Metamath a Computer Language for Mathematical Proofs

Total Page:16

File Type:pdf, Size:1020Kb

Metamath a Computer Language for Mathematical Proofs Metamath A Computer Language for Mathematical Proofs Norman Megill with extensive revisions by David A. Wheeler 2019-06-02 iii ∼ Public Domain ∼ This book (including its later revisions) has been released into the Public Domain by Norman Megill per the Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain Dedication (https: //creativecommons.org/publicdomain/zero/1.0/). David A. Wheeler has done the same. The public domain release applies worldwide. In case this is not legally possible, the right is granted to use the work for any purpose, without any conditions, unless such conditions are required by law. Several short, attributed quotations from copyrighted works appear in this book under the \fair use" provision of Section 107 of the United States Copyright Act (Title 17 of the United States Code). The public-domain status of this book is not applicable to those quotations. Any trademarks used in this book are the property of their owners. ISBN: 978-0-359-70223-7 Lulu Press Morrisville, North Carolina iv USA Norman Megill 93 Bridge St., Lexington, MA 02421 E-mail address: [email protected] David A. Wheeler E-mail address: [email protected] http://metamath.org Contents Preface . xiii 1 Introduction 1 1.1 Mathematics as a Computer Language . 8 1.1.1 Is Mathematics \User-Friendly"? . 8 1.1.2 Mathematics and the Non-Specialist 25 1.1.3 An Impossible Dream? . 28 1.1.4 Beauty . 31 1.1.5 Simplicity . 33 1.1.6 Rigor . 36 1.2 Computers and Mathematicians . 42 1.2.1 Trusting the Computer . 44 1.2.2 Trusting the Mathematician . 45 1.3 The Use of Computers in Mathematics . 50 1.3.1 Computer Algebra Systems . 50 1.3.2 Automated Theorem Provers . 52 1.3.3 Interactive Theorem Provers . 57 v vi CONTENTS 1.3.4 Proof Verifiers . 58 1.3.5 Creating a Database of Formalized Mathematics . 60 1.3.6 In Summary . 64 1.4 Mathematics and Metamath . 65 1.4.1 Standard Mathematics . 65 1.4.2 Other Formal Systems . 66 1.4.3 Metamath and Its Philosophy . 68 1.4.4 A History of the Approach Behind Metamath . 69 1.4.5 Metamath and First-Order Logic . 71 2 Using the Metamath Program 75 2.1 Installation . 75 2.2 Your First Formal System . 77 2.2.1 From Nothing to Zero . 77 2.2.2 Converting It to Metamath . 82 2.3 A Trial Run . 90 2.3.1 Some Hints for Using the Command Line Interface . 98 2.4 Your First Proof . 101 2.5 A Note About Editing a Database File . 112 3 Abstract Mathematics Revealed 115 3.1 Logic and Set Theory . 115 3.2 The Axioms for All of Mathematics . 121 3.2.1 Propositional Calculus . 122 3.2.2 Predicate Calculus . 126 CONTENTS vii 3.2.3 Set Theory . 133 3.2.4 Other Axioms . 137 3.3 The Axioms in the Metamath Language . 138 3.3.1 Propositional Calculus . 138 3.3.2 Axioms of Predicate Calculus with Equality|Tarski's S2 . 139 3.3.3 Axioms of Predicate Calculus with Equality|Auxiliary . 140 3.3.4 Set Theory . 140 3.3.5 That's It . 142 3.4 A Hierarchy of Definitions . 142 3.4.1 Definitions for Propositional Calculus147 3.4.2 Definitions for Predicate Calculus . 149 3.4.3 Definitions for Set Theory . 151 3.5 Tricks of the Trade . 167 3.6 A Theorem Sampler . 170 3.7 Axioms for Real and Complex Numbers . 175 3.7.1 The Axioms for Real and Complex Numbers Themselves . 176 3.7.2 Complex Number Axioms in Anal- ysis Texts . 