Chapter 3: Basic of Applied Mechanical Measurement

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 3: Basic of Applied Mechanical Measurement CHAPTER 3: BASIC OF APPLIED MECHANICAL MEASUREMENT 3.1. Introduction Basic quantities for measurement in mechanical field are measurement for length, mass, time, temperature and angle. These quantities can be obtained using certain measurement devices. Several measurement devices can measure some of the quantities, while the remains need to use specific measurement devices. Classification of mechanical measurement and its measurement devices that will be discussed are as follows: No Mechanical quantities Measurement devices 1 Linear dimension • ruler • caliper • micrometer caliper • vernier caliper • dial gauge 2 Mass • mechanical balance • spring balance 3 Force • spring coil • proving coil • strain gauge • load cell 4 Torque • brake • dynamometer • strain gauge • transducer Temperature, pressure and other quantities will be discussed later. 3.2. Linear Dimension Measurement 3.2.1 Micrometer A micrometer is a widely used device in mechanical engineering for precisely measuring thickness of blocks, outer and inner diameters of shafts and depths of slots. Appearing frequently in metrology, the study of measurement, micrometers have several advantages over other types of measuring instruments like the Vernier caliper - they are easy to use and their readouts are consistent. There are three types of micrometers based on their application: • External micrometer • Internal micrometer • Depth micrometer 41 An external micrometer is typically used to measure wires, spheres, shafts and blocks. An internal micrometer is used to measure the opening of holes, and a depth micrometer typically measures depths of slots and steps. The precision of a micrometer is achieved by a using a fine pitch screw mechanism. Figure 1: External, internal, and depth micrometers 3.2.1.1 Reading an Inch-system Micrometer. The spindle of an inch-system micrometer has 40 threads per inch, so that one turn moves the spindle axially 0.025 inch (1 ÷ 40 = 0.025), equal to the distance between two graduations on the frame. The 25 graduations on the thimble allow the 0.025 inch to be further divided, so that turning the thimble through one division moves the spindle axially 0.001 inch (0.025 ÷ 25 = 0.001). To read a micrometer, count the number of whole divisions that are visible on the scale of the frame, multiply this number by 25 (the number of thousandths of an inch that each division represents) and add to the product the number of that division on the thimble which coincides with the axial zero line on the frame. Figure 2: Inch Micrometer The result will be the diameter expressed in thousandths of an inch. As the numbers 1, 2, 3, etc., opposite every fourth sub-division on the frame, indicate hundreds of thousandths, the reading can easily be taken mentally. Suppose the thimble were screwed out so that graduation 2, and three additional sub-divisions, were visible (as shown in Fig. 2), and that graduation 10 on the thimble coincided with the axial line on the frame. The reading then would be 0.200 +0.075 +0.010, or 0.285 inch. 42 3.2.1.2 Reading a Metric Micrometer. The spindle of an ordinary metric micrometer has 2 threads per millimeter, and thus one complete revolution moves the spindle through a distance of 0.5 millimeter. The longitudinal line on the frame is graduated with 1 millimeter divisions and 0.5 millimeter subdivisions. The thimble has 50 graduations, each being 0.01 millimeter (one-hundredth of a millimeter). To read a metric micrometer, note the number of millimeter divisions visible on the scale of the sleeve, and add the total to the Figure 3: Metric Micrometer particular division on the thimble which coincides with the axial line on the sleeve. Suppose that the thimble were screwed out so that graduation 5, and one additional 0.5 subdivision were visible (as shown in Fig. 3), and that graduation 28 on the thimble coincided with the axial line on the sleeve. The reading then would be 5.00 +0.5 +0.28 = 5.78 mm. Some micrometers are provided with a vernier scale on the sleeve in addition to the regular graduations to permit measurements within 0.002 millimeter to be made. Micrometers of this type are read as follows: First determine the number of whole millimeters (if any) and the number of hundredths of a millimeter, as with an ordinary micrometer, and then find a line on the sleeve vernier scale which exactly coincides with one on the thimble. The number of this coinciding vernier line represents the number of two-thousandths of a millimeter to be added to the reading already obtained. Thus, for example, a measurement of 2.958 millimeters would be