Copyrighted Material

Total Page:16

File Type:pdf, Size:1020Kb

Copyrighted Material 1 1 Introduction Peter H. Adler1 and Robert G. Foottit2 1 Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, USA 2 Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri‐Food Canada, Ottawa, Ontario, Canada Every so often, a technical term born in the biodiversity might conjure a forest, a box of ­biological community enters the popular vocab­ ­beetles, or perhaps the entire fabric of life. ulary, usually because of its timeliness, political Among scientists, the word has been defined, implications, media hype, and euphonious ability explicitly and implicitly, ad nauseum, producing to capture the essence of an issue. “Biotechnology,” a range of variants (e.g., Gaston 1996). In its “human genome,” and “stem cells” are terms as original context, the term biodiversity encom­ common in public discourse as they are in scien­ passed multiple levels of life (Wilson 1988), and tific circles. “Biodiversity” is another example. we embrace that perspective. It is “the variety of Introduced in its portmanteau form in the mid‐ all forms of life, from genes to species, through 1980s by Warren G. Rosen (Wilson 1988), the to the broad scale of ecosystems” (Faith 2007). term has grown steadily in popularity. In May Biodiversity, then, is big biology, describing a 2008, the keyword biodiversity generated 17 mil­ holistic view of life. The fundamental units of lion hits on Google. Eight years later, the same biodiversity – species – serve as focal points for search produced nearly 53 million hits. studying the full panoply of life, allowing work­ Not all scientific terms are value‐neutral ers to zoom in and out along a scale from mol­ (Loike 2014). The word biodiversity, however, ecule to ecosystem. The species‐centered view has remained largely unencumbered by the eth­ also provides a vital focus for conserving life ical or political burden carried by terms such as forms and understanding the causes of declin­ “cloning” and “genetically modified organism.” ing biodiversity. Although the term biodiversity generally evokes Despite disagreements over issues ranging positive sentiment amongCOPYRIGHTED both the scientific from definitionsMATERIAL of biodiversity to phylogenetic community and the public, its meaning is often approaches, biologists can agree on four major subject to individual interpretation. Abraham points: (i) the world supports a great number of Lincoln grappled with a similar concern over insects; (ii) we do not know how many species the word “liberty.” In an 1864 speech, Lincoln of insects occupy our planet; (iii) the value of opined, “The world has never had a good defini­ insects to humanity is enormous; and (iv) too tion of the word liberty, and the American peo­ few specialists exist to inventory the world’s ple, just now, are much in want of one … but in entomofauna and to provide the expertise using the same word we do not all mean the ­necessary for conserving and sustainably using same thing” (Simpson 1998). To the layperson, its resources for societal benefit. Insect Biodiversity: Science and Society, Volume I, Second Edition. Edited by Robert G. Foottit and Peter H. Adler. © 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd. c01.indd 1 6/24/2017 3:16:43 PM 2 Insect Biodiversity: Science and Society By virtue of the sheer numbers of individuals based partly on a view of species as structurally and species, insects, more than any other mac­ distinct from one another. Morphologically roscopic life form, command the attention of similar, if not indistinguishable, species (i.e., biologists. The number of individual insects on cryptic species) typically are not figured into Earth at any given moment has been calculated estimates of the number of insect species. If at one quintillion (1018) (Williams 1964), an putatively well‐known organisms as large as unimaginably large number on par with the crocodiles, elephants, giraffes, and whales are number of copepods in the ocean (Schubel and composites of multiple cryptic species (Wada Butman 1998) and roughly equivalent to the et al. 2003, Brown et al. 2007, Hekkala et al. number of sand grains along a few kilometers of 2011), a leap of faith is not required to realize beach (Ray 1996). The total number of insect that smaller earthlings also consist of addi­ species also bankrupts the mind. Estimates tional, hidden species. When long‐recognized offered over the past four centuries have nominal species of insects, from black flies to increased steadily from 10,000 species, pro­ butterflies, are probed more deeply, the repeti­ posed by John Ray in 1691 (Berenbaum, this tive result is an increase, often manyfold, in the volume), to as many as 80 million (Erwin 2004). number of species (Hebert et al. 2004, Post The number of described insect species recently et al. 2007). No zoogeographical bias in cryptic broke the 1 