180 3.7.3 Eliminating Unnecessary Complex Number Axioms . 180 3.8 Two Plus Two Equals Four . 182 3.9 Deduction . 184 3.9.1 The Standard Deduction Theorem 186 3.9.2 Weak Deduction Theorem . 188 viii CONTENTS 3.9.3 Deduction Style . 191 3.9.4 Natural Deduction . 194 3.9.5 Strengths of Our Approach . 199 3.10 Exploring the Set Theory Database . 201 3.10.1 A Note on the \Compact" Proof Format . 216 4 The Metamath Language 219 4.1 Specification of the Metamath Language . 221 4.1.1 Preliminaries . 222 4.1.2 Preprocessing . 223 4.1.3 Basic Syntax . 224 4.1.4 Proof Verification . 227 4.2 The Basic Keywords . 229 4.2.1 User-Defined Tokens . 232 4.2.2 Constants and Variables . 235 4.2.3 The $c and $v Declaration State- ments . 236 4.2.4 The $d Statement . 238 4.2.5 The $f and $e Statements . 248 4.2.6 Assertions ($a and $p Statements) 251 4.2.7 Frames . 255 4.2.8 Scoping Statements ($f and $g) . 261 4.3 The Anatomy of a Proof . 266 4.3.1 The Concept of Unification . 274 4.4 Extensions to the Metamath Language . 275 4.4.1 Comments in the Metamath Lan- guage . 275 CONTENTS ix 4.4.2 The Typesetting Comment ($t) . 284 4.4.3 Additional Information Comment ($j) . 290 4.4.4 Including Other Files in a Meta- math Source File . 293 4.4.5 Compressed Proof Format . 295 4.4.6 Specifying Unknown Proofs or Sub- proofs . 297 4.5 Axioms vs. Definitions . 298 4.5.1 What is a Definition? . 298 4.5.2 The Approach to Definitions in set.mm301 4.5.3 Adding Constraints on Definitions 306 4.5.4 Summary of Approach to Definitions308 5 The Metamath Program 309 5.1 Invoking Metamath . 310 5.2 Controlling Metamath . 311 5.2.1 exit Command . 313 5.2.2 open log Command . 314 5.2.3 close log Command . 314 5.2.4 submit Command . 315 5.2.5 erase Command . 315 5.2.6 set echo Command . 316 5.2.7 set scroll Command . 316 5.2.8 set width Command . 316 5.2.9 set height Command . 317 5.2.10 beep Command . 317 5.2.11 more Command . 318 x CONTENTS 5.2.12 Operating System Commands . 318 5.2.13 Size Limitations in Metamath . 318 5.3 Reading and Writing Files . 319 5.3.1 read Command . 319 5.3.2 write source Command . 320 5.4 Showing Status and Statements . 322 5.4.1 show settings Command . 322 5.4.2 show memory Command . 322 5.4.3 show labels Command . 322 5.4.4 show statement Command . 323 5.4.5 search Command . 324 5.5 Displaying and Verifying Proofs . 325 5.5.1 show proof Command . 325 5.5.2 show usage Command . 327 5.5.3 show trace back Command . 327 5.5.4 verify proof Command . 328 5.5.5 verify markup Command . 329 5.5.6 save proof Command . 330 5.6 Creating Proofs . 330 5.6.1 prove Command . 336 5.6.2 set unification timeout Command336 5.6.3 set empty substitution Command337 5.6.4 set search limit Command . 338 5.6.5 show new proof Command . 338 5.6.6 assign Command . 339 5.6.7 match Command . 340 5.6.8 let Command . 341 CONTENTS xi 5.6.9 unify Command . 342 5.6.10 initialize Command . 343 5.6.11 delete Command . 344 5.6.12 improve Command . 345 5.6.13 save new proof Command . 346 5.7 Creating LATEX Output . 347 5.7.1 open tex Command . 348 5.7.2 close tex Command . 349 5.8 Creating HTML Output . 349 5.8.1 write theorem list Command . 351 5.8.2 write bibliography Command . 352 5.8.3 write recent additions Command352 5.9 Text File Utilities . 353 5.9.1 tools Command . 353 5.9.2 help Command (in tools) . 354 5.9.3 Using tools to Build Metamath submit Scripts . 356 5.9.4 Example of a tools Session . 