Physics of Space Plasma Activity

Total Page:16

File Type:pdf, Size:1020Kb

Physics of Space Plasma Activity This page intentionally left blank Physics of Space Plasma Activity Space plasma is so hot that the atoms break up into charged particles which then become trapped and stored in magnetic fields. When critical condi- tions are reached the magnetic field breaks up, releasing a large amount of energy and causing dramatic phenomena. A prominent example is the magnetospheric substorm occurring in the Earth’s magnetosphere. It in- volves plasma and magnetic field structures extending from 100 km to tens of Earth radii, and can be seen as strong intensifications of the northern and southern lights. The largest space plasma activity events observed in the Solar System occur on the Sun, when coronal mass ejections expel several billion tons of plasma mass into space. Physics of Space Plasma Activity provides a coherent and detailed treat- ment of the physical background of large plasma eruptions in space. It pro- vides the background necessary for dealing with space plasma activity, and allows the reader to reach a deeper understanding of this fascinating natural event. The book employs both fluid and kinetic models, and discusses the applications to magnetospheric and solar activity. This book will form an interesting reference for graduate students and academic researchers in the fields of astrophysics, space science and plasma physics. karl schindler is an Emeritus Professor with the Faculty of Physics and Astronomy, Ruhr University Bochum, Germany, and a distinguished theorist in the field of space plasma physics. In 2001 he was granted the Orson Anderson Scholarship at Los Alamos National Laboratory by the Institute of Geophysics and Planetary Physics (IGPP). Dr Schindler is also a Fellow of the American Geophysical Union. Physics of Space Plasma Activity Karl Schindler Ruhr-Universit¨at Bochum, Germany CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521858977 © K. Schindler 2007 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2006 ISBN-13 978-0-511-27018-5 eBook (NetLibrary) ISBN-10 0-511-27018-6 eBook (NetLibrary) ISBN-13 978-0-521-85897-7 hardback ISBN-10 0-521-85897-6 hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. To Erika Contents Preface xi 1 Introduction 1 Part I Setting the scene 5 2 Sites of activity 7 2.1 Geospace7 2.2 Solar atmosphere 16 2.3 Other sites 22 3 Plasma models 25 3.1 Single particle motion 26 3.2 Kinetic models 29 3.3 Fluid models 35 3.4 Chew–Goldberger–Low momentum equation 39 3.5 On the validity of MHD models for space plasmas 40 3.6 Electron magnetohydrodynamics, Hall current 41 3.7 Initial and boundary conditions 42 3.8 Conservation laws 42 3.9 Discontinuities 48 Part II Quiescence 55 4 Introduction 57 5 Magnetohydrostatic states 61 5.1 General properties 61 5.2 Symmetric MHS states 76 5.3 Examples of exact solutions 85 5.4 Asymptotic expansions 93 vii viii Contents 6 Particle picture of steady states 107 6.1 General properties 107 6.2 Systems with translational invariance 108 6.3 Adiabatic particle motion 114 6.4 Regular and chaotic particle motion 116 7 A unified theory of steady states 123 7.1 Steady states without gravity 124 7.2 Inclusion of the gravity force 127 7.3 Symmetric states 129 8 Quasi-static evolution and the formation of thin current sheets 133 8.1 Introduction 133 8.2 Perturbed Harris sheet 135 8.3 MHD tail model with flux transfer 140 8.4 TCS from boundary deformation 151 8.5 Vlasov approach to quasi-static evolution 156 8.6 Further aspects 168 Part III Dynamics 181 9 Nonideal effects 185 9.1 Generalized Ohm’s law 185 9.2 Resistivity 187 9.3 Microturbulence 190 9.4 Non-turbulent kinetic effects 200 10 Selected macroinstabilities 203 10.1 Stability concepts 203 10.2 Ideal MHD stability 204 10.3 The resistive tearing instability 235 10.4 Collisionless tearing 249 10.5 Variational principle for 2D collisionless plasmas 254 11 Magnetic reconnection 269 11.1 Introduction 269 11.2 Two-dimensional fluid models 271 11.3 Kinetic reconnection in 2D collisionless plasmas 297 11.4 Inclusion of the third dimension 305 11.5 Kinematics of 3D reconnection 311 11.6 Remark on relativistic covariance 340 Contents ix 12 Aspects of bifurcation and nonlinear dynamics 343 12.1 Bifurcation 343 12.2 A statistical mechanics approach to 2D current sheet bifurcation 355 12.3 Role of perturbations 361 12.4 Self-organized criticality 364 12.5 Low-dimensional modelling 364 Part IV Applications 367 13 Magnetospheric activity 371 13.1 Interaction between the solar wind and the magnetosphere 371 13.2 Convection and pressure crisis 378 13.3 