obtained by reading 2.5 millimeters on the sleeve, adding 0.45 millimeter read from the thimble, and then adding 0.008 millimeter as determined by the vernier. Note: 0.01 millimeter = 0.000393 inch, and 0.002 millimeter = 0.000078 inch (78 millionths). Therefore, metric micrometers provide smaller measuring increments than comparable inch unit micrometers—the smallest graduation of an ordinary inch reading micrometer is 0.001 inch; the vernier type has graduations down to 0.0001 inch. When using either a metric or inch micrometer, without a vernier, smaller readings than those graduated may of course be obtained by visual interpolation between graduations. Vernier Micrometer By adding a vernier to the micrometer, it is possible to read accurately to one ten- thousandth of an inch. The vernier markings are on the sleeve of the micrometer and are parallel to the thimble markings. There are 10 divisions on the vernier that occupy the same space as 9 divisions on the thimble. Since a thimble space is one thousandth of an inch, a vernier space is 1/10 of 9/1000 inch, or 9/10000 inch. It is 1/10000 inch less than a thimble space. Thus, as in the preceding explanation of verniers, it is possible to read the nearest ten-thousandth of an inch by reading the vernier digit whose marking coincides with a thimble marking. 43 In figure 6-6 (A), the last major division showing fully on the sleeve index is 3. The third minor division is the last mark clearly showing (0.075). The thimble division nearest and below the index is the 8 (0.008). The vernier marking that matches a thimble marking is the fourth (0.0004). Adding them all together, we have, The reading is 0.3834 inch. With practice these readings can be made directly from the micrometer, without writing the partial readings. Figure 6-6.–Vernier micrometer settings. Practice problems: 1. Read the micrometer settings in figure 6-6. Answers: 1. (A) See the foregoing example. (B) 0.1539 (C) 0.2507 (D) 0.2500 (E) 0.4690 (F) 0.0552 44 3.2.2 Vernier scale A vernier scale lets one read more precisely from an evenly divided straight or circular measurement scale. It is fitted with a sliding secondary scale that is used to indicate where the measurement lies when it is in-between two of the marks on the main scale. It was invented in its modern form in 1631 by the French mathematician Pierre Vernier (1580- 1637). In some languages, this device is called a nonius, which is the latin name of the Portuguese astronomer and mathematician Pedro Nunes (1492-1578) who invented the principle. Figure 4: A set of vernier calipers. When a measurement is taken by mechanical means using one of the above mentioned instruments, the measure is read off a finely marked data scale ( the "fixed" scale, in the diagram). The measure taken will usually be between two of the smallest gradations on this scale. The indicating scale ("vernier" in the diagram) is used to provide an even finer additional level of precision without resorting to estimation. An enlarged view of the calipers in Figure 5 shows they have an accuracy of 0.02 mm. The reading is 3.58 mm. The 3 mm is read off from the upper (fixed) data scale. The 0.58 mm is obtained from the lower (sliding) indicating Figure 5: Large view of vernier caliper scale at the point of closest alignment between the two scales. The superimposed red markings show where the readings are taken 3.2.2.1 Construction The indicating scale is constructed so that when its zero point is coincident with the start of the data scale, its gradations are at a slightly smaller spacing than those on the data scale and so do not coincide with any on the data scale. N gradations of the indicating scale would cover N-1 gradations of the data scale (where N is the number of divisions the maker wishes to show at the finer level). 45 3.2.2.2 Use When a length is measured the zero point on the indicating scale is the actual point of measurement, however this is likely to be between two data scale points. The indicator scale measurement which corresponds to the best-aligned pair of indicator & data gradations yields the value of the finer additional precision digit. Examples On instruments using decimal measure, as shown in the Figure 6, the indicating scale would have 10 gradations covering the same length as 9 on the data scale. Note that the vernier's 10th gradation is omitted. On an instrument providing angular measure, the data scale could be in half-degrees with an indicator scale providing 30 1-minute gradations (spanning 29 of the half-degree gradations). Figure 6: Measurement process 46 3.2.3 Caliper A caliper is a device used in the metalworking field of mechanical engineering, to measure the distance between two symmetrically opposing sides.