million mark – it currently stands at species has been detected, after correcting for 1,060,704 (Table 1.1), about 100 times the 1691 species richness and study intensity (Pfenninger estimate. Based on a figure of 1.50 million to and Schwenk 2007). We suspect that the dis­ 1.74 million described eukaryotic species in the coveries of additional cryptic species will far world (May 1998, Costello et al. 2012), insects outstrip the countering effects of synonymizing represent 61–71% of the total. existing names. The members of the class Insecta are arranged The precise number of species, however, is in 29 orders. Four of these orders – the Coleop­ not what we, as a global society, desperately tera, Diptera, Hymenoptera, and Lepidoptera – need. Rather, we require a comprehensive, fully account for more than 80% of all described spe­ accessible library of all volumes (i.e., species), a cies of living insects. The beetles are far in front, colossal compendium of names, descriptions, leading each of the next largest orders, the distributions, and biological information that Diptera and Lepidoptera, by a factor of more than ultimately can be transformed into a directory 2.4 (Table 1.1). A growing number of world of services. An example of societal use of plant checklists, catalogs, and inventories are available diversity provides a view of the potential treas­ online for various families and orders. Outfitted ures that insects could hold. Of the top 150 pre­ with search functions, they provide another tool scribed drugs in the United States, about 56% for handling the taxonomic juggernaut of new can be linked to discoveries in the natural plant species and nomenclatural changes. We can fore­ world (Groombridge and Jenkins 2002). The see a global registry of species in the near future great numbers of insects hold a vast wealth of that is updated with each new species or syno­ various behaviors, chemistries, forms, and nym, allowing real‐time counts for any taxon functions. Furthermore, individual insects offer (Polaszek et al. 2005). a package deal: each insect represents an eco­ The greatest concentration of insect species system of microbial life, teeming with a vast lies in tropical areas of the globe. One hectare array of species, many of which are host‐, gen­ of Amazonian forest contains more than der‐, and stage‐specific (Tang et al. 2012). Of 100,000 species of arthropods (Erwin 2004), of the 1 trillion estimated species of microorgan­ which roughly 80–85% are insects (May 1998, isms on Earth (Locey and Lennon 2016), the Stork et al. 2015). This value is more than 90% proportion specific to insects is unknown. The of the total described species of insects in the diversity, roles, and potential benefits that lie entire Nearctic region. Yet, this tropical skew is within the insect–microbiota relationship c01.indd 2 6/24/2017 3:16:43 PM 1 Introduction 3 Table 1.1 World totals of described, living species in the 29 orders of the class Insecta, tallied May 2016. Order* Described species References† Microcoryphia 548 Mendes, Vol. II Zygentoma 594 Mendes, Vol. II Ephemeroptera 3,436 Morse, this volume Odonata 5,956 Morse, this volume Plecoptera 3,562 Morse, this volume Embiodea 397 Maehr and Hopkins 2016a Zoraptera 40 Maehr and Hopkins 2016b Orthoptera 26,107 Song, Vol. II Phasmatodea 2,976 Bradler, Vol. II Dermaptera 1,931 Haas, Vol. II Grylloblattodea 33 Eberhard et al., Vol. II Mantophasmatodea 19 Eberhard et al., Vol. II Blattodea 7,637 Cockroaches (5,565) + termites (2,072), Djernaes, Vol. II Mantodea 2,469 Otte et al. 2016 Psocoptera 5,640 Mockford, Vol. II Phthiraptera 5,239 Galloway, Vol. II Thysanoptera 6,102 ThripsWiki 2015 Hemiptera 106,971 Heteroptera (45,254; Henry, this volume) + Auchenorrhyncha (43,024; Bartlett et al., Vol. II) + Sternorrhyncha (18,693; Hardy, Vol II) Raphidioptera 248 Oswald, Vol. II Megaloptera 373 Oswald, Vol. II Neuroptera 5,813 Oswald, Vol. II Coleoptera 386,755 Bouchard et al., this volume Strepsiptera 615 Kathirithamby, Vol. II Hymenoptera 154,067 Huber, this volume Mecoptera 713 Bicha, Vol. II Siphonaptera 2,183 Galloway, Vol. II Diptera 157,971 Courtney et al., this volume Trichoptera 14,548 Morse, this volume Lepidoptera 157,761 Goldstein, this volume Total 1,060,704 * While recognizing the dynamic nature of the higher classification of the hexapods, including the combining of traditional orders (e.g., Misof et al. 2014), we follow the ordinal classification recognized by the authors of the chapters in Volumes I and II of Insect Biodiversity: Science and Society. The three orders of the Entognatha – the Collembola (ca. 8,600 species; Bellinger et al. 1996–2016), Diplura (ca. 800 species; Tree of Life Web Project 1995), and Protura (ca. 750 species; Szeptycki 2007) – are not included here with the Insecta. These three orders would add about 10,150 species, giving a total of roughly 1,071,000 species of Hexapoda in the world.