Magnetospheric substorms 385 13.4 Further large-scale processes 398 13.5 Statistical and nonlinear dynamics aspects 400 13.6 Discussion 403 14 Models of solar activity 407 14.1 General aspects 407 14.2 Model constraints and boundary conditions 412 14.3 Arcade models of solar flares 416 14.4 Coronal mass ejections 424 14.5 Further aspects 431 15 Discussion 433 15.1 The reconnection problem 433 15.2 A general eruption scheme 438 Appendix 1 Unified theory: details and derivations 441 Appendix 2 Variational principle for collisionless plasmas 451 Appendix 3 Symbols and fundamental constants 465 References 469 Index 503 Preface A major motivation for writing this book is the strong fascination that visible signatures of plasma activity are able to generate. This goes along with considerable professional research interest in this area. Also, those who have admired spectacular pictures or video presentations on the internet displaying spacecraft observations of auroral activity or of solar eruptions, are often motivated to learn more about their physical background. In the early days of spacecraft observations, the understanding of dynami- cal phenomena such as geomagnetic storms and solar flares was considered as poor and high up on the list of particularly challenging problems. Re- markably, this is still true today. The observational database has increased dramatically and important new phenomena were discovered, such as coro- nal mass ejections and manifestations of the global nature of magnetospheric substorms involving large regions of the magnetosphere. There are many more aspects than envisaged originally, and today we have good reasons to use the comprehensive notions of solar and magnetospheric activity,which in this book are combined under the working term space plasma activity. The desire to understand these complex phenomena has mobilized consi- derable research efforts, but due to the overwhelming complexity that one encounters, our present understanding is still far from being satisfactory. One might ask, whether in this situation it is appropriate to write a book that concentrates on space plasma activity. Would it not be more reasonable to wait until our understanding of the underlying physical processes has settled down more solidly? The main reason for writing this book at this time is the fact that during past decades a substantial wealth of theoretical tools has been developed, which can be expected to remain useful, even if many of the final answers are still to be found. In fact, good knowledge and further development of those tools could well help to accelerate progress in this field. The situation xii Preface appears to be similar to that of the Earth’s lower atmosphere, where sev- eral phenomena associated with atmospheric disturbances are still not well understood; on the other hand, there is little doubt that gas-dynamics meth- ods play an important role in present and future investigations in that area. Regarding that the electrodynamic interactions make plasma dynamics con- siderably more complicated than gas dynamics, it is obvious that there is a strong need for reviewing and, where possible, for improving the exist- ing tools and for developing new ways of approach. Therefore, after the phenomenological survey given in Part I, the relevant methods and plasma properties are addressed in Parts II and III, starting from basic plasma mod- els. In this way an updated (although necessarily incomplete) toolbox for the study of space plasma activity arises. I hope that this will be found useful for research in space plasma activity. A further aim is to meet the needs of scientists or graduate students trying to enter the field of large-scale space plasma phenomena. They often ask for coherent descriptions of the theoretical methods that would allow them to discriminate between conclusions that can safely be drawn and concepts that are more of a speculative nature. There are also indications suggesting that the occupation with topics re- lated to space plasma activity have enjoyed increasing attractiveness since it became clear that such phenomena have aspects falling under notions of modern theoretical physics, such as nonlinear dynamics, spontaneous processes or catastrophe theory. The separation between the theoretical tools (Parts II and III) and the applications (Part IV) was chosen for several reasons. First, this separation allows a systematic and coherent presentation of the theory. Further, it makes it possible to present the applications of Part IV in such a way that, to some extent, they can be understood without detailed knowledge of Parts II and III.