Recommended publications
  • Installing a Bench Vise Give Your Workbench the Holding Power It Deserves
    Installing a Bench Vise Give your workbench the holding power it deserves. By Craig Bentzley Let’s face it; a workbench This is the best approach for above. Regardless of the type of without vises is basically just an a face vise, because the entire mounting, have your vise(s) in assembly table. Vises provide the length of a board secured for hand before you start so you can muscle for securing workpieces edge work will contact the bench determine the size of the spacers, for planing, sawing, routing, edge for support and additional jaws, and hardware needed for and other tooling operations. clamping, as shown in the photo a trouble-free installation. Of the myriad commercial models, the venerable Record vise is one that has stood the Vise Locati on And Selecti on test of time, because it’s simple A vise’s locati on on the bench determines what it’s called. to install, easy to operate, Face vises are att ached on the front, or face, of the bench; end and designed to survive vises are installed on the end. The best benches have both, generations of use. Although but if you can only aff ord one, I’d go for a face vise initi ally. it’s no longer in production, Right-handers should mount a face vise at the far left of the several clones are available, bench’s front edge and an end vise on the end of the bench including the Eclipse vise, which at the foremost right-hand corner. Southpaws will want to I show in this article.
    [Show full text]
  • Viscoelastic Behavior of Foamed Polystyrene/Paper Composites
    Session 2793 Viscoelastic Behavior of Foamed Polystyrene/Paper Composites Robert A. McCoy Youngstown State University Introduction This paper outlines a simple lab experiment for high school students or freshman engineering students designed to demonstrate the principle behind why sandwich composites are so stiff as well as light-weight. A sandwich composite consists of a very lightweight core (such as a foamed polymer or honeycomb structure) with sheets of another material (such as paper, plastic, fiberglass, or aluminum) on the top and bottom surfaces. Applications for sandwich composites requiring both high-stiffness and lightweight include aircraft panels, boat hulls, jet skis, snow skis, partitions, and garage doors. In this experiment, the students measure the increase in stiffness when the top and bottom skins of paper are added to a Styrofoam beam to form the sandwich composite. Also this experiment includes a creep test in which the students measure and plot the deflection of the Styrofoam beam versus time to illustrate the viscoelastic behavior of Styrofoam. Materials and Equipment Required 1. A sheet of Styrofoam (foamed polystyrene) approximately 122 cm (4 ft) long, 35.5 cm (14 in) wide, and 1.83 cm (0.72 in) thick. 2. A metal frame with a clamp to hold one end of the Styrofoam beam. 3. Six metal washers, about 3.8 cm (1.5 in) diameter. 4. One jumbo paperclip. 5. One large paper grocery bag. 6. Scissors, cutting knife, and paper glue. 7. A ruler or meter stick. 8. A weighing scale or balance 9. A computer with MS Excel Procedure For each group of students performing this experiment, at least four rectangular bars approximately 2.5 cm (1 in) wide and 35.5 cm (14 in) long were cut from the Styrofoam sheet.