356 A Sample Representations 359 B Compressed Proofs 367 C Metamath's Formal System 371 C.1 Introduction . 371 C.2 The Formal Description . 373 C.2.1 Preliminaries . 373 xii CONTENTS C.2.2 Constants, Variables, and Expres- sions . 374 C.2.3 Substitution . 376 C.2.4 Statements . 376 C.2.5 Formal Systems . 379 C.3 Examples of Formal Systems . 381 C.3.1 Example 1|Propositional Calculus 381 C.3.2 Example 2|Predicate Calculus with Equality . 385 C.3.3 Free Variables and Proper Substi- tution . 389 C.3.4 Metalogical Completeness . 391 C.3.5 Example 3|Metalogically Complete Predicate Calculus with Equality . 392 C.3.6 Example 4|Adding Definitions . 395 C.3.7 Example 5|ZFC Set Theory . 396 C.3.8 Example 6|Class Notation in Set Theory . 398 C.4 Metamath as a Formal System . 401 D The MIU System 405 E Metamath Language EBNF 411 Bibliography 417 Index 429 Preface Overview Metamath is a computer language and an associated computer program for archiving, verifying, and study- ing mathematical proofs at a very detailed level. The Metamath language incorporates no mathematics per se but treats all mathematical statements as mere sequences of symbols. You provide Metamath with certain special sequences (axioms) that tell it what rules of inference are allowed. Metamath is not limited to any specific field of mathematics. The Metamath language is simple and robust, with an almost total absence of hard-wired syntax, and we1 believe that it provides about the simplest possi- ble framework that allows essentially all of mathematics 1Unless otherwise noted, the words \I," \me," and \my" refer to Norman Megill, while \we," \us," and \our" refer to Norman Megill and David A.
Recommended publications
  • Specifying Verified X86 Software from Scratch
    Specifying verified x86 software from scratch Mario Carneiro Carnegie Mellon University, Pittsburgh, PA, USA [email protected] Abstract We present a simple framework for specifying and proving facts about the input/output behavior of ELF binary files on the x86-64 architecture. A strong emphasis has been placed on simplicity at all levels: the specification says only what it needs to about the target executable, the specification is performed inside a simple logic (equivalent to first-order Peano Arithmetic), and the verification language and proof checker are custom-designed to have only what is necessary to perform efficient general purpose verification. This forms a part of the Metamath Zero project, to build a minimal verifier that is capable of verifying its own binary. In this paper, we will present the specification of the dynamic semantics of x86 machine code, together with enough information about Linux system calls to perform simple IO. 2012 ACM Subject Classification Theory of computation → Program verification; Theory of com- putation → Abstract machines Keywords and phrases x86-64, ISA specification, Metamath Zero, self-verification Digital Object Identifier 10.4230/LIPIcs.ITP.2019.19 Supplement Material The formalization is a part of the Metamath Zero project at https://github. com/digama0/mm0. Funding This material is based upon work supported by AFOSR grant FA9550-18-1-0120 and a grant from the Sloan Foundation. Acknowledgements I would like to thank my advisor Jeremy Avigad for his support and encourage- ment, and for his reviews of early drafts of this work. 1 Introduction The field of software verification is on the verge of a breakthrough.