Recommended publications
  • Stanislav Nikolaevich Rodionov (–)
    SCIENCE & GLOBAL SECURITY ,VOL.,NO.,– http://dx.doi.org/./.. Memoriam: Stanislav Nikolaevich Rodionov (–) Oleg Prilutsky and Frank von Hippel Stanislav Rodionov was a member of the first post-World War II generation of Soviet physicists. He began his scientific career in 1953 in what is now known as the National Research Center “Kurchatov Institute” where he carried out an exper- iment in which, for the first time in the Soviet Union, he captured electrons from tritium decay in a magnetic mirror adiabatic trap. From 1958 to 1973, he worked in the Nuclear Physics Institute of the Siberian Division of USSR Academy of Sciences in Akademgorodok near Novosibirsk. Dur- ing the 1960s, while Rodionov was there, this institute, directed by Academician Budker, built one of the first electron-positron colliders in the world (VEPP-2). Rodionov played a very important scientific-organizational role as the Secretary of the institute’s Scientific Council—its “Round Table.” In 1974, Rodionov returned to Moscow to join the staff of the Soviet Academy of Sciences’ Space Research Institute (IKI) directed by Roald Sagdeev. There he partici- pated in the organization of international collaborations in space research programs, which was a pioneering contribution to opening up Soviet science to the world. Rodionov also supported Sagdeev in doing arms-control research under the aus- pices of the Committee of Soviet Scientists for Peace and Against the Nuclear Threat. This Committee was established during a 17–19 May 1983 All-Union conference of scientists within the Soviet Academy called in response to President Reagan’s 23 MarchspeechaskingAmericanscientiststojoininaStrategicDefenseInitiative to make nuclear-armed ballistic missiles “impotent and obsolete.” Evgeny Velikhov was the first chairman with Sagdeev, Sergei Kapitza and Andrei Kokoshin as his Vice Chairmen.
    [Show full text]
  • Department of Physics and Astronomy 1
    Department of Physics and Astronomy 1 PHSX 216 and PHSX 236, provide a calculus-based foundation in Department of Physics physics for students in physical science, engineering, and mathematics. PHSX 313 and the laboratory course, PHSX 316, provide an introduction and Astronomy to modern physics for majors in physics and some engineering and physical science programs. Why study physics and astronomy? Students in biological sciences, health sciences, physical sciences, mathematics, engineering, and prospective elementary and secondary Our goal is to understand the physical universe. The questions teachers should see appropriate sections of this catalog and major addressed by our department’s research and education missions range advisors for guidance about required physics course work. Chemistry from the applied, such as an improved understanding of the materials that majors should note that PHSX 211 and PHSX 212 are prerequisites to can be used for solar cell energy production, to foundational questions advanced work in chemistry. about the nature of mass and space and how the Universe was formed and subsequently evolved, and how astrophysical phenomena affected For programs in engineering physics (http://catalog.ku.edu/engineering/ the Earth and its evolution. We study the properties of systems ranging engineering-physics/), see the School of Engineering section of the online in size from smaller than an atom to larger than a galaxy on timescales catalog. ranging from billionths of a second to the age of the universe. Our courses and laboratory/research experiences help students hone their Graduate Programs problem solving and analytical skills and thereby become broadly trained critical thinkers. While about half of our majors move on to graduate The department offers two primary graduate programs: (i) an M.S.