    [Show full text]
  • Weighing Scale 1 Weighing Scale
    Weighing scale 1 Weighing scale A weighing scale (usually just "scales" in UK and Australian English, "weighing machine" in south Asian English or "scale" in US English) is a measuring instrument for determining the weight or mass of an object. A spring scale measures weight by the distance a spring deflects under its load. A balance compares the torque on the arm due to the sample weight to the torque on the arm due to a standard reference weight using a horizontal lever. Balances are different from scales, in that a balance measures mass (or more specifically gravitational mass), whereas a scale measures weight (or more specifically, either the tension or compression force of constraint provided by the scale). Weighing scales are used in many industrial and commercial applications, and products from feathers to loaded tractor-trailers are sold by weight. Specialized medical scales and bathroom scales are used to measure the body weight of human beings. History Emperor Jahangir (reign 1605 - 1627) weighing The balance scale is such a simple device that its usage likely far his son Shah Jahan on a weighing scale by artist predates the evidence. What has allowed archaeologists to link artifacts Manohar (AD 1615, Mughal dynasty, India). to weighing scales are the stones for determining absolute weight. The balance scale itself was probably used to determine relative weight long before absolute weight.[1] The oldest evidence for the existence of weighing scales dates to c. 2400-1800 B.C.E. in the Indus River valley (modern-day Pakistan). Uniform, polished stone cubes discovered in early settlements were probably used as weight-setting stones in balance scales.
    [Show full text]
  • Mechanic Auto Body Painting
    Mechanic Auto Body Painting GOVERNMENT OF INDIA MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP DIRECTORATE GENERAL OF TRAINING COMPETENCY BASED CURRICULUM MECHANIC AUTO BODY PAINTING (Duration: One Year) CRAFTSMEN TRAINING SCHEME (CTS) NSQF LEVEL- 4 SECTOR – AUTOMOTIVE Mechanic Auto Body Painting MECHANIC AUTO BODY PAINTING (Engineering Trade) (Revised in 2018) Version: 1.1 CRAFTSMEN TRAINING SCHEME (CTS) NSQF LEVEL - 4 Developed By Ministry of Skill Development and Entrepreneurship Directorate General of Training CENTRAL STAFF TRAINING AND RESEARCH INSTITUTE EN-81, Sector-V, Salt Lake City, Kolkata – 700 091 Mechanic Auto Body Painting ACKNOWLEDGEMENT The DGT sincerely acknowledges contributions of the Industries, State Directorates, Trade Experts, Domain Experts and all others who contributed in revising the curriculum. Special acknowledgement is extended by DGT to the following expert members who had contributed immensely in this curriculum. List of Expert members participated for finalizing the course curricula of Mechanic Auto Body Painting trade held on 20.02.18 at Advanced Training Institute-Chennai Name & Designation S No. Organization Remarks Shri/Mr./Ms. P. Thangapazham, AGM-HR, Daimler India Commercial Vehicles Pvt. Ltd., Chairman 1. Training Chennai DET- Chennai Member 2. A. Duraichamy, ATO/ MMV Govt. ITI, Salem 3. W. Nirmal Kumar Israel, TO Gov. ITI, Manikandam, Trichy-12 Member 4. S. Venkata Krishna, Dy. Manager Maruti Suzuki India Ltd., Chennai Member S. Karthikeyan, Regional Training Member 5. MAruti Suzuki India Ltd., Tamilnadu Manager 6. N. Balasubramaniam ASDC Member TVS TS Ltd., Ambattur Industrial Estate, Member 7. P. Murugesan, Chennai-58 Ashok Leyland Driver Training Institute, Member 8. R. Jayaprakash Namakkal 9. Mr. Veerasany, GM, E.
