A Computational Study of a Lithium Deuteride Fueled Electrothermal Plasma Mass Accelerator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Magnetohydrodynamics - Overview
Center for Turbulence Research 361 Proceedings of the Summer Program 2006 Magnetohydrodynamics - overview Magnetohydrodynamics (MHD) is the study of the interaction of electrically conduct- ing fluids and electromagnetic forces. MHD problems arise in a wide variety of situations ranging from the explanation of the origin of Earth's magnetic field and the prediction of space weather to the damping of turbulent fluctuations in semiconductor melts dur- ing crystal growth and even the measurement of the flow rates of beverages in the food industry. The description of MHD flows involves both the equations of fluid dynamics - the Navier-Stokes equations - and the equations of electrodynamics - Maxwell's equa- tions - which are mutually coupled through the Lorentz force and Ohm's law for moving electrical conductors. Given the vast range of Reynolds numbers and magnetic Reynolds numbers characterising astrophysical, geophysical, and industrial MHD problems it is not feasible to devise an all-encompassing numerical code for the simulation of all MHD flows. The challenge in MHD is rather to combine a judicious application of analytical tools for the derivation of simplified equations with accurate numerical algorithms for the solution of the resulting mathematical models. The 2006 summer program provided a unique opportunity for scientists and engineers working in different sub-disciplines of MHD to interact with each other and benefit from the numerical capabilities available at the Center for Turbulence Research. In materials processing such as the growth of semiconductor crystals or the continuous casting of steel turbulent flows are often undesirable. The application of steady magnetic fields provides a convenient means for the contactless damping of turbulent fluctuations and for the laminarisation of flows. -
Optimization of Ion Flow Rates in a Helicon Injected IEC Fusion System
Aeronautics and Aerospace Open Access Journal Research Article Open Access Optimization of ion flow rates in a helicon injected IEC fusion system Abstract Volume 4 Issue 2 - 2020 The Helicon Injected Inertial Electrostatic Confinement (IEC) offers an attractive D-D Qiheng Cai, George H Miley neutron source for neutron commercial and homeland security activation neutron analysis. Department of Nuclear, Plasma & Radiological Engineering, Designs with multiple injectors also provide a potential route to an attractive small fusion University of Illinois at Champaign-Urbana, USA reactor. Use of such a reactor has also been studied for deep space propulsion. In addition, a non-fusion design been studied for use as an electric thruster for near-term space Correspondence: Qiheng Cai, Department of Nuclear, Plasma applications. The Helicon Inertial Plasma Electrostatic Rocket (HIIPER) is an advanced & Radiological Engineering, University of Illinois at Champaign- space plasma thruster coupling the helicon and a modified IEC. A key aspect for all of these Urbana, Urbana, IL, 61801, Tel +15712679353, systems is to develop efficient coupling between the Helicon plasma injector and the IEC. Email This issue is under study and will be described in this presentation. To analyze the coupling efficiency, ion flow rates (which indicate how many ions exit the helicon and enter the IEC Received: May 01, 2020 | Published: May 21, 2020 device per second) are investigated by a global model. In this simulation particle rate and power balance equations are solved to investigate the time evolution of electron density, neutral density and electron temperature in the helicon tube. In addition to the Helicon geometry and RF field design, the use of a potential bias plate at the gas inlet of the Helicon is considered. -
Plasma Physics I APPH E6101x Columbia University Fall, 2016