    [Show full text]
  • Solar and Space Physics: a Science for a Technological Society
    Solar and Space Physics: A Science for a Technological Society The 2013-2022 Decadal Survey in Solar and Space Physics Space Studies Board ∙ Division on Engineering & Physical Sciences ∙ August 2012 From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outwards to a region far beyond Pluto where the Sun’s influence wanes, advances during the past decade in space physics and solar physics have yielded spectacular insights into the phenomena that affect our home in space. This report, the final product of a study requested by NASA and the National Science Foundation, presents a prioritized program of basic and applied research for 2013-2022 that will advance scientific understanding of the Sun, Sun- Earth connections and the origins of “space weather,” and the Sun’s interactions with other bodies in the solar system. The report includes recommendations directed for action by the study sponsors and by other federal agencies—especially NOAA, which is responsible for the day-to-day (“operational”) forecast of space weather. Recent Progress: Significant Advances significant progress in understanding the origin from the Past Decade and evolution of the solar wind; striking advances The disciplines of solar and space physics have made in understanding of both explosive solar flares remarkable advances over the last decade—many and the coronal mass ejections that drive space of which have come from the implementation weather; new imaging methods that permit direct of the program recommended in 2003 Solar observations of the space weather-driven changes and Space Physics Decadal Survey. For example, in the particles and magnetic fields surrounding enabled by advances in scientific understanding Earth; new understanding of the ways that space as well as fruitful interagency partnerships, the storms are fueled by oxygen originating from capabilities of models that predict space weather Earth’s own atmosphere; and the surprising impacts on Earth have made rapid gains over discovery that conditions in near-Earth space the past decade.
    [Show full text]
  • Sources for the History of Space Concepts in Physics: from 1845 to 1995
    CBPF-NF-084/96 SOURCES FOR THE HISTORY OF SPACE CONCEPTS IN PHYSICS: FROM 1845 TO 1995 Francisco Caruso(∗) & Roberto Moreira Xavier Centro Brasileiro de Pesquisas F´ısicas Rua Dr. Xavier Sigaud 150, Urca, 22290–180, Rio de Janeiro, Brazil Dedicated to Prof. Juan Jos´e Giambiagi, in Memoriam. “Car l`a-haut, au ciel, le paradis n’est-il pas une immense biblioth`eque? ” — Gaston Bachelard Brief Introduction Space — as other fundamental concepts in Physics, like time, causality and matter — has been the object of reflection and discussion throughout the last twenty six centuries from many different points of view. Being one of the most fundamental concepts over which scientific knowledge has been constructed, the interest on the evolution of the ideas of space in Physics would per se justify a bibliography. However, space concepts extrapolate by far the scientific domain, and permeate many other branches of human knowledge. Schematically, we could mention Philosophy, Mathematics, Aesthetics, Theology, Psychology, Literature, Architecture, Art, Music, Geography, Sociology, etc. But actually one has to keep in mind Koyr´e’s lesson: scientific knowledge of a particular epoch can not be isolated from philosophical, religious and cultural context — to understand Copernican Revolution one has to focus Protestant Reformation. Therefore, a deeper understanding of this concept can be achieved only if one attempts to consider the complex interrelations of these different branches of knowledge. A straightforward consequence of this fact is that any bibliography on the History and Philosophy of space would result incomplete and grounded on arbitrary choices: we might thus specify ours. From the begining of our collaboration on the History and Philosophy of Space in Physics — born more than ten years ago — we have decided to build up a preliminary bibliography which should include just references available at our libraries concerning a very specific problem we were mainly interested in at that time, namely, the problem of space dimensionality.
