approximations and with geometric constructions. Fibonacci • Also wrote other books, including • Practica geometriae, • Flos, and • Liber quadratorum. Practica geometriae • Contains a large collection of geometry problems arranged into eight chapters with theorems based on Euclid's Elements and On Divisions. • Includes practical information for surveyors, including a chapter on how to calculate the height of tall objects using similar triangles. • Included is the calculation of the sides of the pentagon and the decagon from the diameter of circumscribed and inscribed circles, as well as the inverse calculation. Flos • Johannes of Palermo, a member of the Holy Roman emperor Frederick II's court, presented a number of problems as challenges to Fibonacci. • Fibonacci solved three of them and put his solutions in Flos. Flos • One of these problems Johannes of Palermo took from Omar Khayyam's algebra book where it is solved by means of the intersection a circle and a hyperbola. • It is to give an accurate approximation to a root of 10x + 2x2 + x3 = 20. • Fibonacci proves that the root of the equation is neither an integer nor a fraction, nor the square root of a fraction. Flos • Without explaining his methods, Fibonacci then gives the approximate solution in sexagesimal notation as 1;22,7,42,33,4,40. • This converts to the decimal 1.3688081075 which is correct to nine decimal places, a remarkable achievement. Liber Quadratorum • Liber quadratorum, written in 1225, is Fibonacci's most impressive piece of work, although not the work for which he is most famous. • The book's name means the book of squares and it is a number theory book which, among other things, examines methods to find Pythogorean triples. Liber Quadratorum • In Liber Quadratorum Fibonacci also gave examples of cubic equations whose solutions could not be rational numbers. Liber Quadratorum • Example: Find rational numbers x, u, v satisfying: . • Fibonacci’s solution involved finding three squares that form an arithmetic sequence, say so d is the common difference. Then let . • One example would be Then . Liber Quadratorum • Finally, Fibonacci proved that all Pythagorean triples a, b, c with can be obtained by letting , for s and t positive integers. • It was known in Euclid’s time that this method would always general Pythagorean triples; Fibonacci showed that it in fact produced all Pythagorean triples. Liber Quadratorum • You can now create Pythagorean Triples to amaze your friends and confuse your enemies: stabc 12435 1 4 8 15 17 1 5 10 24 26 1 6 12 35 37 2312513 2 4 16 12 20 2 5 20 21 29 2 6 24 32 40 3424725 3 5 30 16 34 3 6 36 27 45 3 7 42 40 58 4540941 4 6 48 20 52 18 174 6264 29952 30600 Fibonacci Sequence • Although Fibonacci is justifiably famous for this sequence, his Liber abaci was not its first appearance. The earliest known appearance of this sequence was in the work of the Sanskrit grammarian Pingala, sometime between 450 and 200 BCE. • He was studying the number of meters of a given overall length could be made with the Long (L) and short (S) vowels used in syllables (with the long vowel twice as long as the short). Pingala • To get a meter of length n, you could add a short syllable S to a meter of length n‐1, or a long syllable L to a meter of length n‐2.