Lecture 1: Plasma Physics I APPH E6101x Columbia University Fall, 2016 1 Syllabus and Class Website http://sites.apam.columbia.edu/courses/apph6101x/ 2 Textbook “Plasma Physics offers a broad and modern introduction to the many aspects of plasma science … . A curious student or interested researcher could track down laboratory notes, older monographs, and obscure papers … . with an extensive list of more than 300 references and, in particular, its excellent overview of the various techniques to generate plasma in a laboratory, Plasma Physics is an excellent entree for students into this rapidly growing field. It’s also a useful reference for professional low-temperature plasma researchers.” (Michael Brown, Physics Today, June, 2011) 3 Grading • Weekly homework • Two in-class quizzes (25%) • Final exam (50%) 4 https://www.nasa.gov/mission_pages/sdo/overview/ Launched 11 Feb 2010 5 http://www.nasa.gov/mission_pages/sdo/news/sdo-year2.html#.VerqQLRgyxI 6 http://www.ccfe.ac.uk/MAST.aspx http://www.ccfe.ac.uk/mast_upgrade_project.aspx 7 https://youtu.be/svrMsZQuZrs 8 9 10 ITER: The International Burning Plasma Experiment Important fusion science experiment, but without low-activation fusion materials, tritium breeding, … ~ 500 MW 10 minute pulses 23,000 tonne 51 GJ >30B $US (?) DIII-D ⇒ ITER ÷ 3.7 (50 times smaller volume) (400 times smaller energy) 11 Prof. Robert Gross Columbia University Fusion Energy (1984) “Fusion has proved to be a very difficult challenge. The early question was—Can fusion be done, and, if so how? … Now, the challenge lies in whether fusion can be done in a reliable, an economical, and socially acceptable way…” 12 http://lasco-www.nrl.navy.mil 13 14 Plasmasphere (Image EUV) 15 https://youtu.be/TaPgSWdcYtY 16 17 LETTER doi:10.1038/nature14476 Small particles dominate Saturn’s Phoebe ring to surprisingly large distances Douglas P. -
A Mathematical Introduction to Magnetohydrodynamics
Typeset in LATEX 2" July 26, 2017 A Mathematical Introduction to Magnetohydrodynamics Omar Maj Max Planck Institute for Plasma Physics, D-85748 Garching, Germany. e-mail: [email protected] 1 Contents Preamble 3 1 Basic elements of fluid dynamics 4 1.1 Kinematics of fluids. .4 1.2 Lagrangian trajectories and flow of a vector field. .5 1.3 Deformation tensor and vorticity. 14 1.4 Advective derivative and Reynolds transport theorem. 17 1.5 Dynamics of fluids. 20 1.6 Relation to kinetic theory and closure. 24 1.7 Incompressible flows . 32 1.8 Equations of state, isentropic flows and vorticity. 34 1.9 Effects of Euler-type nonlinearities. 35 2 Basic elements of classical electrodynamics 39 2.1 Maxwell's equations. 39 2.2 Lorentz force and motion of an electrically charged particle. 52 2.3 Basic mathematical results for electrodynamics. 57 3 From multi-fluid models to magnetohydrodynamics 69 3.1 A model for multiple electrically charged fluids. 69 3.2 Quasi-neutral limit. 74 3.3 From multi-fluid to a single-fluid model. 82 3.4 The Ohm's law for an electron-ion plasma. 86 3.5 The equations of magnetohydrodynamics. 90 4 Conservation laws in magnetohydrodynamics 95 4.1 Global conservation laws in resistive MHD. 95 4.2 Global conservation laws in ideal MHD. 98 4.3 Frozen-in law. 100 4.4 Flux conservation. 105 4.5 Topology of the magnetic field. 109 4.6 Analogy with the vorticity of isentropic flows. 117 5 Basic processes in magnetohydrodynamics 119 5.1 Linear MHD waves. -
Analysis of Equilibrium and Topology of Tokamak Plasmas
ANALYSIS OF EQUILIBRIUM AND TOPOLOGY OF TOKAMAK PLASMAS Boudewijn Philip van Millig ANALYSIS OF EQUILIBRIUM AND TOPOLOGY OF TOKAMAK PLASMAS BOUDEWHN PHILIP VAN MILUGEN Cover picture: Frequency analysis of the signal of a magnetic pick-up coil. Frequency increases upward and time increases towards the right. Bright colours indicate high spectral power. An MHD mode is seen whose frequency decreases prior to a disruption (see Chapter 5). II ANALYSIS OF EQUILIBRIUM AND TOPOLOGY OF TOKAMAK PLASMAS ANALYSE VAN EVENWICHT EN TOPOLOGIE VAN TOKAMAK PLASMAS (MET EEN SAMENVATTING IN HET NEDERLANDS) PROEFSCHRIFT TER VERKRUGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE RUKSUNIVERSITEIT TE UTRECHT, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. J.A. VAN GINKEL, VOLGENS BESLUTT VAN HET COLLEGE VAN DECANEN IN HET OPENBAAR TE VERDEDIGEN OP WOENSDAG 20 NOVEMBER 1991 DES NAMIDDAGS TE 2.30 UUR