    [Show full text]
  • Plasma Physics in the 20Th Century As Told by Players”
    Eur. Phys. J. H 43, 337{353 (2018) https://doi.org/10.1140/epjh/e2018-90061-5 THE EUROPEAN PHYSICAL JOURNAL H Editorial Editorial introduction to the special issue \Plasma physics in the 20th century as told by players" Patrick H. Diamond1,a , Uriel Frisch2, and Yves Pomeau3 1 University of California San Diego, La Jolla, CA 92093-0319, USA 2 Universit´eC^oted'Azur, OCA, Lab. Lagrange, CS 34229, 06304 Nice Cedex 4, France 3 Ladhyx, Ecole´ Polytechnique, Palaiseau, France Received 31 October 2018 Published online 30 November 2018 c EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature, 2018 Our ancestors lived in a world where { as far as they were aware { electrons and ions lived happily bound together. But with suitable conditions, e.g. low density and/or high temperature, electrons and ions will unbind and we obtain a plasma, a state of matter of which we became increasingly aware in the 20th century, and which pervades our universe near and far. There are also many applications of plasma physics: chip etching, TV screens, torches, propulsion, fusion (through magnetic or inertial confinement), astrophysics and space physics, and laser physics, to cite just a few. At the crossroads of electrodynamics, continuum physics, kinetic theory and nonlinear physics, plasma physics enjoys an abundance of riches. Actually, so much that we can only cover a fraction of its history in this limited volume. The history of plasma physics presented here covers mostly the period from 1950 to 2000. The issue is focussed both on fundamentals and on applications in controlled fusion through magnetic confinement, which in turn raises a host of fundamental and interesting questions in various areas.
    [Show full text]
  • Journal of Geophysical Research: Space Physics
    Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Zonally Symmetric Oscillations of the Thermosphere at 10.1002/2018JA025258 Planetary Wave Periods Key Points: • A dissipating tidal spectrum Jeffrey M. Forbes1 , Xiaoli Zhang1, Astrid Maute2 , and Maura E. Hagan3 modulated by planetary waves (PW) causes the thermosphere to “vacillate” 1Ann and H. J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, USA, 2 over a range of PW periods 3 • The same tidal spectrum can amplify High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA, Department of Physics, Utah penetration of westward propagating State University, Logan, UT, USA PW into the dynamo region, through nonlinear wave-wave interactions • Zonally symmetric ionospheric Abstract New mechanisms for imposing planetary wave (PW) variability on the oscillations arising from thermospheric vacillation are ionosphere-thermosphere system are discovered in numerical experiments conducted with the National potentially large Center for Atmospheric Research thermosphere-ionosphere-electrodynamics general circulation model. First, it is demonstrated that a tidal spectrum modulated at PW periods (3–20 days) entering the Supporting Information: ionosphere-thermosphere system near 100 km is responsible for producing ±40 m/s and ±10–15 K • Supporting Information S1 PW period oscillations between 110 and 150 km at low to middle latitudes. The dominant response is broadband and zonally symmetric (i.e., “S0”) over a range of periods and is attributable to tidal dissipation; essentially, the ionosphere-thermosphere system “vacillates” in response to dissipation of Correspondence to: J. M. Forbes, the PW-modulated tidal spectrum. In addition, some specific westward propagating PWs such as the [email protected] quasi-6-day wave are amplified by the presence of the tidal spectrum; the underlying mechanism is hypothesized to be a second-stage nonlinear interaction.
    [Show full text]
  • A Brief History of Magnetospheric Physics Before the Spaceflight Era
    A BRIEF HISTORY OF MAGNETOSPHERIC PHYSICS BEFORE THE SPACEFLIGHT ERA David P. Stern Laboratoryfor ExtraterrestrialPhysics NASAGoddard Space Flight Center Greenbelt,Maryland Abstract.This review traces early resea/ch on the Earth's aurora, plasma cloud particles required some way of magneticenvironment, covering the period when only penetratingthe "Chapman-Ferrarocavity": Alfv•n (1939) ground:based0bservationswerepossible. Observations of invoked an eleCtric field, but his ideas met resistance. The magneticstorms (1724) and of perturbationsassociated picture grew more complicated with observationsof with the aurora (1741) suggestedthat those phenomena comets(1943, 1951) which suggesteda fast "solarwind" originatedoutside the Earth; correlationof the solarcycle emanatingfrom the Sun's coronaat all times. This flow (1851)with magnetic activity (1852) pointed to theSun's was explainedby Parker's theory (1958), and the perma- involvement.The discovei-yof •solarflares (1859) and nent cavity which it producedaround the Earth was later growingevidence for their associationwith large storms named the "magnetosphere"(1959). As early as 1905, led Birkeland (1900) to proposesolar electronstreams as Birkeland had proposedthat the large magneticperturba- thecause. Though laboratory experiments provided some tions of the polar aurora refleCteda "polar" type of support;the idea ran into theoreticaldifficulties and was magneticstorm whose electric currents descended into the replacedby Chapmanand Ferraro's notion of solarplasma upper atmosphere;that idea, however, was resisted for clouds (1930). Magnetic storms were first attributed more than 50 years. By the time of the International (1911)to a "ringcurrent" of high-energyparticles circling GeophysicalYear (1957-1958), when the first artificial the Earth, but later work (1957) reCOgnizedthat low- satelliteswere launched, most of the importantfeatures of energy particlesundergoing guiding center drifts could the magnetospherehad been glimpsed, but detailed have the same effect.