Recommended publications
  • On K-Fibonacci Numbers of Arithmetic Indexes
    Applied Mathematics and Computation 208 (2009) 180–185 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc On k-Fibonacci numbers of arithmetic indexes Sergio Falcon *, Angel Plaza Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain article info abstract Keywords: In this paper, we study the sums of k-Fibonacci numbers with indexes in an arithmetic k-Fibonacci numbers sequence, say an þ r for fixed integers a and r. This enables us to give in a straightforward Sequences of partial sums way several formulas for the sums of such numbers. Ó 2008 Elsevier Inc. All rights reserved. 1. Introduction One of the more studied sequences is the Fibonacci sequence [1–3], and it has been generalized in many ways [4–10]. Here, we use the following one-parameter generalization of the Fibonacci sequence. Definition 1. For any integer number k P 1, the kth Fibonacci sequence, say fFk;ngn2N is defined recurrently by Fk;0 ¼ 0; Fk;1 ¼ 1; and Fk;nþ1 ¼ kFk;n þ Fk;nÀ1 for n P 1: Note that for k ¼ 1 the classical Fibonacci sequence is obtained while for k ¼ 2 we obtain the Pell sequence. Some of the properties that the k-Fibonacci numbers verify and that we will need later are summarized below [11–15]: pffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi n n 2 2 r1Àr2 kþ k þ4 kÀ k þ4 [Binet’s formula] Fk;n ¼ r Àr , where r1 ¼ 2 and r2 ¼ 2 . These roots verify r1 þ r2 ¼ k, and r1 Á r2 ¼1 1 2 2 nþ1Àr 2 [Catalan’s identity] Fk;nÀrFk;nþr À Fk;n ¼ðÀ1Þ Fk;r 2 n [Simson’s identity] Fk;nÀ1Fk;nþ1 À Fk;n ¼ðÀ1Þ n [D’Ocagne’s identity] Fk;mFk;nþ1 À Fk;mþ1Fk;n ¼ðÀ1Þ Fk;mÀn [Convolution Product] Fk;nþm ¼ Fk;nþ1Fk;m þ Fk;nFk;mÀ1 In this paper, we study different sums of k-Fibonacci numbers.
    [Show full text]
  • On the Prime Number Subset of the Fibonacci Numbers
    Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach On the Prime Number Subset of the Fibonacci Numbers Lacey Fish1 Brandon Reid2 Argen West3 1Department of Mathematics Louisiana State University Baton Rouge, LA 2Department of Mathematics University of Alabama Tuscaloosa, AL 3Department of Mathematics University of Louisiana Lafayette Lafayette, LA Lacey Fish, Brandon Reid, Argen West SMILE Presentations, 2010 LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions History Two Famous and Useful Sieves Sieve of Eratosthenes Brun’s Sieve Lacey Fish, Brandon Reid, Argen West
    [Show full text]
  • Positional Notation Or Trigonometry [2, 13]
    The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity.
    [Show full text]
  • Fibonacci Number
    Fibonacci number From Wikipedia, the free encyclopedia • Have questions? Find out how to ask questions and get answers. • • Learn more about citing Wikipedia • Jump to: navigation, search A tiling with squares whose sides are successive Fibonacci numbers in length A Fibonacci spiral, created by drawing arcs connecting the opposite corners of squares in the Fibonacci tiling shown above – see golden spiral In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation: That is, after two starting values, each number is the sum of the two preceding numbers. The first Fibonacci numbers (sequence A000045 in OEIS), also denoted as Fn, for n = 0, 1, … , are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, ... (Sometimes this sequence is considered to start at F1 = 1, but in this article it is regarded as beginning with F0=0.) The Fibonacci numbers are named after Leonardo of Pisa, known as Fibonacci, although they had been described earlier in India. [1] [2] • [edit] Origins The Fibonacci numbers first appeared, under the name mātrāmeru (mountain of cadence), in the work of the Sanskrit grammarian Pingala (Chandah-shāstra, the Art of Prosody, 450 or 200 BC). Prosody was important in ancient Indian ritual because of an emphasis on the purity of utterance. The Indian mathematician Virahanka (6th century AD) showed how the Fibonacci sequence arose in the analysis of metres with long and short syllables. Subsequently, the Jain philosopher Hemachandra (c.1150) composed a well-known text on these.