    [Show full text]
  • Relative Interpretations and Substitutional Definitions of Logical
    Relative Interpretations and Substitutional Definitions of Logical Truth and Consequence MIRKO ENGLER Abstract: This paper proposes substitutional definitions of logical truth and consequence in terms of relative interpretations that are extensionally equivalent to the model-theoretic definitions for any relational first-order language. Our philosophical motivation to consider substitutional definitions is based on the hope to simplify the meta-theory of logical consequence. We discuss to what extent our definitions can contribute to that. Keywords: substitutional definitions of logical consequence, Quine, meta- theory of logical consequence 1 Introduction This paper investigates the applicability of relative interpretations in a substi- tutional account of logical truth and consequence. We introduce definitions of logical truth and consequence in terms of relative interpretations and demonstrate that they are extensionally equivalent to the model-theoretic definitions as developed in (Tarski & Vaught, 1956) for any first-order lan- guage (including equality). The benefit of such a definition is that it could be given in a meta-theoretic framework that only requires arithmetic as ax- iomatized by PA. Furthermore, we investigate how intensional constraints on logical truth and consequence force us to extend our framework to an arithmetical meta-theory that itself interprets set-theory. We will argue that such an arithmetical framework still might be in favor over a set-theoretical one. The basic idea behind our definition is both to generate and evaluate substitution instances of a sentence ' by relative interpretations. A relative interpretation rests on a function f that translates all formulae ' of a language L into formulae f(') of a language L0 by mapping the primitive predicates 0 P of ' to formulae P of L while preserving the logical structure of ' 1 Mirko Engler and relativizing its quantifiers by an L0-definable formula.
    [Show full text]
  • The Metamathematics of Putnam's Model-Theoretic Arguments
    The Metamathematics of Putnam's Model-Theoretic Arguments Tim Button Abstract. Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted mod- els. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I exam- ine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to meta- mathematical challenges. Copyright notice. This paper is due to appear in Erkenntnis. This is a pre-print, and may be subject to minor changes. The authoritative version should be obtained from Erkenntnis, once it has been published. Hilary Putnam famously attempted to use model theory to draw metaphys- ical conclusions. Specifically, he attacked metaphysical realism, a position characterised by the following credo: [T]he world consists of a fixed totality of mind-independent objects. (Putnam 1981, p. 49; cf. 1978, p. 125). Truth involves some sort of correspondence relation between words or thought-signs and external things and sets of things. (1981, p. 49; cf. 1989, p. 214) [W]hat is epistemically most justifiable to believe may nonetheless be false. (1980, p. 473; cf. 1978, p. 125) To sum up these claims, Putnam characterised metaphysical realism as an \externalist perspective" whose \favorite point of view is a God's Eye point of view" (1981, p. 49). Putnam sought to show that this externalist perspective is deeply untenable. To this end, he treated correspondence in terms of model-theoretic satisfaction.
    [Show full text]
  • The Substitutional Analysis of Logical Consequence
    THE SUBSTITUTIONAL ANALYSIS OF LOGICAL CONSEQUENCE Volker Halbach∗ dra version ⋅ please don’t quote ónd June óþÕä Consequentia ‘formalis’ vocatur quae in omnibus terminis valet retenta forma consimili. Vel si vis expresse loqui de vi sermonis, consequentia formalis est cui omnis propositio similis in forma quae formaretur esset bona consequentia [...] Iohannes Buridanus, Tractatus de Consequentiis (Hubien ÕÉßä, .ì, p.óóf) Zf«±§Zh± A substitutional account of logical truth and consequence is developed and defended. Roughly, a substitution instance of a sentence is dened to be the result of uniformly substituting nonlogical expressions in the sentence with expressions of the same grammatical category. In particular atomic formulae can be replaced with any formulae containing. e denition of logical truth is then as follows: A sentence is logically true i all its substitution instances are always satised. Logical consequence is dened analogously. e substitutional denition of validity is put forward as a conceptual analysis of logical validity at least for suciently rich rst-order settings. In Kreisel’s squeezing argument the formal notion of substitutional validity naturally slots in to the place of informal intuitive validity. ∗I am grateful to Beau Mount, Albert Visser, and Timothy Williamson for discussions about the themes of this paper. Õ §Z êZo±í At the origin of logic is the observation that arguments sharing certain forms never have true premisses and a false conclusion. Similarly, all sentences of certain forms are always true. Arguments and sentences of this kind are for- mally valid. From the outset logicians have been concerned with the study and systematization of these arguments, sentences and their forms.