    [Show full text]
  • Alwyn C. Scott
    the frontiers collection the frontiers collection Series Editors: A.C. Elitzur M.P. Silverman J. Tuszynski R. Vaas H.D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness and complex systems – the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. Other Recent Titles The Thermodynamic Machinery of Life By M. Kurzynski The Emerging Physics of Consciousness Edited by J. A. Tuszynski Weak Links Stabilizers of Complex Systems from Proteins to Social Networks By P. Csermely Quantum Mechanics at the Crossroads New Perspectives from History, Philosophy and Physics Edited by J. Evans, A.S. Thorndike Particle Metaphysics A Critical Account of Subatomic Reality By B. Falkenburg The Physical Basis of the Direction of Time By H.D. Zeh Asymmetry: The Foundation of Information By S.J. Muller Mindful Universe Quantum Mechanics and the Participating Observer By H. Stapp Decoherence and the Quantum-to-Classical Transition By M. Schlosshauer For a complete list of titles in The Frontiers Collection, see back of book Alwyn C.
    [Show full text]
  • AS703: Introduction to Space Physics
    AS703: Introduction to Space Physics Fall 2015 Course Description The temperature of the sun's surface is 4000K-5000K, but just outside the sur- face, in a region called the corona, the temperatures exceed 1.5 million degrees K. The mechanism that heats and sus- tains these high temperatures remains unexplained. Nevertheless, these high temperatures cause the corona to expel vast quantities of material, creating the solar wind. This plasma wind travels outward from the sun interacting with all solar system bodies. When the solar wind approaches planet Earth, it com- presses and distorts the region dom- inated by the Earth's magnetic field called the magnetosphere. The magnetosphere channels the solar wind around most of the at- mosphere and also into the polar regions. This channeling process drives large currents through the magnetosphere and into the charged part of the atmosphere below it; the partially ionized region called the ionosphere. These processes frequently energize particles creating the ring current, the radiation belts, and send energized particles crashing into the neutral atmosphere creating the Au- rora Borealis. The field of space physics studies physical phenomena from the Sun's outer layers to the upper atmospheres of the planets and, ultimately, to the point where the Solar wind's influence wanes. Understanding this region enables us to have a space program and to communicate through space. It also gives insight into plasma processes throughout the universe. The goal of this course is to provide an introduction to space and solar physics. Since the local space environment is predominantly filled by plasma and electromagnetic energy, a substantial amount of time will be dedicated to learning the basics of plasma physics.