Recommended publications
  • Philornis Downsi Interactions with Its Host in the Introduced Range and Its Parasitoids in Its Native Range a Thesis Submitted T
    PHILORNIS DOWNSI INTERACTIONS WITH ITS HOST IN THE INTRODUCED RANGE AND ITS PARASITOIDS IN ITS NATIVE RANGE A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Ismael Esai Ramirez IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Adviser: Dr. George E. Heimpel December 2018 i © Ismael Esai Ramirez ii Acknowledgments This thesis was completed with the guidance of faculty and staff and the knowledge I have acquired from professors in the Entomology Department and classes along the progress of my degree. My gratitude goes, especially, to my advisor Dr. George E. Heimpel, for taking me as his graduate student, for believing in me, and teaching me valuable skills I need to succeed in a career in academia I am appreciative for the help and feedback I received on my thesis. I am especially grateful for the help I received from my committee members, Drs. Marlene Zuk and Ralph Holzenthal, for their invaluable support and feedback. The generosity has been tremendous. Additionally, I want to thank Dr. Rebecca A. Boulton for her insights in my thesis and her friendship, and Dr. Carl Stenoien for aiding with my chapters. I want to give recognition to the Charles Darwin Research Station staff for their support, Dr. Charlotte Causton, Ma. Piedad Lincango, Andrea Cahuana, Paola Lahuatte, and Courtney Pike. I want to thank my fellow graduate students, undergraduate students, and my lab-mates, Jonathan Dregni, Hannah Gray, Mary Marek-Spartz, James Miksanek, and Charles Lehnen for their support and friendship. To my field assistants and hosts in mainland Ecuador, Isidora Rosales and her family, Mauricio Torres and Enzo Reyes that aided me during fieldwork.
    [Show full text]
  • Astraptes Fulgerator Butterfly Ten Species in One: DNA Barcoding
    Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator Paul D. N. Hebert, Erin H. Penton, John M. Burns, Daniel H. Janzen, and Winnie Hallwachs PNAS 2004;101;14812-14817; originally published online Oct 1, 2004; doi:10.1073/pnas.0406166101 This information is current as of January 2007. Online Information High-resolution figures, a citation map, links to PubMed and Google Scholar, & Services etc., can be found at: www.pnas.org/cgi/content/full/101/41/14812 Supplementary Material Supplementary material can be found at: www.pnas.org/cgi/content/full/0406166101/DC1 References This article cites 13 articles, 2 of which you can access for free at: www.pnas.org/cgi/content/full/101/41/14812#BIBL This article has been cited by other articles: www.pnas.org/cgi/content/full/101/41/14812#otherarticles E-mail Alerts Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here. Rights & Permissions To reproduce this article in part (figures, tables) or in entirety, see: www.pnas.org/misc/rightperm.shtml Reprints To order reprints, see: www.pnas.org/misc/reprints.shtml Notes: Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator Paul D. N. Hebert*†, Erin H. Penton*, John M. Burns‡, Daniel H. Janzen§, and Winnie Hallwachs§ *Department of Zoology, University of Guelph, Guelph, ON, Canada N1G 2W1; ‡Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0127; and §Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 Contributed by Daniel H.