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • Mathematics in the Computer
    Mathematics in the Computer Mario Carneiro Carnegie Mellon University April 26, 2021 1 / 31 Who am I? I PhD student in Logic at CMU I Proof engineering since 2013 I Metamath (maintainer) I Lean 3 (maintainer) I Dabbled in Isabelle, HOL Light, Coq, Mizar I Metamath Zero (author) Github: digama0 I Proved 37 of Freek’s 100 theorems list in Zulip: Mario Carneiro Metamath I Lots of library code in set.mm and mathlib I Say hi at https://leanprover.zulipchat.com 2 / 31 I Found Metamath via a random internet search I they already formalized half of the book! I .! . and there is some stuff on cofinality they don’t have yet, maybe I can help I Got involved, did it as a hobby for a few years I Got a job as an android developer, kept on the hobby I Norm Megill suggested that I submit to a (Mizar) conference, it went well I Met Leo de Moura (Lean author) at a conference, he got me in touch with Jeremy Avigad (my current advisor) I Now I’m a PhD at CMU philosophy! How I got involved in formalization I Undergraduate at Ohio State University I Math, CS, Physics I Reading Takeuti & Zaring, Axiomatic Set Theory 3 / 31 I they already formalized half of the book! I .! . and there is some stuff on cofinality they don’t have yet, maybe I can help I Got involved, did it as a hobby for a few years I Got a job as an android developer, kept on the hobby I Norm Megill suggested that I submit to a (Mizar) conference, it went well I Met Leo de Moura (Lean author) at a conference, he got me in touch with Jeremy Avigad (my current advisor) I Now I’m a PhD at CMU philosophy! How I got involved in formalization I Undergraduate at Ohio State University I Math, CS, Physics I Reading Takeuti & Zaring, Axiomatic Set Theory I Found Metamath via a random internet search 3 / 31 I .
    [Show full text]
  • 12 Propositional Logic
    CHAPTER 12 ✦ ✦ ✦ ✦ Propositional Logic In this chapter, we introduce propositional logic, an algebra whose original purpose, dating back to Aristotle, was to model reasoning. In more recent times, this algebra, like many algebras, has proved useful as a design tool. For example, Chapter 13 shows how propositional logic can be used in computer circuit design. A third use of logic is as a data model for programming languages and systems, such as the language Prolog. Many systems for reasoning by computer, including theorem provers, program verifiers, and applications in the field of artificial intelligence, have been implemented in logic-based programming languages. These languages generally use “predicate logic,” a more powerful form of logic that extends the capabilities of propositional logic. We shall meet predicate logic in Chapter 14. ✦ ✦ ✦ ✦ 12.1 What This Chapter Is About Section 12.2 gives an intuitive explanation of what propositional logic is, and why it is useful. The next section, 12,3, introduces an algebra for logical expressions with Boolean-valued operands and with logical operators such as AND, OR, and NOT that Boolean algebra operate on Boolean (true/false) values. This algebra is often called Boolean algebra after George Boole, the logician who first framed logic as an algebra. We then learn the following ideas. ✦ Truth tables are a useful way to represent the meaning of an expression in logic (Section 12.4). ✦ We can convert a truth table to a logical expression for the same logical function (Section 12.5). ✦ The Karnaugh map is a useful tabular technique for simplifying logical expres- sions (Section 12.6).