DOOR BOUDEWUN PHILIP VAN MILLIGEN GEBOREN OP 25 AUGUSTUS 1964 TE VUGHT DRUKKERU ELINKWIJK - UTRECHT m PROMOTOR: PROF. DR. F.C. SCHULLER CO-PROMOTOR: DR. N.J. LOPES CARDOZO The work described in this thesis was performed as part of the research programme of the 'Stichting voor Fundamenteel Onderzoek der Materie' (FOM) with financial support from the 'Nederlandse Organisatie voor Wetenschappelijk Onderzoek' (NWO) and EURATOM, and was carried out at the FOM-Instituut voor Plasmafysica te Nieuwegein, the Max-Planck-Institut fur Plasmaphysik, Garching bei Munchen, Deutschland, and the JET Joint Undertaking, Abingdon, United Kingdom. IV iEstos Bretones -
Stability Study of the Cylindrical Tokamak--Thomas Scaffidi(2011)
Ecole´ normale sup erieure´ Princeton Plasma Physics Laboratory Stage long de recherche, FIP M1 Second semestre 2010-2011 Stability study of the cylindrical tokamak Etude´ de stabilit´edu tokamak cylindrique Author: Supervisor: Thomas Scaffidi Prof. Stephen C. Jardin Abstract Une des instabilit´es les plus probl´ematiques dans les plasmas de tokamak est appel´ee tearing mode . Elle est g´en´er´ee par les gradients de courant et de pression et implique une reconfiguration du champ magn´etique et du champ de vitesse localis´ee dans une fine r´egion autour d’une surface magn´etique r´esonante. Alors que les lignes de champ magn´etique sont `al’´equilibre situ´ees sur des surfaces toriques concentriques, l’instabilit´econduit `ala formation d’ˆıles magn´etiques dans lesquelles les lignes de champ passent d’un tube de flux `al’autre, rendant possible un trans- port thermique radial important et donc cr´eant une perte de confinement. Pour qu’il puisse y avoir une reconfiguration du champ magn´etique, il faut inclure la r´esistivit´edu plasma dans le mod`ele, et nous r´esolvons donc les ´equations de la magn´etohydrodynamique (MHD) r´esistive. On s’int´eresse `ala stabilit´ede configurations d’´equilibre vis-`a-vis de ces instabilit´es dans un syst`eme `ala g´eom´etrie simplifi´ee appel´ele tokamak cylindrique. L’´etude est `ala fois analytique et num´erique. La solution analytique est r´ealis´ee par une m´ethode de type “couche limite” qui tire profit de l’´etroitesse de la zone o`ula reconfiguration a lieu. -
Magnetohydrodynamics 1 19.1Overview
Contents 19 Magnetohydrodynamics 1 19.1Overview...................................... 1 19.2 BasicEquationsofMHD . 2 19.2.1 Maxwell’s Equations in the MHD Approximation . ..... 4 19.2.2 Momentum and Energy Conservation . .. 8 19.2.3 BoundaryConditions. 10 19.2.4 Magneticfieldandvorticity . .. 12 19.3 MagnetostaticEquilibria . ..... 13 19.3.1 Controlled thermonuclear fusion . ..... 13 19.3.2 Z-Pinch .................................. 15 19.3.3 Θ-Pinch .................................. 17 19.3.4 Tokamak.................................. 17 19.4 HydromagneticFlows. .. 18 19.5 Stability of Hydromagnetic Equilibria . ......... 22 19.5.1 LinearPerturbationTheory . .. 22 19.5.2 Z-Pinch: Sausage and Kink Instabilities . ...... 25 19.5.3 EnergyPrinciple ............................. 28 19.6 Dynamos and Reconnection of Magnetic Field Lines . ......... 29 19.6.1 Cowling’stheorem ............................ 30 19.6.2 Kinematicdynamos............................ 30 19.6.3 MagneticReconnection. 31 19.7 Magnetosonic Waves and the Scattering of Cosmic Rays . ......... 33 19.7.1 CosmicRays ............................... 33 19.7.2 Magnetosonic Dispersion Relation . ..... 34 19.7.3 ScatteringofCosmicRays . 36 0 Chapter 19 Magnetohydrodynamics Version 1219.1.K.pdf, 7 September 2012 Please send comments, suggestions, and errata via email to [email protected] or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125 Box 19.1 Reader’s Guide This chapter relies heavily on Chap. 13 and somewhat on the treatment of vorticity • transport in Sec. 14.2 Part VI, Plasma Physics (Chaps. 20-23) relies heavily on this chapter. • 19.1 Overview In preceding chapters, we have described the consequences of incorporating viscosity and thermal conductivity into the description of a fluid. We now turn to our final embellishment of fluid mechanics, in which the fluid is electrically conducting and moves in a magnetic field. -