    [Show full text]
  • The "Greatest European Mathematician of the Middle Ages"
    Who was Fibonacci? The "greatest European mathematician of the middle ages", his full name was Leonardo of Pisa, or Leonardo Pisano in Italian since he was born in Pisa (Italy), the city with the famous Leaning Tower, about 1175 AD. Pisa was an important commercial town in its day and had links with many Mediterranean ports. Leonardo's father, Guglielmo Bonacci, was a kind of customs officer in the North African town of Bugia now called Bougie where wax candles were exported to France. They are still called "bougies" in French, but the town is a ruin today says D E Smith (see below). So Leonardo grew up with a North African education under the Moors and later travelled extensively around the Mediterranean coast. He would have met with many merchants and learned of their systems of doing arithmetic. He soon realised the many advantages of the "Hindu-Arabic" system over all the others. D E Smith points out that another famous Italian - St Francis of Assisi (a nearby Italian town) - was also alive at the same time as Fibonacci: St Francis was born about 1182 (after Fibonacci's around 1175) and died in 1226 (before Fibonacci's death commonly assumed to be around 1250). By the way, don't confuse Leonardo of Pisa with Leonardo da Vinci! Vinci was just a few miles from Pisa on the way to Florence, but Leonardo da Vinci was born in Vinci in 1452, about 200 years after the death of Leonardo of Pisa (Fibonacci). His names Fibonacci Leonardo of Pisa is now known as Fibonacci [pronounced fib-on-arch-ee] short for filius Bonacci.
    [Show full text]
  • Twelve Simple Algorithms to Compute Fibonacci Numbers Arxiv
    Twelve Simple Algorithms to Compute Fibonacci Numbers Ali Dasdan KD Consulting Saratoga, CA, USA [email protected] April 16, 2018 Abstract The Fibonacci numbers are a sequence of integers in which every number after the first two, 0 and 1, is the sum of the two preceding numbers. These numbers are well known and algorithms to compute them are so easy that they are often used in introductory algorithms courses. In this paper, we present twelve of these well-known algo- rithms and some of their properties. These algorithms, though very simple, illustrate multiple concepts from the algorithms field, so we highlight them. We also present the results of a small-scale experi- mental comparison of their runtimes on a personal laptop. Finally, we provide a list of homework questions for the students. We hope that this paper can serve as a useful resource for the students learning the basics of algorithms. arXiv:1803.07199v2 [cs.DS] 13 Apr 2018 1 Introduction The Fibonacci numbers are a sequence Fn of integers in which every num- ber after the first two, 0 and 1, is the sum of the two preceding num- bers: 0; 1; 1; 2; 3; 5; 8; 13; 21; ::. More formally, they are defined by the re- currence relation Fn = Fn−1 + Fn−2, n ≥ 2 with the base values F0 = 0 and F1 = 1 [1, 5, 7, 8]. 1 The formal definition of this sequence directly maps to an algorithm to compute the nth Fibonacci number Fn. However, there are many other ways of computing the nth Fibonacci number.
    [Show full text]
  • On Popularization of Scientific Education in Italy Between 12Th and 16Th Century
    PROBLEMS OF EDUCATION IN THE 21st CENTURY Volume 57, 2013 90 ON POPULARIZATION OF SCIENTIFIC EDUCATION IN ITALY BETWEEN 12TH AND 16TH CENTURY Raffaele Pisano University of Lille1, France E–mail: [email protected] Paolo Bussotti University of West Bohemia, Czech Republic E–mail: [email protected] Abstract Mathematics education is also a social phenomenon because it is influenced both by the needs of the labour market and by the basic knowledge of mathematics necessary for every person to be able to face some operations indispensable in the social and economic daily life. Therefore the way in which mathe- matics education is framed changes according to modifications of the social environment and know–how. For example, until the end of the 20th century, in the Italian faculties of engineering the teaching of math- ematical analysis was profound: there were two complex examinations in which the theory was as impor- tant as the ability in solving exercises. Now the situation is different. In some universities there is only a proof of mathematical analysis; in others there are two proves, but they are sixth–month and not annual proves. The theoretical requirements have been drastically reduced and the exercises themselves are often far easier than those proposed in the recent past. With some modifications, the situation is similar for the teaching of other modern mathematical disciplines: many operations needing of calculations and math- ematical reasoning are developed by the computers or other intelligent machines and hence an engineer needs less theoretical mathematics than in the past. The problem has historical roots. In this research an analysis of the phenomenon of “scientific education” (teaching geometry, arithmetic, mathematics only) with respect the methods used from the late Middle Ages by “maestri d’abaco” to the Renaissance hu- manists, and with respect to mathematics education nowadays is discussed.