    [Show full text]
  • Logical Consequence: a Defense of Tarski*
    GREG RAY LOGICAL CONSEQUENCE: A DEFENSE OF TARSKI* ABSTRACT. In his classic 1936 essay “On the Concept of Logical Consequence”, Alfred Tarski used the notion of XU~@~ZC~~NIto give a semantic characterization of the logical properties. Tarski is generally credited with introducing the model-theoretic chamcteriza- tion of the logical properties familiar to us today. However, in his hook, The &ncel>f of Lugid Consequence, Etchemendy argues that Tarski’s account is inadequate for quite a number of reasons, and is actually incompatible with the standard mod&theoretic account. Many of his criticisms are meant to apply to the model-theoretic account as well. In this paper, I discuss the following four critical charges that Etchemendy makes against Tarski and his account of the logical properties: (1) (a) Tarski’s account of logical consequence diverges from the standard model-theoretic account at points where the latter account gets it right. (b) Tarski’s account cannot be brought into line with the model-thcorctic account, because the two are fundamentally incompatible. (2) There are simple countcrcxamples (enumerated by Etchemcndy) which show that Tarski’s account is wrong. (3) Tarski committed a modal faIlacy when arguing that his account captures our pre-theoretical concept of logical consequence, and so obscured an essential weakness of the account. (4) Tarski’s account depends on there being a distinction between the “log- ical terms” and the “non-logical terms” of a language, but (according to Etchemendy) there are very simple (even first-order) languages for which no such distinction can be made. Etchemcndy’s critique raises historica and philosophical questions about important foun- dational work.
    [Show full text]
  • The Metamath Proof Language
    The Metamath Proof Language Norman Megill May 9, 2014 1 Metamath development server Overview of Metamath • Very simple language: substitution is the only basic rule • Very small verifier (≈300 lines code) • Fast proof verification (6 sec for ≈18000 proofs) • All axioms (including logic) are specified by user • Formal proofs are complete and transparent, with no hidden implicit steps 2 Goals Simplest possible framework that can express and verify (essentially) all of mathematics with absolute rigor Permanent archive of hand-crafted formal proofs Elimination of uncertainty of proof correctness Exposure of missing steps in informal proofs to any level of detail desired Non-goals (at this time) Automated theorem proving Practical proof-finding assistant for working mathematicians 3 sophistication × × × × × others Metamath × transparency (Ficticious conceptual chart) 4 Contributors David Abernethy David Harvey Rodolfo Medina Stefan Allan Jeremy Henty Mel L. O'Cat Juha Arpiainen Jeff Hoffman Jason Orendorff Jonathan Ben-Naim Szymon Jaroszewicz Josh Purinton Gregory Bush Wolf Lammen Steve Rodriguez Mario Carneiro G´erard Lang Andrew Salmon Paul Chapman Raph Levien Alan Sare Scott Fenton Fr´ed´ericLin´e Eric Schmidt Jeffrey Hankins Roy F. Longton David A. Wheeler Anthony Hart Jeff Madsen 5 Examples of axiom systems expressible with Metamath (Blue means used by the set.mm database) • Intuitionistic, classical, paraconsistent, relevance, quantum propositional logics • Free or standard first-order logic with equality; modal and provability logics • NBG, ZF, NF set theory, with AC, GCH, inaccessible and other large cardinal axioms Axiom schemes are exact logical equivalents to textbook counterparts. All theorems can be instantly traced back to what axioms they use.
    [Show full text]
  • Presupposition: a Semantic Or Pragmatic Phenomenon?
    Arab World English Journal (AWEJ) Volume. 8 Number. 3 September, 2017 Pp. 46 -59 DOI: https://dx.doi.org/10.24093/awej/vol8no3.4 Presupposition: A Semantic or Pragmatic Phenomenon? Mostafa OUALIF Department of English Studies Faculty of Letters and Humanities Ben M’sik, Casablanca Hassan II University, Casablanca, Morocco Abstract There has been debate among linguists with regards to the semantic view and the pragmatic view of presupposition. Some scholars believe that presupposition is purely semantic and others believe that it is purely pragmatic. The present paper contributes to the ongoing debate and exposes the different ways presupposition was approached by linguists. The paper also tries to attend to (i) what semantics is and what pragmatics is in a unified theory of meaning and (ii) the possibility to outline a semantic account of presupposition without having recourse to pragmatics and vice versa. The paper advocates Gazdar’s analysis, a pragmatic analysis, as the safest grounds on which a working grammar of presupposition could be outlined. It shows how semantic accounts are inadequate to deal with the projection problem. Finally, the paper states explicitly that the increasingly puzzling theoretical status of presupposition seems to confirm the philosophical contention that not any fact can be translated into words. Key words: entailment, pragmatics, presupposition, projection problem, semantic theory Cite as: OUALIF, M. (2017). Presupposition: A Semantic or Pragmatic Phenomenon? Arab World English Journal, 8 (3). DOI: https://dx.doi.org/10.24093/awej/vol8no3.4 46 Arab World English Journal (AWEJ) Volume 8. Number. 3 September 2017 Presupposition: A Semantic or Pragmatic Phenomenon? OUALIF I.