    [Show full text]
  • A Decadal Strategy for Solar and Space Physics
    Space Weather and the Next Solar and Space Physics Decadal Survey Daniel N. Baker, CU-Boulder NRC Staff: Arthur Charo, Study Director Abigail Sheffer, Associate Program Officer Decadal Survey Purpose & OSTP* Recommended Approach “Decadal Survey benefits: • Community-based documents offering consensus of science opportunities to retain US scientific leadership • Provides well-respected source for priorities & scientific motivations to agencies, OMB, OSTP, & Congress” “Most useful approach: • Frame discussion identifying key science questions – Focus on what to do, not what to build – Discuss science breadth & depth (e.g., impact on understanding fundamentals, related fields & interdisciplinary research) • Explain measurements & capabilities to answer questions • Discuss complementarity of initiatives, relative phasing, domestic & international context” *From “The Role of NRC Decadal Surveys in Prioritizing Federal Funding for Science & Technology,” Jon Morse, Office of Science & Technology Policy (OSTP), NRC Workshop on Decadal Surveys, November 14-16, 2006 2 Context The Sun to the Earth—and Beyond: A Decadal Research Strategy in Solar and Space Physics Summary Report (2002) Compendium of 5 Study Panel Reports (2003) First NRC Decadal Survey in Solar and Space Physics Community-led Integrated plan for the field Prioritized recommendations Sponsors: NASA, NSF, NOAA, DoD (AFOSR and ONR) 3 Decadal Survey Purpose & OSTP* Recommended Approach “Decadal Survey benefits: • Community-based documents offering consensus of science opportunities
    [Show full text]
  • Space Physics
    UNIVERSITY OF KERALA Syllabus for M.Sc Degree Program in Physics with specialization in Space Physics (With effect from 2020 admissions) UNIVERSITY OF KERALA M. Sc Degree Program in Physics (Space Physics) Objectives: Major objective of the M. Sc Physics program of University of Kerala is to equip the students for pursuing higher studies and employment in any branches of Physics and related areas. The program also envisages developing thorough and in-depth knowledge in Mathematical Physics, Classical Mechanics, Quantum Mechanics, Statistical Physics, Electromagnetic Theory, Nuclear Physics, Atomic and Molecular Spectroscopy and Electronics. The program also aims to enhance problem solving skills of students so that they will be well equipped to tackle national level competitive exams. The program also acts as a bridge between theoretical knowhow and its implementation in experimental scenario. Since the specialization of this program is space physics it covers basic ideas of atmospheric physics, solar physics and elements of cosmology. The program also introduces the students to the scientific research approach in defining problems, execution through analytical methods, systematic presentation of results keeping in line with the research ethics through M. Sc dissertations. Program Outcome (i) Define and explain fundamental ideas and mathematical formalism of theoretical and applied physics. (ii) Identify, classify and extrapolate the physical concepts and related mathematical methods to formulate and solve real physical problems. (iii) Identify and solve interdisciplinary problems that require simultaneous implementation of concepts from different branches of physics and other related areas. (iv) To define and explain fundamental ideas of space physics and astrophysics. (v) To define a research problem, translate ideas into working models, interpret the data collected draw the conclusions and report scientific data in the form of dissertation.
    [Show full text]
  • Welcome to Montana State University
    Welcome to Montana State University Barnard Hall home of the Physics department Important details • Application deadline: January 10, 2021 • Application fee: waived for participants of this recruiting fair! • GREs: general and subject are not required • Recommendation letters: three letters required • More information: http://physics.montana.edu • Questions: [email protected] Amy Reines Nick Borys Dana Longcope MSU is home to vibrant research & academic communities 2020 Enrollment • Undergraduates: 14,817 • Graduate students: 1,949 • Total: 16,766 2020 Research Expenditures $167 Million Carnegie Classification R1: very high research activity • One of only 131 universities in the US. • Only R1 university in MT, ID, WY, ND, & SD. Proposal Activity for 2019 1,100 proposals submitted $485.9 million in awarded grants Physics Courses foundational required 423 Electromagnetism I 461 Quantum Mechanics I 425 Electromagnetism II 462 Quantum Mechanics II 427 Advanced Optics 441 Solid State Physics 435 Astrophysics 442 Novel materials for Physics/Engineering 437 Laser Applications 475 Observational Astronomy 501 Advanced Classical Mechanics 531 Nonlinear Optics 506 Quantum Mechanics I 535 Statistical Mechanics 507 Quantum Mechanics II 544 Condensed Matter Physics I 516 Experimental Physics 545 Condensed Matter Physics II 519 Electromagnetic Theory I 555 Quantum Field Theory 520 Electromagnetic Theory II 560 Astrophysics 523 General Relativity I 565 Astrophysical Plasma Physics 524 General Relativity II 566 Mathematical Physics I 525 Current
    [Show full text]