Virtual Water Flows Between Nations in Relation to Trade in Livestock and Livestock Products

Total Page:16

File Type:pdf, Size:1020Kb

Virtual Water Flows Between Nations in Relation to Trade in Livestock and Livestock Products A.K. Chapagain Virtual water flows A.Y. Hoekstra between nations in August 2003 relation to trade in livestock and livestock products Value of Water Research Report Series No. 13 Virtual water flows between nations in relation to trade in livestock and livestock products A.K. Chapagain A.Y. Hoekstra August 2003 Value of Water Research Report Series No. 13 UNESCO-IHE Contact author: P.O. Box 3015 Arjen Hoekstra 2601 DA Delft Phone +31 15 215 18 28 The Netherlands E-mail [email protected] Contents Summary................................................................................................................................ 7 1. Introduction ...................................................................................................................... 9 1.1. The concept of virtual water.....................................................................................................................9 1.2. Virtual water flows between nations ......................................................................................................10 1.3. Objectives of the study ...........................................................................................................................10 2. Method............................................................................................................................. 11 2.1. Overview ................................................................................................................................................11 2.2. Calculation of the virtual water content of live animals .........................................................................11 2.2.1. The three components of the virtual water content of a live animal .............................................11 2.2.2. Virtual water content from feed consumed ...................................................................................11 2.2.3. Virtual water content from drinking water ...................................................................................12 2.2.4. Virtual water content from service water .....................................................................................13 2.3. Calculation of the virtual water content of livestock products ...............................................................13 2.3.1. Levels of production .....................................................................................................................13 2.3.2. First level of processing (primary products from live animals)....................................................13 2.3.3. Second level of processing (secondary products from primary products)....................................14 2.3.4. Illustration of the calculation of the virtual water content of ‘bovine products’ ..........................15 2.4. Calculation of virtual water trade flows between nations.......................................................................18 2.5. Calculation of a nation’s water footprint, water self-sufficiency and water dependency .......................19 3. Data sources................................................................................................................... 21 3.1. Global trade in livestock products ..........................................................................................................21 3.2. Farming systems.....................................................................................................................................23 3.3. Feed composition by kind of animal ......................................................................................................25 3.4. Drinking water requirement....................................................................................................................28 3.5. Service water requirement......................................................................................................................29 3.6. Processing water requirement.................................................................................................................30 3.7. Product fractions and value fractions of livestock products ...................................................................30 4. Virtual water content per livestock product per country............................................ 31 4.1. Virtual water content of a live animal by kind of animal and by country...............................................31 5 4.2. Virtual water content per livestock product by country..........................................................................32 5. International virtual water flows related to the trade in livestock and livestock products.......................................................................................................................... 35 5.1. International virtual water flows.............................................................................................................35 5.2. Inter-regional virtual water flows ...........................................................................................................39 5.2.1. Sources and sinks of virtual water................................................................................................39 5.2.2. Virtual water balance per world region .......................................................................................42 5.2.3. Gross virtual water flows between countries within regions ........................................................43 6. Global virtual water flows: the complete picture ........................................................ 45 6.1. International virtual water flows related to international trade in crops .................................................45 6.2. The complete picture ..............................................................................................................................47 6.3. National water footprints, water self-sufficiency and water dependency...............................................51 7. Conclusion...................................................................................................................... 53 References........................................................................................................................... 