    [Show full text]
  • Fibonacci Is Not a Pizza Topping Bevel Cut April, 2020 Andrew Davis Last Month I Saw an Amazing Advertisement Appearing in Our Woodworking Universe
    Fibonacci is Not a Pizza Topping Bevel Cut April, 2020 Andrew Davis Last month I saw an amazing advertisement appearing in our woodworking universe. You might say that about all of the Woodpeckers advertisements – promoting good looking, even sexy tools and accessories for the woodworker who has money to burn or who does some odd task many times per day. I don’t fall into either category, though I often click on the ads to see the details and watch a video or two. These days I seem to have time to burn, if not money. Anyway, as someone who took too many math courses in my formative years, this ad absolutely caught my attention. I was left guessing two things: what is a Fibonacci and why would anyone need such a tool? Mr. Fibonacci and his Numbers Mathematician Leonardo Fibonacci was born in Pisa – now Italy – in 1170 and is credited with the first CNC machine and plunge router. Fibonacci popularized the Hindu–Arabic numeral system in the Western World (thereby replacing Roman numerals) primarily through his publication in 1202 called the Book of Calculation. Think how hard it would be to do any woodworking today if dimensions were called out as XVI by XXIV (16 x 24). But for this bevel cut article, the point is that he introduced Europe to the sequence of Fibonacci numbers. Fibonacci numbers are a sequence in which each number is the sum of the two preceding numbers. Here are the first Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418.
    [Show full text]
  • First Awakenings and Fibonacci: the Dark Ages Refers to the Period Ca
    First Awakenings and Fibonacci: The Dark Ages refers to the period ca. 450-1050 in Europe. Originally it was applied to the period after the fall of Rome and before the Italian Renaissance (ca. 1400) but present usage refers to the period ca 1050-1400 as the Middle Ages to acknowledge a somewhat more enlightened period. After the fall of Rome, the only unifying force was the Christian Church. The Church did support education of the clergy and there were monastic schools where the trivium (rhetoric, grammar and logic) was taught and “logic” was little emphasized. Later the quadrivium (arithmetic, astrology, harmonia and geometry) was also taught and lay people might hire teachers. The books available were few: It was the fall of Toledo in 1085 and of Sicily in 1091 to the Christians that gave Europe access to the learning and the libraries of the Arab world and marked the end of the Dark ages. Cordoba’s library had 600,000 volumes The Dark Ages were marked by invasions: the first ones helped undermine the Roman empire; later invasions were by Magyars, Saracens and especially the Vikings. There was great insecurity and little political unity. One exception was the Carolingian dynasty in France. The grandfather of Charlemagne (Charles Martel) had helped to stop the advance of the Moors at the Battle of Tours in 732. On Christmas Day 800 AD, Pope Leo III crowned Charlemagne the first Holy Roman Emperor. There was a brief period, the “Carolingian Enlightenment” when education and learning were encouraged. Alcuin of York was recruited to oversee the education and he decided every abbey was to have its own school and the curriculum was to include the quadrivium and trivium both.
    [Show full text]
  • Recreational Mathematics in Leonardo of Pisa's Liber Abbaci
    1 Recreational mathematics in Leonardo of Pisa’s Liber abbaci Keith Devlin, Stanford University Leonardo of Pisa’s classic, medieval text Liber abbaci was long believed to have been the major work that introduced Hindu-Arabic arithmetic into Europe and thereby gave rise to the computational, financial, and commercial revolutions that began in thirteenth century Tuscany and from there spread throughout Europe. But it was not until 2003 that a key piece of evidence was uncovered that convinced historians that such was indeed the case. I tell that fascinating story in my book The Man of Numbers: Fibonacci’s Arithmetic Revolution.1 In this article, I will say something about Leonardo’s use of what we now call recreational mathematics in order to help his readers master the arithmetical techniques his book described. One example is very well known: his famous rabbit problem, the solution to which gives rise to the Fibonacci sequence. But there are many others. Liber abbaci manuscripts Leonardo lived from around 1170 to 1250; the exact dates are not know, nor is it known where he was born or where he died, but it does appear he spent much of his life in Pisa. As a teenager, he traveled to Bugia, in North Africa, to join his father who had moved there to represent Pisa’s trading interests with the Arabic speaking world. It was there that he observed Muslim traders using what was to him a novel notation to represent numbers and a remarkable new method for performing calculations. That system had been developed in India in the first seven centuries of the first Millennium, and had been adopted and thence carried 1 Devlin, 2011.