    [Show full text]
  • Constructing a Categorical Framework of Metamathematical Comparison Between Deductive Systems of Logic
    Bard College Bard Digital Commons Senior Projects Spring 2016 Bard Undergraduate Senior Projects Spring 2016 Constructing a Categorical Framework of Metamathematical Comparison Between Deductive Systems of Logic Alex Gabriel Goodlad Bard College, [email protected] Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2016 Part of the Logic and Foundations Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Goodlad, Alex Gabriel, "Constructing a Categorical Framework of Metamathematical Comparison Between Deductive Systems of Logic" (2016). Senior Projects Spring 2016. 137. https://digitalcommons.bard.edu/senproj_s2016/137 This Open Access work is protected by copyright and/or related rights. It has been provided to you by Bard College's Stevenson Library with permission from the rights-holder(s). You are free to use this work in any way that is permitted by the copyright and related rights. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact [email protected]. Constructing a Categorical Framework of Metamathematical Comparison Between Deductive Systems of Logic A Senior Project submitted to The Division of Science, Mathematics, and Computing of Bard College by Alex Goodlad Annandale-on-Hudson, New York May, 2016 Abstract The topic of this paper in a broad phrase is \proof theory". It tries to theorize the general notion of \proving" something using rigorous definitions, inspired by previous less general theories. The purpose for being this general is to eventually establish a rigorous framework that can bridge the gap when interrelating different logical systems, particularly ones that have not been as well defined rigorously, such as sequent calculus.
    [Show full text]
  • • Speech Errors (Review) • Issues in Lexicalization • LRP in Language Production (Review) • N200 (N2b) • N200 in Language Production • Semantic Vs
    Plan • Speech Errors (Review) • Issues in Lexicalization • LRP in Language Production (Review) • N200 (N2b) • N200 in Language Production • Semantic vs. Phonological Information • Semantic vs. Syntactic Information • Syntactic vs. Phonological Information • Time Course of Word Production in Picture Naming Eech Sperrors • What can we learn from these things? • Anticipation Errors – a reading list Æ a leading list • Exchange Errors – fill the pool Æ fool the pill • Phonological, lexical, syntactic • Speech is planned in advance – Distance of exchange, anticipation errors suggestive of how far in advance we “plan” Word Substitutions & Word Blends • Semantic Substitutions • Lexicon is organized – That’s a horse of another color semantically AND Æ …a horse of another race phonologically • Phonological Substitutions • Word selection must happen – White Anglo-Saxon Protestant after the grammatical class of Æ …prostitute the target has been • Semantic Blends determined – Edited/annotated Æ editated – Nouns substitute for nouns; verbs for verbs • Phonological Blends – Substitutions don’t result in – Gin and tonic Æ gin and topic ungrammatical sentences • Double Blends – Arrested and prosecuted Æ arrested and persecuted Word Stem & Affix Morphemes •A New Yorker Æ A New Yorkan (American) • Seem to occur prior to lexical insertion • Morphological rules of word formation engaged during speech production Stranding Errors • Nouns & Verbs exchange, but inflectional and derivational morphemes rarely do – Rather, they are stranded • I don’t know that I’d
    [Show full text]