55 Appendices I. Symbols II. List of livestock products in PC-TAS III. Livestock products and their share of the global trade (1995-99) IV. Classification of livestock products based on animal category and their contribution to global trade V. Product tree per animal category VI. Product fraction, value fraction and processing water requirement per livestock product VII. Country grouping based on average annual gross national income per capita VIII. Average world market price per livestock product (1995-99) IX. Calculation of the virtual water content of live animals, example for Canada X. Virtual water content per kind of live animal by country XI. Virtual water content per type of livestock product by country XII. International virtual water flows by livestock product (1995-99) XIII. Gross virtual water export by country per year (1995-99) XIV. Gross virtual water import by country per year (1995-99) XV. Average annual net virtual water import by country (1995-99) XVI. Grouping of countries into thirteen world regions XVII. Gross virtual water flows between and within regions in the period 1995-99 XVIII. National water footprints, water scarcity, water self-sufficiency and water dependency (averages for the period 1995-99) XIX. Glossary 6 Summary The virtual water content of a commodity is the volume of water used to produce this commodity. International trade in food implies international flows of virtual water. For water-scarce countries it can be attractive to import virtual water (through import of water-intensive products), thus relieving the pressure on the domestic water resources. This study aims to develop a methodology to assess the virtual water content of various types of livestock and livestock products and to quantify the virtual water flows related to the international trade in livestock and its products. The results are then combined with the estimates of virtual water trade flows associated with international crop trade as reported in Hoekstra and Hung (2002, 2003), to get a comprehensive picture of the international virtual water flows. The study covers the period from 1995 to 1999. First, the virtual water content (m3/ton) of live animals is calculated, based on the virtual water content of their feed and the volumes of drinking and service water consumed during their lifetime. Second, the virtual water content is calculated for each livestock product, taking into account the product fraction (ton of product obtained per ton of live animal) and the value fraction (ratio of value of one product from an animal to the sum of the market values of all products from the animal). Finally, virtual water flows between nations are derived from statistics on international product trade and virtual water content per product. The global volume of international virtual water flows is estimated to be 1031 Gm3 per year (695 Gm3/yr from the trade in crops and 336 Gm3/yr from trade in livestock and livestock products). This means that about 20% of the global water use in agriculture is aimed at producing products for export. The countries with the largest net virtual water export are: the United States, Australia, Canada, Argentina and Thailand. The countries with the largest net virtual water
Recommended publications
  • The Water Footprint: Water in the Supply Chain
    ema in practice – focus on water The water footprint: water in the supply chain Worldwide, companies have started to explore the water footprint of their products. The creator of the water footprint concept, Arjen Hoekstra, provides some background nvironmental awareness and strategy is which is relevant because the impact of water use often part of what a business regards depends on local conditions. A water footprint Eas its ‘corporate social responsibility’. generally breaks down into three components: Fortunately. an increasing number of the blue, green and grey water footprint. The companies recognise that reducing the blue water footprint is the volume of freshwater water footprint should be part of the that is evaporated from the global blue water corporate environmental strategy, just resources (surface and ground water). The green like reducing the carbon footprint. And water footprint is the volume of water evaporated many businesses actually face serious from the global green water resources (rainwater risks related to freshwater shortage in stored in the soil). The grey water footprint is the their operations or supply chain: what is volume of polluted water, which is quantified a brewery without a secure water supply as the volume of water that is required to dilute or how can a clothing company survive pollutants to such an extent that the quality of the without a continued supply of water to ambient water remains above agreed water quality the cotton fields? Another incentive is standards. possible regulatory control of water and The table shows the global average water footprint for a one can also observe that some businesses number of commodities.
    [Show full text]
  • How Water “Footprinting” Can Change the World 634 Gallons 49 Gallons 108 Gallons of Freshwater of Freshwater of Freshwater by Alan Horton
    18.5 gallons 155 gallons 599 gallons 36 gallons 2,867 gallons 20 gallons 600 gallons 1,857 gallons of freshwater of freshwater of freshwater of freshwater of freshwater of freshwater of freshwater of freshwater Leave No Footprint How Water “Footprinting” Can Change the World 634 gallons 49 gallons 108 gallons of freshwater of freshwater of freshwater by Alan Horton n December 2008, a conference on corporate water Arjen Hoekstra, Professor of Multidisciplinary Water Management at all steps of its production chain. The water footprint of a consumer footprinting in San Francisco centered on the emerging study the University of Twente in The Netherlands, attended the conference is the sum of direct water use (laundering, bathing, etc.) and indirect What does water neutral mean? of corporate impacts on freshwater, taking into account not as a featured speaker. He fascinated the crowd with his presentation water use (water used to produce goods and services consumed by Hoekstra defines being water neutral as “reducing the just the direct water withdrawals for products, but the entirety on the emerging study of water footprints and what it means to “go the individual). The water footprint of a business consists of its direct water footprint of a product or activity as much as Iof a product’s supply chain including processing, shipping, retailing water neutral.” His seminal book on the subject, Globalization of Water, water use for producing, manufacturing and supporting activities, plus reasonably possible and then offsetting the remaining its indirect water use, embedded in its supply chain. and consuming. Corporations attending the conference included co-authored with Ashok Chapagain, and some of his other published negative impacts of the water footprint.” Coca-Cola, Nestlé, Miller-Coors, Schweppes and other businesses works, including “Water Neutral: Reducing and Offsetting the Impacts Virtual water defined with massive water footprints.