    [Show full text]
  • Section 4: Guide to Physical Measurements (Step 2) Overview
    Section 4: Guide to Physical Measurements (Step 2) Overview Introduction This section provides information on and is a guide to working with the topics covered under Step 2 of the STEPS Instrument. Intended This section is designed for use by those fulfilling the following roles: audience • Data collection team trainer • Data collection team supervisor • Interviewers • STEPS site coordinator In this section This section covers the following topics: Topic See Page Physical Measurements Overview 3-4-2 Physical Measurements 3-4-3 Measuring Height (Core) 3-4-5 Measuring Weight (Core) 3-4-6 Measuring Waist Circumference (Core) 3-4-8 Taking Blood Pressure (Core) 3-4-10 Measuring Hip Circumference (Expanded) 3-4-13 Recording Heart Rate (Expanded) 3-4-15 Part 3: Training & Practical Guides 3-4-1 Section 4: Guide to Physical Measurements (Step 2) WHO STEPS Surveillance Physical Measurements Overview Introduction Step 2 of the STEPS Instrument includes the addition of selected physical measures to determine the proportion of adults that: • Are overweight and/or obese • Have raised blood pressure What you will In this section, you will learn: learn • What the physical measures are and what they mean • What equipment you will need • How to assemble and use the equipment • How to take physical measurements and accurately record the results Learning The learning outcome of this section is to understand what the physical outcomes measures are and how to accurately take the measurements and record the objectives results. Part 3: Training & Practical Guides 3-4-2 Section 4: Guide to Physical Measurements (Step 2) WHO STEPS Surveillance Physical Measurements Introduction Height and weight measurements are taken from eligible participants to calculate body mass index (BMI) used to determine overweight and obesity.
    [Show full text]
  • Split-Top Roubo Bench Plans
    SPLIT-TOP ROUBO BENCH PLANS Design, Construction Notes and Techniques Copyright Benchcrafted 2009-2014 · No unauthorized reproduction or distribution. You may print copies for your own personal use only. 1 Roubo’s German Cabinetmaker’s Bench from “L’Art Du Menuisier” ~ Design ~ The Benchcrafted Split-Top Roubo Bench is largely based on the workbenches documented by French author André Roubo in his 18th-century monumental work “L’Art Du Menuisier” (“The Art of the Joiner”). The Split-Top bench design primarily grew out of Roubo’s German cabinetmaker’s bench documented in volume three of Roubo’s series. Author and bench historian Christopher Schwarz, who has re-popularized several classic bench designs of late, and most notably the Roubo, was also an influence through his research and writings. We built a version of Roubo’s German bench and it served as a platform from which the Split-Top Roubo was conceived. We were attracted to the massive nature of Roubo’s German design and were interested to see how the sliding leg vise in particular functioned in day-to-day use. From the start we opted to do away with the traditional sliding-block tail vise, with its pen- chant for sagging and subsequent frustration. In the process of the bench’s development the Benchcrafted Tail Vise emerged and it has proven to be an excellent workholding solution, solving all of the problems of traditional tail vises without sacrificing much in terms of function, i.e., the ability to clamp between open-front jaws. For all the aggrava- 2 tion that the Benchcrafted Tail Vise eliminates, that feature isn’t missed all that much.
    [Show full text]
  • Installing a Bench Vise Give Your Workbench the Holding Power It Deserves
    Installing a Bench Vise Give your workbench the holding power it deserves. By Craig Bentzley Let’s face it; a workbench This is the best approach for above. Regardless of the type of without vises is basically just an a face vise, because the entire mounting, have your vise(s) in assembly table. Vises provide the length of a board secured for hand before you start so you can muscle for securing workpieces edge work will contact the bench determine the size of the spacers, for planing, sawing, routing, edge for support and additional jaws, and hardware needed for and other tooling operations. clamping, as shown in the photo a trouble-free installation. Of the myriad commercial models, the venerable Record vise is one that has stood the Vise Locati on And Selecti on test of time, because it’s simple A vise’s locati on on the bench determines what it’s called. to install, easy to operate, Face vises are att ached on the front, or face, of the bench; end and designed to survive vises are installed on the end. The best benches have both, generations of use. Although but if you can only aff ord one, I’d go for a face vise initi ally. it’s no longer in production, Right-handers should mount a face vise at the far left of the several clones are available, bench’s front edge and an end vise on the end of the bench including the Eclipse vise, which at the foremost right-hand corner. Southpaws will want to I show in this article.