    [Show full text]
  • Fibonacci Numbers, Binomial Coefficients and Mathematical Induction
    Math 163 - Introductory Seminar Lehigh University Spring 2008 Notes on Fibonacci numbers, binomial coe±cients and mathematical induction. These are mostly notes from a previous class and thus include some material not covered in Math 163. For completeness this extra material is left in the notes. Observe that these notes are somewhat informal. Not all terms are de¯ned and not all proofs are complete. The material in these notes can be found (with more detail in many cases) in many di®erent textbooks. Fibonacci Numbers What are the Fibonacci numbers? The Fibonacci numbers are de¯ned by the simple recurrence relation Fn = Fn¡1 + Fn¡2 for n ¸ 2 with F0 = 0;F1 = 1: This gives the sequence F0;F1;F2;::: = 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233;:::. Each number in the sequence is the sum of the previous two numbers. We read F0 as `F naught'. These numbers show up in many areas of mathematics and in nature. For example, the numbers of seeds in the outermost rows of sunflowers tend to be Fibonacci numbers. A large sunflower will have 55 and 89 seeds in the outer two rows. Can we easily calculate large Fibonacci numbers without ¯rst calculating all smaller values using the recursion? Surprisingly, there is a simple and non-obvious formula for the Fibonacci numbers. It is: à p !n à p !n 1 1 + 5 ¡1 1 ¡ 5 Fn = p + p : 5 2 5 2 p 1¡ 5 It is not immediately obvious that this should even give an integer.
    [Show full text]
  • Fibonacci Geometry Is Fashionable Kazlacheva Z* Faculty of Technics and Technologies, Trakia University, Graf Ignatiev 38, 8600 Yambol, Bulgari
    Science ile & Kazlacheva, J Textile Sci Eng 2014, 4:4 xt e E T n DOI: 10.4172/2165-8064.1000e122 f g o i n l e a e n r r i n u Journal of Textile Science & Engineering g o J ISSN: 2165-8064 Editorial OpenOpen Access Access Fibonacci Geometry is Fashionable Kazlacheva Z* Faculty of Technics and Technologies, Trakia University, Graf Ignatiev 38, 8600 Yambol, Bulgari ∞ The Fibonacci numbers are the sequence of numbers {}Fn n=1 defined by the linear recurrence equation FFnn=−−12+ F n (1) With F1=F2= 1. As a result of the definition (1), it is conventional to define F0 = 0. The Fibonacci numbers for n = 1, 2, ... are 1, 1, 2, 3, 5, 8, 13, 21, ... [2] Fibonacci sequence is used in the creation of geometric objects. There are some versions of Fibonacci series tilings, which are constructed with equilateral geometrical figures – squares or triangles, as the sides’ lengths are equal to the numbers of the Fibonacci series, or the lengths of the sides of the squares or equilateral triangles are each to other in proportions, which are equal to Fibonacci sequence. Fibonacci tilings can be used directly in fashion design. Figure 1 presents a model of a lady’s dress which is designed with the use of the one of the both versions of Fibonacci tilings with squares. In this version the block is circled finding the next side and a spiral pattern is formed [1]. Figure 2 presents a model of a lady’s dress which is designed on the base of the second version of Fibonacci tilings with squares in which two squares are put side by side, another square is added to the longest side and that is repeated by the putting of the next square [1].
    [Show full text]