    [Show full text]
  • Water Footprint of Cotton Textile Processing Industries; a Case Study of Punjab, Pakistan
    American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 © Global Society of Scientific Research and Researchers http://asrjetsjournal.org/ Water Footprint of Cotton Textile Processing Industries; a Case Study of Punjab, Pakistan Sohail Ali Naqvia, Dr Masood Arshadb, Farah Nadeemc* a,b,cWWF-Paistan, P.O Box 5180 Ferozepur Road, Lahore, Pakistan aEmail: [email protected] bEmail: [email protected] cEmail: [email protected] Abstract World over, many studies have been published on the water footprints (WFs) of different commodities. In Pakistan, there is lack of information and awareness on water footprints of processes and products. This study throws light on the water footprint of cotton textile production in Pakistan. Blue, green and grey water footprints have been included in this research communication. Water footprint assessment is essential in determining how much water is consumed in which process and how it can be managed effectively. It is a reliable method to plan sustainable, equitable and efficient use of water resources. The results of the study revealed that the blue water footprint (BWF) of cotton seed in Punjab is 1898 m³/t. The water abstracted for textile processing is about 169 m³/t of finished fabric, of which approximately 26 m³/t is consumed (i.e. the BWF of textile manufacture) with the remainder being discharged as waste water. However, the water footprint of chemical inputs is not very high in comparison to other parts of the supply chain (less than 1 m³/t). Overall, the blue WF of finished textile in Punjab, Pakistan is 4650 m³/t on average.
    [Show full text]
  • The Water Metabolism of Socio-Ecosystems
    The Water Metabolism of Socio-Ecosystems Epistemology, Methods and Applications by Cristina Madrid-López A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy PhD Program in Environmental Science and Technology Institut de Ciència i Tecnologia Ambientals (ICTA) Universitat Autònoma de Barcelona (UAB) October 2014 Supervisors: Dr. Vicent Alcántara Dr. Mario Giampietro Dr. Jesús Ramos- Martín Emeritus Professor, ICREA Research Professor Dean Departament d’Economia Aplicada, Institut de Ciència i Centro de Prospectiva Tecnologia Ambientals, Estratégica, Universitat Autònoma de Barcelona Universitat Autònoma Instituto de Altos de Barcelona Estudios Nacionales (Spain) (Spain) (Ecuador) Para Felipe y Toñi “¿Qué gigantes? dijo Sancho Panza. Aquellos que allí ves, respondió su amo, de los brazos largos, que los suelen tener algunos de casi dos leguas. Mire vuestra merced, respondió Sancho, que aquellos que allí se parecen no son gigantes, sino molinos de viento, y lo que en ellos parecen brazos son las aspas, que volteadas del viento hacen andar la piedra del molino.” (El Ingenioso Hidalgo Don Quijote de la Mancha, Miguel de Cervantes) Für Martijn “Drum hab’ ich mich der Magie ergeben, Ob mir durch Geistes Kraft und Mund Nicht manch Geheimniß würde kund; Daß ich nicht mehr mit sauerm Schweiß, Zu sagen brauche, was ich nicht weiß; Daß ich erkenne, was die Welt Im Innersten zusammenhält” (Faust, Wolfgang vom Goethe) Abstract The research line presented in this dissertation is a first attempt to provide a bridge for the communication between Hydrological studies and Social Metabolism. It was born from the observation that water is neglected in Social Metabolism and that current water science, while certain about the need of evolving towards a more interdisciplinary field, still faces challenges in the connection of social and ecosystem analyses.