    [Show full text]
  • Unit 8 Testing, Measuring, Scribing
    zielsicher English for Metalworking Technicians – Audioscript zu Schulbuchseite 48 Unit 8 Testing, measuring, scribing Task 14 Announcer: Listen to Aniri and John talking about various tools they use for measuring, gauging and scribing. Aniri: We’re learning about so many different tools in vocational school at the moment. John: Yes, you’re right! Take measuring tools, for example. Can you name some? Aniri: Easy! The Vernier calliper, the dial gauge, the protractor and the external micrometer. John: That’s right. What about gauging tools? Can you name those, too? Aniri: Of course. … The limit gap gauge, the feeler gauge, the radius gauge and the straightedge. John: Excellent. And do you know the difference between measuring tools and gauging tools? Aniri: Phew, let me try if I can get it right … Uhmm … Measuring tools determine the actual size of a length or an angle with a numerical value. Gauging compares the form or size of a work piece with a gauge to see if the work piece is within the permitted deviation. John: Very impressive. I notice that you’ve paid attention in class. Aniri: And what about you? Can you tell me what scribing is about? John: That’s easy. Scribing is transferring the dimensions of a drawing onto the work piece. Aniri: And how do you do that? What kind of tools do you need? John: Scribers or dividers. The choice of the right scribing tool depends on the material of the work-piece. Aniri: Okay. So what would you use for metal materials? John: Steel scribers with a hardened tip.
    [Show full text]
  • Surprising Constructions with Straightedge and Compass
    Surprising Constructions with Straightedge and Compass Moti Ben-Ari http://www.weizmann.ac.il/sci-tea/benari/ Version 1.0.0 February 11, 2019 c 2019 by Moti Ben-Ari. This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. Contents Introduction 5 1 Help, My Compass Collapsed! 7 2 How to Trisect an Angle (If You Are Willing to Cheat) 13 3 How to (Almost) Square a Circle 17 4 A Compass is Sufficient 25 5 A Straightedge (with Something Extra) is Sufficient 37 6 Are Triangles with the Equal Area and Perimeter Congruent? 47 3 4 Introduction I don’t remember when I first saw the article by Godfried Toussaint [7] on the “collapsing compass,” but it make a deep impression on me. It never occurred to me that the modern compass is not the one that Euclid wrote about. In this document, I present the collapsing compass and other surprising geometric constructions. The mathematics used is no more advanced than secondary-school mathematics, but some of the proofs are rather intricate and demand a willingness to deal with complex constructions and long proofs. The chapters are ordered in ascending levels of difficult (according to my evaluation). The collapsing compass Euclid showed that every construction that can be done using a compass with fixed legs can be done using a collapsing compass, which is a compass that cannot maintain the distance between its legs.
    [Show full text]
  • A Circular Saw in the Furniture Shop?
    A Circular Saw in the Furniture Shop? YOU ARE HERE: Fine Woodworking Home Skills & Techniques A Circular Saw in the Furniture Shop? From the pages of Fine Woodworking Magazine A Circular Saw in the Furniture Shop? For cutting sheet goods in tight quarters, this carpenter's tool, used with a sacrificial table and dedicated cutting guides, produces joint-quality cuts with ease by Gary Williams Contractors couldn't live without the portable circular saw, but we of the warm, dry furniture shop tend to leave it on the same shelf as the chainsaw. Great for building a deck but far too crude for quartersawn oak. Necessity has a way of teaching us humility, however. I've been a sometimes-professional woodworker for nearly 30 years, but somehow I have never managed to attain the supremely well-equipped shop. I work alone in a no-frills, two-car garage that I share with a washer, a dryer, a water heater and a black Labrador. My machines are on the small side, and I lack the space for large permanent outfeed and side extension tables for my tablesaw. Perhaps you can relate. Under these conditions, cutting a full sheet of plywood can be a very challenging operation. Even if you have your shop set up to handle sheet goods with ease, perhaps you've run into similar difficulties cutting plywood and lumber accurately on job sites and installations. The solution? May I suggest the humble circular saw? Cutting lumber and plywood with a handheld circular saw is nothing new. You've probably done it before, with varying degrees of success.