    [Show full text]
  • Coexistence Between Cyphomyrmex Ants and Dominant Populations Of
    Behavioural Processes 74 (2007) 93–96 Coexistence between Cyphomyrmex ants and dominant populations of Wasmannia auropunctata Julien Grangier ∗, Julien Le Breton, Alain Dejean, Jer´ omeˆ Orivel Laboratoire Evolution et Diversit´e Biologique, UMR-CNRS 5174, Universit´e Toulouse III, 31062 Toulouse Cedex 9, France Received 16 September 2005; received in revised form 17 October 2006; accepted 17 October 2006 Abstract The little fire ant Wasmannia auropunctata is able to develop highly dominant populations in disturbed areas of its native range, with a resulting negative impact on ant diversity. We report here on the tolerance of such populations towards several fungus-growing ants of the genus Cyphomyrmex (rimosus complex) in French Guiana. This tolerance is surprising given the usually high interspecific aggressiveness of W. auropunctata when dominant. In order to understand the mechanisms behind such proximity, aggressiveness tests were performed between workers of the different species. These behavioural assays revealed a great passivity in Cyphomyrmex workers during confrontations with W. auropunctata workers. We also found that the aggressiveness between W. auropunctata and two Cyphomyrmex species was more intense between distant nests than between adjacent ones. This dear–enemy phenomenon may result from a process of habituation contributing to the ants’ ability to coexist over the long term. © 2006 Elsevier B.V. All rights reserved. Keywords: Aggressiveness; Cyphomyrmex; Dear–enemy phenomenon; Habituation; Wasmannia auropunctata 1. Introduction present study, we evaluate the possible mechanisms behind this coexistence. Native to the Neotropics, the little fire ant Wasmannia aurop- unctata (Roger) (Myrmicinae) is one of the most problematic 2. Materials and methods invasive ants known, with accompanying ecological and eco- nomical consequences (Holway et al., 2002).
    [Show full text]
  • DNA Barcodes and Cryptic Species of Skipper Butterflies in the Genus Perichares in Area De Conservacio´ N Guanacaste, Costa Rica
    DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservacio´ n Guanacaste, Costa Rica John M. Burns*†, Daniel H. Janzen†‡, Mehrdad Hajibabaei§, Winnie Hallwachs‡, and Paul D. N. Hebert§ *Department of Entomology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 127, Washington, DC 20013-7012; ‡Department of Biology, University of Pennsylvania, Philadelphia, PA 19104; and §Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1 Contributed by Daniel H. Janzen, December 23, 2007 (sent for review November 16, 2007) DNA barcodes can be used to identify cryptic species of skipper butterflies previously detected by classic taxonomic methods and to provide first clues to the existence of yet other cryptic species. A striking case is the common geographically and ecologically widespread neotropical skipper butterfly Perichares philetes (Lep- idoptera, Hesperiidae), described in 1775, which barcoding splits into a complex of four species in Area de Conservacio´ n Guanacaste (ACG) in northwestern Costa Rica. Three of the species are new, and all four are described. Caterpillars, pupae, and foodplants offer better distinguishing characters than do adults, whose differences are mostly average, subtle, and blurred by intraspecific variation. The caterpillars of two species are generalist grass-eaters; of the other two, specialist palm-eaters, each of which feeds on different genera. But all of these cryptic species are more specialized in their diet than was the morphospecies that held them. The four ACG taxa discovered to date belong to a panneotropical complex of at least eight species. This complex likely includes still more species, whose exposure may require barcoding.