    [Show full text]
  • WATER FOOTPRINT ASSESSMENT for WATER and FOOD SECURITY (December 07-16, 2017)
    GIAN Global Initiative of Academics Networks WATER FOOTPRINT ASSESSMENT FOR WATER AND FOOD SECURITY (December 07-16, 2017) Under the Aegis of Foreign E xpert: Indian Course-coordinator: Prof. Arjen Hoekstra Prof. Himanshu Joshi Professor in water management Department of Hydrology Chair of the water management group Indian Institute of Technology Faculty of Engineering Technology Roorkee, Uttarakhand, 247667 University of Twente Phone: +91-1332286534, 285390 (O) P.O. Box 217, 7500 AE Enschede, The Netherlands +91-1332285403 (R), +91-9412394288 E-mail [email protected] E-mail: [email protected] Website www.ayhoekstra.nl/ Alternate mail id: [email protected] WATER FOOTPRINT ASSESSMENT FOR WATER AND FOOD SECURITY Overview Freshwater is an increasingly scarce resource requiring sustainable management. As competition for water from industrial, agricultural, domestic water consumptions, and environmental flows escalates, crafting effective policy responses become increasing complex. The increasing climate variability and the expected climate change add further complications. It is well established that water management clearly plays an important role in achieving future water and food security in a world where water stress has been increasing regularly. Water Footprint is a new concept with potential to improve water management by providing a comprehensive way to measure water use and its impact. Water Footprint (WF) is a multidimensional indicator that measures direct and indirect water use in economic sectors, as well as water consumption of individuals, commodities, companies and nations. It includes information on the timing and location of the water consumption and pollution and on the type of water used. It demonstrates the impact of local water use on global water resources.
    [Show full text]
  • UK Water Footprint: the Impact of the UK’S Food and Fibre Consumption on Global Water Resources Volume Two: Appendices
    UK Water Footprint: the impact of the UK’s food and fibre consumption on global water resources Volume two: appendices Ashok Chapagain Stuart Orr Contents Volume two: appendices a. acronyms and abbreviations 3 b. methods 4 c. data sources 13 d. virtual water flows to the uk by product 14 e. water footprint of the uk by product category 28 f. the water footprint of nations (2000-04) 31 2 Appendix A: Acronyms and Abbreviations BOD Biological Oxygen Demand COD Chemical Oxygen Demand DEFRA Department for Environment, Food and Rural Affairs DFID Department for International Development EF Ecological Footprint FAO Food and Agriculture Organization Gm3 Billion cubic meters GNI Gross National Income ITC International Trade centre Mm3 Million cubic meters NGO Non-Governmental organisation PC-TAS Personal Computer Trade Analysis System of the ITC UNESCO-WWAP UNESCO- World Water Assessment Programme UNESCO United Nations Educational, Scientific and Cultural Organization VWC Virtual water content WF Water Footprint WFD Water Framework Directive WWF World Wildlife Fund 3 Appendix B: Methods The WF is the cumulative amount of water consumed directly (drinking and service water use) or indirectly (water used to produce goods consumed). The indirect water use is quantified at the locations where production takes place, not at locations where products are consumed. Before quantifying the WF of a product, we need to analyse the virtual water content of that product which distinguishes the kind of water used in the production process. Virtual water content of a primary crop A major part of the following section is drawn upon the methodology presented in Chapagain 3 and Orr (2008).The virtual water content of a primary crop VWCc (m /t) is calculated as the ratio 3 of the volume of water used for crop production WUc (m /ha), to the volume of crop produced, Yc (t/ha).
    [Show full text]
  • Water Footprint and Virtual Water Trade: the Birth and Growth of a New Research Field in Spain
    water Article Water Footprint and Virtual Water Trade: The Birth and Growth of a New Research Field in Spain Maite M. Aldaya 1,* , Alberto Garrido 2,3 and Ramón Llamas 3,4 1 Institute for Innovation & Sustainable Development in the Food Chain (IS-FOOD), Public University of Navarra (UPNA), Jerónimo de Ayanz Centre, Arrosadia Campus, 31006 Pamplona, Spain 2 Research Center for the Management of Environmental and Agricultural Risks (CEIGRAM), Universidad Politécnica de Madrid, Complutense Avenue, 28040 Madrid, Spain; [email protected] 3 Water Observatory, Botín Foundation, Castelló 18C, 28001 Madrid, Spain; [email protected] 4 Royal Academy of Sciences of Spain, Valverde 22, 28004 Madrid, Spain * Correspondence: [email protected] Received: 31 August 2020; Accepted: 14 September 2020; Published: 21 September 2020 Abstract: The growth in the number of studies applying and expanding the concepts of the water footprint and virtual water trade in Spain has generated a wealth of lessons and reflections about the scarcity, allocation, productive use, and management of water from the viewpoint of a semi-arid country. This paper reviews the evolution of this research field in Spain since its introduction in 2005 and reflects on its main contributions and issues of debate. It shows how these concepts can be useful tools for integrated water accounting and raising awareness, when used with certain precautions: (1) Supply-chain thinking, taking into account value chains and the implications of trade, generally ignored in water management, can help to address water scarcity issues and sustainable water use. (2) Green water accounting incorporates land use and soil management, which greatly influences hydrological functioning.