Formation of Hot, Stable, Long-Lived Field-Reversed Configuration Plasmas on the C-2W Device
IOP Nuclear Fusion International Atomic Energy Agency Nuclear Fusion Nucl. Fusion Nucl. Fusion 59 (2019) 112009 (16pp) https://doi.org/10.1088/1741-4326/ab0be9 59 Formation of hot, stable, long-lived 2019 field-reversed configuration plasmas © 2019 IAEA, Vienna on the C-2W device NUFUAU H. Gota1 , M.W. Binderbauer1 , T. Tajima1, S. Putvinski1, M. Tuszewski1, 1 1 1 1 112009 B.H. Deng , S.A. Dettrick , D.K. Gupta , S. Korepanov , R.M. Magee1 , T. Roche1 , J.A. Romero1 , A. Smirnov1, V. Sokolov1, Y. Song1, L.C. Steinhauer1 , M.C. Thompson1 , E. Trask1 , A.D. Van H. Gota et al Drie1, X. Yang1, P. Yushmanov1, K. Zhai1 , I. Allfrey1, R. Andow1, E. Barraza1, M. Beall1 , N.G. Bolte1 , E. Bomgardner1, F. Ceccherini1, A. Chirumamilla1, R. Clary1, T. DeHaas1, J.D. Douglass1, A.M. DuBois1 , A. Dunaevsky1, D. Fallah1, P. Feng1, C. Finucane1, D.P. Fulton1, L. Galeotti1, K. Galvin1, E.M. Granstedt1 , M.E. Griswold1, U. Guerrero1, S. Gupta1, Printed in the UK K. Hubbard1, I. Isakov1, J.S. Kinley1, A. Korepanov1, S. Krause1, C.K. Lau1 , H. Leinweber1, J. Leuenberger1, D. Lieurance1, M. Madrid1, NF D. Madura1, T. Matsumoto1, V. Matvienko1, M. Meekins1, R. Mendoza1, R. Michel1, Y. Mok1, M. Morehouse1, M. Nations1 , A. Necas1, 1 1 1 1 1 10.1088/1741-4326/ab0be9 M. Onofri , D. Osin , A. Ottaviano , E. Parke , T.M. Schindler , J.H. Schroeder1, L. Sevier1, D. Sheftman1 , A. Sibley1, M. Signorelli1, R.J. Smith1 , M. Slepchenkov1, G. Snitchler1, J.B. Titus1, J. Ufnal1, Paper T. Valentine1, W. Waggoner1, J.K. Walters1, C. -
Plasma Stability and the Bohr - Van Leeuwen Theorem
NASA TECHNICAL NOTE -I m 0 I iii I nE' n z c * v) 4 z PLASMA STABILITY AND THE BOHR - VAN LEEUWEN THEOREM by J. Reece Roth Lewis Research Center Cleueland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. APRIL 1967 I ~ .. .. .. TECH LIBRARY KAFB, NM I llllll Illlll lull IIM IIllIll1 Ill1 OL3060b NASA TN D-3880 PLASMA STABILITY AND THE BOHR - VAN LEEWEN THEOREM By J. Reece Roth Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTI price $3.00 CONTENTS Page SUMMARY.- ........................................ 1 INTRODUCTION-___ ..................................... 2 THE BOHR - VAN LEEUWEN THEOREM ....................... 3 RELATION OF THE BOHR - VAN LEEUWEN THEOREM TO CONVENTIONAL MACROSCOPIC THEORIES OF PLASMA STABILITY ................ 3 The Momentum Equation .............................. 3 The Conventional Magnetostatic and Hydromagnetic Theories .......... 4 The Bohr - van Leeuwen Theorem. ........................ 7 Application of the Bohr - van Leeuwen Theorem to Plasmas ........... 9 The Bohr - van Leeuwen Theorem and the Literature of Plasma Physics .... 10 PLASMA CURRENTS ................................. 11 Assumptions of Analysis .............................. 11 Sources of Plasma Currents ............................ 12 Net Plasma Currents. ............................... 15 CHARACTERISTICS OF PLASMAS SATISFYING THE BOHR - VAN LEEUWEN THEOREM ..................................... -
Plasma Waves
Plasma Waves S.M.Lea January 2007 1 General considerations To consider the different possible normal modes of a plasma, we will usually begin by assuming that there is an equilibrium in which the plasma parameters such as density and magnetic field are uniform and constant in time. We will then look at small perturbations away from this equilibrium, and investigate the time and space dependence of those perturbations. The usual notation is to label the equilibrium quantities with a subscript 0, e.g. n0, and the pertrubed quantities with a subscript 1, eg n1. Then the assumption of small perturbations is n /n 1. When the perturbations are small, we can generally ignore j 1 0j ¿ squares and higher powers of these quantities, thus obtaining a set of linear equations for the unknowns. These linear equations may be Fourier transformed in both space and time, thus reducing the differential equations to a set of algebraic equations. Equivalently, we may assume that each perturbed quantity has the mathematical form n = n exp i~k ~x iωt (1) 1 ¢ ¡ where the real part is implicitly assumed. Th³is form descri´bes a wave. The amplitude n is in ~ general complex, allowing for a non•zero phase constant φ0. The vector k, called the wave vector, gives both the direction of propagation of the wave and the wavelength: k = 2π/λ; ω is the angular frequency. There is a relation between ω and ~k that is determined by the physical properties of the system. The function ω ~k is called the dispersion relation for the wave. -