    [Show full text]
  • Immediate Impacts of Invasion by Wasmannia Auropunctata (Hymenoptera: Formicidae) on Native Litter Ant Fauna in a New Caledonian Rainforest
    Austral Ecology (2003) 28, 204–209 Immediate impacts of invasion by Wasmannia auropunctata (Hymenoptera: Formicidae) on native litter ant fauna in a New Caledonian rainforest J. LE BRETON,1,2* J. CHAZEAU1 AND H. JOURDAN1,2 1Laboratoire de Zoologie Appliquée, Centre IRD de Nouméa, B.P. A5, 98948 Nouméa CEDEX, Nouvelle-Calédonie (Email: [email protected]) and 2Laboratoire d’Ecologie Terrestre, Université Toulouse III, Toulouse, France Abstract For the last 30 years, Wasmannia auropunctata (the little fire ant) has spread throughout the Pacific and represents a severe threat to fragile island habitats. This invader has often been described as a disturbance specialist. Here we present data on its spread in a dense native rainforest in New Caledonia. We monitored by pitfall trapping the litter ant fauna along an invasive gradient from the edge to the inner forest in July 1999 and March 2000. When W. auropunctata was present, the abundance and richness of native ants drops dramatically. In invaded plots, W. auropunctata represented more than 92% of all trapped ant fauna. Among the 23 native species described, only four cryptic species survived. Wasmannia auropunctata appears to be a highly competitive ant that dominates the litter by eliminating native ants. Mechanisms involved in this invasive success may include predation as well as competitive interactions (exploitation and interference). The invasive success of W. auropunctata is similar to that of other tramp ants and reinforces the idea of common evolutionary traits leading to higher competitiveness in a new environment. Key words: ant diversity, biological invasion, New Caledonia, Wasmannia auropunctata. INTRODUCTION This small myrmicine, recorded for the first time in New Caledonia in 1972 (Fabres & Brown 1978), has In the Pacific area, New Caledonia is recognized as a now invaded a wide array of habitats on the main unique biodiversity hot spot (Myers et al.
    [Show full text]
  • Dieter Thomas Tietze Editor How They Arise, Modify and Vanish
    Fascinating Life Sciences Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthusiasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Dieter Thomas Tietze Editor Bird Species How They Arise, Modify and Vanish Editor Dieter Thomas Tietze Natural History Museum Basel Basel, Switzerland ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-319-91688-0 ISBN 978-3-319-91689-7 (eBook) https://doi.org/10.1007/978-3-319-91689-7 Library of Congress Control Number: 2018948152 © The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
    [Show full text]
  • Federal Register/Vol. 83, No. 156/Monday, August 13, 2018
    39894 Federal Register / Vol. 83, No. 156 / Monday, August 13, 2018 / Rules and Regulations Authority: 42 U.S.C. 7401 et seq. Transport SIP to meet Infrastructure § 52.1020 Identification of plan. Requirements for the 2010 1-hour NO2 * * * * * Subpart U—Maine NAAQS’’ at the end of the table to read (e) Nonregulatory. ■ 2. Section 52.1020(e) is amended by as follows: adding an entry titled ‘‘Interstate MAINE NON REGULATORY Applicable geo- State submittal Name of non regulatory SIP provision graphic or non- date/effective EPA approved date 3 Explanations attainment area date ******* Interstate Transport SIP to meet Infra- Statewide ............ 2/21/2018 8/13/2018, [Insert Federal This approval addresses Prongs 1 structure Requirements for the Register citation]. and 2 of CAA section 2010 1-hour NO2 NAAQS. 110(a)(2)(D)(i)(I) only. 3 In order to determine the EPA effective date for a specific provision listed in this table, consult the Federal Register notice cited in this col- umn for the particular provision. [FR Doc. 2018–17248 Filed 8–10–18; 8:45 am] Program, U.S. Fish and Wildlife Service, the inadequacy of existing regulatory BILLING CODE 6560–50–P 5275 Leesburg Pike, MS: ES, Falls mechanisms; or (E) other natural or Church, VA 22041; telephone 703–358– manmade factors affecting its continued 2444. If you use a telecommunications existence. The primary causes attributed DEPARTMENT OF THE INTERIOR device for the deaf (TDD), call the to the decline of the hyacinth macaw Federal Relay Service at 800–877–8339. include habitat loss and degradation Fish and Wildlife Service SUPPLEMENTARY INFORMATION: (Factor A), hunting (Factor B), predation (Factor C), competition and low 50 CFR Part 17 Executive Summary reproduction rate (Factor E), and climate Why we need to publish a rule.