    [Show full text]
  • The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Daugherty Water for Food Global Institute: Faculty Publications Daugherty Water for Food Global Institute 12-2010 The green, blue and grey water footprint of farm animals and animal products. Volume 1: Main Report Mesfin Mekonnen Daugherty Water for Food Global Institute, [email protected] Arjen Y. Hoekstra University of Twente, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/wffdocs Part of the Environmental Health and Protection Commons, Environmental Monitoring Commons, Hydraulic Engineering Commons, Hydrology Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Sustainability Commons, and the Water Resource Management Commons Mekonnen, Mesfin and Hoekstra, Arjen Y., "The green, blue and grey water footprint of farm animals and animal products. Volume 1: Main Report" (2010). Daugherty Water for Food Global Institute: Faculty Publications. 83. https://digitalcommons.unl.edu/wffdocs/83 This Article is brought to you for free and open access by the Daugherty Water for Food Global Institute at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Daugherty Water for Food Global Institute: Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. M.M. Mekonnen The green, blue and grey A.Y. Hoekstra water footprint of farm December 2010 animals and animal products Volume 1: Main Report Value of Water Research Report Series No. 48 THE GREEN, BLUE AND GREY WATER FOOTPRINT OF FARM ANIMALS AND ANIMAL PRODUCTS VOLUME 1: MAIN REPORT 1 M.M. MEKONNEN 1,2 A.Y.
    [Show full text]
  • Is Water a Source of Comparative Advantage?†
    American Economic Journal: Applied Economics 2014, 6(2): 32–48 http://dx.doi.org/10.1257/app.6.2.32 The Global Economics of Water: Is Water a Source of Comparative Advantage?† By Peter Debaere* With newly available data, I investigate to what extent countries’ international trade exploits the very uneven water resources on a global scale. I find that water is a source of comparative advantage and that relatively water abundant countries export more water- intensive products. Additionally, water contributes significantly less to the pattern of exports than the traditional production factors labor and physical capital. This suggests relatively moderate disruptions to overall trade on a global scale due to changing precipitation in the wake of climate change. JEL F14, O13, O19, Q15, Q25, Q54 ( ) he recent severe drought in key US farming states has focused attention on Twater issues. While some observers worry primarily about rising food prices in the wake of droughts, others see the drought as evidence that freshwater scarcity is bound to be a major challenge of the twenty-first century. Almost one-fifth of the world’s population currently suffers the consequences of water scarcity, and this number is expected to increase World Water Assessment Programme 2009 . ( ) Population growth, rising standards of living, and the diet and lifestyle changes they imply will continue to increase the demand for water and strain available water resources. Pollution may also challenge the fresh water that can be used. In addition, discussions of climate change and the implied disruptions of the hydrologic cycle have only heightened concerns about water scarcity.