Application of High Performance Computing for Fusion Research Shimpei Futatani
Application of high performance computing for fusion research Shimpei Futatani Department of Physics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain The study of the alternative energy source is one of the absolutely imperative research topics in the world as our present energy sources such as fossil fuels are limited. This work is dedicated to the nuclear fusion physics research in close collaboration with existing experimental fusion devices and the ITER organization (www.iter.org) which is an huge international nuclear fusion R&D project. The goal of the ITER project is to demonstrate a clean and safe energy production by nuclear fusion which is the reaction that powers the sun. One of the ideas of the nuclear fusion on the earth is that the very high temperature ionized particles, forming a plasma can be controlled by a magnetic field, called magnetically confined plasma. This is essential, because no material can be sustained against such high temperature reached in a fusion reactor. Tokamak is a device which uses a powerful magnetic field to confine a hot plasma in the shape of a torus. It is a demanding task to achieve a sufficiently good confinement in a tokamak for a ‘burning plasma’ due to various kinds of plasma instabilities. One of the critical unsolved problems is MHD (MagnetoHydroDynamics) instabilities in the fusion plasmas. The MHD instabilities at the plasma boundary damages the plasma facing component of the fusion reactor. One of techniques to control the MHD instabilities is injection of pellets (small deuterium ice bodies). The physics of the interaction between pellet ablation and MHD dynamics is very complex, and uncertainties still remain regarding the theoretical physics as well as the numerical modelling point of view. -
Identification of the Sequence of Steps Intrinsic to Spheromak Formation
Identification of the Sequence of Steps Intrinsic to Spheromak Formation P.M. Bellan, S. You, and G. S. Yun California Institute of Technology Pasadena, CA 91125, USA Abstract. A planar coaxial electrostatic helicity source is used for studying the relaxation process intrinsic to spheromak formation. Experimental observations reveal that spheromak formation involves: (1) breakdown and creation of a number of distinct, arched, filamentary, plasma-filled flux loops that span from cathode to anode gas nozzles, (2) merging of these loops to form a central column, (3) jet-like expansion of the central column, (4) kink instability of the central column, (5) conversion of toroidal flux to poloidal flux by the kink instability. Steps 1 and 3 indicate that spheromak formation involves an MHD pumping of plasma from the gas nozzles into the magnetic flux tube linking the nozzles. In order to measure this pumping, the gas puffing system has been modified to permit simultaneous injection of different gas species into the two ends of the flux tube linking the wall. Gated CCD cameras with narrow-band optical filters are used to track the pumped flows. Keywords: spheromak, magnetohydrodynamics, kink, jet PACS: 52.55.Ip, 52.35.Py, 52.55.Wq, 52.59.Dk INTRODUCTION which is rich in toroidal field energy (typical poloidal currents are 100 kA) but poor in poloidal field energy. Spheromaks are toroidal MHD equilibria incorporating Spheromak formation involves conversion of toroidal nested poloidal magnetic flux surfaces suitable for magnetic flux into poloidal magnetic flux while confining a fusion plasma. Unlike tokamaks, conserving magnetic helicity (but not conserving spheromaks are a self-organizing, minimum-energy magnetic energy).