    [Show full text]
  • DNA Barcoding Confirms Polyphagy in a Generalist Moth, Homona Mermerodes (Lepidoptera: Tortricidae)
    Molecular Ecology Notes (2007) 7, 549–557 doi: 10.1111/j.1471-8286.2007.01786.x BARCODINGBlackwell Publishing Ltd DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera: Tortricidae) JIRI HULCR,* SCOTT E. MILLER,† GREGORY P. SETLIFF,‡ KAROLYN DARROW,† NATHANIEL D. MUELLER,§ PAUL D. N. HEBERT¶ and GEORGE D. WEIBLEN** *Department of Entomology, Michigan State University, 243 Natural Sciences Building, East Lansing, Michigan 48824, USA, †National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA, ‡Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, Minnesota 55108–1095 USA, §Saint Olaf College, 1500 Saint Olaf Avenue, Northfield, MN 55057, USA,¶Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1, **Bell Museum of Natural History and Department of Plant Biology, University of Minnesota, 220 Biological Sciences Center, 1445 Gortner Avenue, Saint Paul, Minnesota 55108–1095, USA Abstract Recent DNA barcoding of generalist insect herbivores has revealed complexes of cryptic species within named species. We evaluated the species concept for a common generalist moth occurring in New Guinea and Australia, Homona mermerodes, in light of host plant records and mitochondrial cytochrome c oxidase I haplotype diversity. Genetic divergence among H. mermerodes moths feeding on different host tree species was much lower than among several Homona species. Genetic divergence between haplotypes from New Guinea and Australia was also less than interspecific divergence. Whereas molecular species identification methods may reveal cryptic species in some generalist herbivores, these same methods may confirm polyphagy when identical haplotypes are reared from multiple host plant families. A lectotype for the species is designated, and a summarized bibliography and illustrations including male genitalia are provided for the first time.
    [Show full text]
  • A Bioeconomic Model of Little Fire Ant Wasmannia Auropunctata in Hawaii
    The Hawai`i-Pacific Islands Cooperative Ecosystems Studies Unit & Pacific Cooperative Studies Unit UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 186 A bioeconomic model of Little Fire Ant Wasmannia auropunctata in Hawaii December 2013 Michael Motoki1, Donna J. Lee1,2, Cas Vanderwoude3,4,5, Stuart T. Nakamoto6 and PingSun Leung1 1 Department of Natural Resources & Environmental Management, University of Hawaii 2 DJL Economic Consulting, Honolulu, Hawaii 3 Hawaii Department of Agriculture 4 The Hawaii Ant Lab, Hilo, Hawaii 5 The Pacific Cooperative Studies Unit, University of Hawaii 6 Department of Human Nutrition, Food & Animal Sciences, University of Hawaii PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Author Contact Information: Donna J. Lee, DJL Economic Consulting, Honolulu HI, DJL. [email protected]. Phone: 808.226- 9079 Recommended Citation: Motoki, M., D.J. Lee, C. Vanderwoude, S.T. Nakamoto and P.S. Leung. 2013. A bioeconomic model of Little Fire Ant Wasmannia auropunctata in Hawaii. Technical Report No. 186. Pacific Cooperative Studies Unit, University of Hawai`i, Honolulu, Hawai`i. 89 pp. Key words: Wasmannia auropunctata, bioeconomic modeling, invasive species, socio-economic impacts Place key words: Hawaii, Big Island, Kauai, Maui Editor: David C. Duffy, PCSU Unit Leader (Email: [email protected]) Series Editor: Clifford W. Morden, PCSU Deputy Director (Email: [email protected]) About this technical report series: This technical report series began in 1973 with the formation of the Cooperative National Park Resources Studies Unit at the University of Hawai'i at Mānoa.