    [Show full text]
  • Weighing Indicator
    Weighing Indicator …Clearly a Better Value http://www.aandd.jp Weighing Indicator AD-4328 3 AD-4329A 3 AD-4401A 4 AD-4402 5 AD-4403-FP 6 AD-4404 7 AD-4405A 8 AD-4406A 9 AD - 4407A 10 AD-4408A 11 AD4408C 12 AD - 4410 13 AD-4430B 14 AD-4430C 15 Analog Signal Conditioner AD4541-V/I 16 Digital Indicator AD-4530 16 AD - 4531B 17 AD-4532B 18 Printer & Equipment A D - 8118 C 19 AD - 8121B 19 AD-1688 19 AD-8527 19 Specifications 20 2 Weighing Indicator AD-4328 Basic Weighing Indicator The AD-4328 is a simple weighing indicator that converts and displays load cell outputs as weights. The AD-4328 satisfies all basic requirements for platform, hopper and packer scales. Display Large (character height 14.2mm) LED display for weights and tare values. Optional stand available Waterproof front panel (IP-65 compliant) Weighing Functions Checkweighing mode (3 levels) for comparing weight with upper and 170 / 6.69” 12.5 / 0.49” 113.5 / 4.47” 19 / 0.75” lower limits. Setpoint comparison for batching applications AD-4328 WEIGHING INDICATOR kg Manual and automatic comparator and accumulated data storage to t ZERO MD GROSS NET PT memory 130/ 5.12” OPR/STB PRESENT M+ MODE TARE External I/O NET GROSS ZERO TARE PRINT Control Inputs (3 standard) Front View Side View Current Loop Output (for connection to A&D peripheral devices) 162±0.5/6.38±0.02” Optional Items RS-232C, RS-422/485, Relay output, Parallel BCD output Digital Calibration Function Power Supply DC9V (AC adapter or direct input to the terminal) AC adapter is optional 124±0.5 /4.88±0.02” Panel Cutout Unit: mm/inches AD-4329A Basic Weighing Indicator The AD-4329A is equipped with a triple-range function and is ideal for scales with multiple weighing intervals.
    [Show full text]
  • 7.8 Excessive Water Jet Pressure
    A 7.8 Excessive Water Jet Pressure Description: During hydro-blasting, a high-pressure water jet impacts the concrete to be removed (FM 7.8 Exhibit 1 is a September 2004 International Concrete Repair Institute.(ICRI) Technical Guideline "Guide for the Preparation of Concrete Surfaces for Repair Using Hydro-demolition Methods" and FM 7.8 Exhibit 2 is the ACI 546R-04 Concrete Repair Guide). The water jet pressure that is used is nominally 20,000 psi (FM 7.8 Exhibit 3 is the Work Plan agreed by Mac & Mac, the hydro-blasting company used for this project, and Progress Energy, the owner) although in practice it can vary somewhat (FM 7.8 Exhibit 4 is an interview with Dave McNeill, co-owner of Mac & Mac and FM 7.8 Exhibit 5 is an interview of Robert Nittinger, President of American Hydro). The pressure is obtained by means of a plunger positive displacement pump. The water nozzles rotate at 500 rpm. The jet flow rate per nozzle is around 50 gallons per minute. The intent of hydro-demolition as applied here is to damage and remove the concrete section of interest. This is indeed the point of using this technology in this particular application where concrete HAS to be removed. This FM is looking at if and how the hydro pressure might cause damage beyond the application area via force or pressure buildup. Damage to underlying or surrounding concrete (outside the targeted removal area) may occur if water jet pressure and flow is not maintained within a controllable range. Note that issues associated with resonant frequency are analyzed separately in FM 7.2.
    [Show full text]