    [Show full text]
  • Regional Assessment of the Virtual Water of Sheep and Goats in Arid Areas
    Animal and Veterinary Sciences 2018; 6(4): 58-66 http://www.sciencepublishinggroup.com/j/avs doi: 10.11648/j.avs.20180604.12 ISSN: 2328-5842 (Print); ISSN: 2328-5850 (Online) Regional Assessment of the Virtual Water of Sheep and Goats in Arid Areas Ke Zhang 1, †, Chao Li 1, †, Wen Bao 1, Mengmeng Guo 1, Qi Zhang 1, Yuxin Yang 1, Qifang Kou 2, Wenrui Gao 3, Xiaolong Wang 1, Zhaoxia Yang 1, *, Yulin Chen 1, * 1College of Animal Science and Technology, Northwest A&F University, Yangling, China 2Ningxia Tan Sheep Farm, Hongsibu, China 3Shanbei Cashmere Goats Farm, Hengshan, China Email address: *Corresponding author †Ke Zhang and Chao Li are co-first authors. To cite this article: Ke Zhang, Chao Li, Wen Bao, Mengmeng Guo, Qi Zhang, Yuxin Yang, Qifang Kou, Wenrui Gao, Xiaolong Wang, Zhaoxia Yang, Yulin Chen. Regional Assessment of the Virtual Water of Sheep and Goats in Arid Areas. Animal and Veterinary Sciences . Vol. 6, No. 4, 2018, pp. 58-66. doi: 10.11648/j.avs.20180604.12 Received : August 13, 2018; Accepted : August 29, 2018; Published : October 13, 2018 Abstract: The increased consumption of livestock products is likely to put further pressure on the world’s freshwater resources, an agricultural virtual water strategy will alleviate the water resources pressure of livestock husbandry, especially in arid areas. The research on the virtual water requirement of living animals is still blank in China. Most of the researches on the virtual water of animal products in China adopt foreign data and there is some error with the actual situation in China.
    [Show full text]
  • Virtual Water and Water Footprints: Overreaching Into the Discourse on Sustainability, Efficiency, and Equity
    www.water-alternatives.org Volume 8 | Issue 3 Wichelns, D. 2015. Virtual water and water footprints: Overreaching into the discourse on sustainability, efficiency, and equity. Water Alternatives 8(3): 396-414 Virtual Water and Water Footprints: Overreaching Into the Discourse on Sustainability, Efficiency, and Equity Dennis Wichelns Bloomington, Indiana, USA; [email protected] ABSTRACT: The notions of virtual water and water footprints were introduced originally to bring attention to the large amounts of water required to produce crops and livestock. Recently, several authors have begun applying those notions in efforts to describe efficiency, equity, and the sustainability of resources and production activities. In this paper, I describe why the notions of virtual water and water footprints are not appropriate for analysing issues pertaining to those topics. Both notions lack a supporting conceptual framework and they contain too little information to enhance understanding of important policy issues. Neither notion accounts for the opportunity cost or scarcity value of water in any setting, or the impacts of water availability and use on livelihoods. In addition, countries trade in goods and services – not in crop and livestock water requirements. Thus, the notions of virtual water and water footprints cannot provide helpful insight regarding the sustainability of water use, economic efficiency, or social equity. Gaining such insight requires the application of legitimate conceptual frameworks, representing a broad range of perspectives from the physical and social sciences, with due consideration of dynamics, uncertainty, and the impacts of policy choices on livelihoods and natural resources. KEYWORDS: Agriculture, economics, food security, livelihoods, risk, trade, uncertainty INTRODUCTION The notion of virtual water was first presented as an interesting description of how arid countries satisfy their annual food demands by importing substantial amounts of grain and other products (Allan, 1996, 2002).
    [Show full text]
  • The Water Footprints of Rice Consumption
    A.K. Chapagain The green, blue and grey A.Y. Hoekstra water footprint of rice March 2010 from both a production and consumption perspective Value of Water Research Report Series No. 40 THE GREEN, BLUE AND GREY WATER FOOTPRINT OF RICE FROM BOTH A PRODUCTION AND CONSUMPTION PERSPECTIVE 1 A.K. CHAPAGAIN 2 A.Y. HOEKSTRA MARCH 2010 VALUE OF WATER RESEARCH REPORT SERIES NO. 40 1 WWF-UK, Godalming, United Kingdom, email: [email protected] 2 University of Twente, Enschede, Netherlands, email: [email protected] The Value of Water Research Report Series is published by UNESCO-IHE Institute for Water Education, Delft, the Netherlands in collaboration with University of Twente, Enschede, the Netherlands, and Delft University of Technology, Delft, the Netherlands Contents Summary.................................................................................................................................................................5 1. Introduction ........................................................................................................................................................7 2. Method and data .................................................................................................................................................9 3. Water footprint of rice production....................................................................................................................19 4. International virtual water flows related to rice trade.......................................................................................23
    [Show full text]