    [Show full text]
  • Biodiversity
    1 CHAPTER 2 Biodiversity Kevin J. Gaston Biological diversity or biodiversity (the latter term The scale of the variety of life is difficult, and is simply a contraction of the former) is the variety of perhaps impossible, for any of us truly to visua- life, in all of its many manifestations. It is a broad lize or comprehend. In this chapter I first attempt unifying concept, encompassing all forms, levels to give some sense of the magnitude of biodiver- and combinations of natural variation, at all levels sity by distinguishing between different key ele- of biological organization (Gaston and Spicer ments and what is known about their variation. 2004). A rather longer and more formal definition Second, I consider how the variety of life has is given in the international Convention on changed through time, and third and finally Biological Diversity (CBD; the definition is how it varies in space. In short, the chapter will, provided in Article 2), which states that inevitably in highly summarized form, address “‘Biological diversity’ means the variability the three key issues of how much biodiversity among living organisms from all sources includ- there is, how it arose, and where it can be found. ing, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which 2.1 How much biodiversity is there? they are part; this includes diversity within species, between species and of ecosystems”.Whichever Some understanding of what the variety of life definition is preferred, one can, for example, comprises can be obtained by distinguishing be- speak equally of the biodiversity of some given tween different key elements.
    [Show full text]
  • Notes on Some Species of Astraptes Hubner, 1819 (Hesperiidae)
    Journal of the Lepidopterists' Society 36(3), 1982,236-237 NOTES ON SOME SPECIES OF ASTRAPTES HUBNER, 1819 (HESPERIIDAE) Astraptes fulgerator (Walch) 1775 Synonymy: mercatus Fabricius, 1793; fulminator Sepp, 1848; misitra Ploetz 1881; albifasciatus Rober, 1925; catemacoensis Freeman, 1967, NEW SYNONYMY. Type locality: (?) Distribution: U.S.A. (Texas), through Mexico, Central America to Argentina in South America. Remarks: Apparently there are two subspecies involved here, A. fulgerator fulge­ rator (Walsh) and A.julgerator azul (Reakirt). Typicalfulgerator occurs from southern Mexico (Oaxaca and Chiapas) to Argentina. A. fulgerator has the following character­ istics: wing bases greenish-blue; the hind termen convex; the upper and lower surfaces dark brown; the central band on the primaries dislocated at vein 3, and spot 2 not conjoined to the cell spot; usually 3 apical spots in the males, 4 in the females; cilia in space 1b white; the white basal streak on the lower surface of the secondaries short and broad, with a black streak at the extreme base present; and one of the most im­ portant characteristics is the broad, distinct, white suffusion in space Ib on the lower surface of the primaries. A. fulgerator azul (Reakirt), 1866 is the subspecies that occurs in Texas and most of Mexico, extending into South America. A.j. azul has the following characteristics: the wing bases are blue or violet-blue; the hind termen straight or convex; the upper and lower surfaces dark to pale brown; the central band on the primaries usually compact, with
    [Show full text]
  • Distribution, Ecology, and Life History of the Pearly-Eyed Thrasher (Margarops Fuscatus)
    Adaptations of An Avian Supertramp: Distribution, Ecology, and Life History of the Pearly-Eyed Thrasher (Margarops fuscatus) Chapter 6: Survival and Dispersal The pearly-eyed thrasher has a wide geographical distribution, obtains regional and local abundance, and undergoes morphological plasticity on islands, especially at different elevations. It readily adapts to diverse habitats in noncompetitive situations. Its status as an avian supertramp becomes even more evident when one considers its proficiency in dispersing to and colonizing small, often sparsely The pearly-eye is a inhabited islands and disturbed habitats. long-lived species, Although rare in nature, an additional attribute of a supertramp would be a even for a tropical protracted lifetime once colonists become established. The pearly-eye possesses passerine. such an attribute. It is a long-lived species, even for a tropical passerine. This chapter treats adult thrasher survival, longevity, short- and long-range natal dispersal of the young, including the intrinsic and extrinsic characteristics of natal dispersers, and a comparison of the field techniques used in monitoring the spatiotemporal aspects of dispersal, e.g., observations, biotelemetry, and banding. Rounding out the chapter are some of the inherent and ecological factors influencing immature thrashers’ survival and dispersal, e.g., preferred habitat, diet, season, ectoparasites, and the effects of two major hurricanes, which resulted in food shortages following both disturbances. Annual Survival Rates (Rain-Forest Population) In the early 1990s, the tenet that tropical birds survive much longer than their north temperate counterparts, many of which are migratory, came into question (Karr et al. 1990). Whether or not the dogma can survive, however, awaits further empirical evidence from additional studies.
    [Show full text]