Comparison of Gastrointestinal Parasite Communities in Vervet

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Gastrointestinal Parasite Communities in Vervet Integrative Zoology 2017; 12: 512–520 doi: 10.1111/1749-4877.12270 1 SHORT COMMUNICATION 1 2 2 3 3 4 4 5 5 6 6 7 Comparison of gastrointestinal parasite communities in vervet 7 8 8 9 monkeys 9 10 10 11 11 12 Kim VALENTA,1 Dennis TWINOMUGISHA,2 Kathleen GODFREY,1 Cynthia LIU,1 Valérie A. M. 12 13 3 2,4 1,2,5 13 14 SCHOOF, Tony L. GOLDBERG and Colin A. CHAPMAN 14 15 1McGill School of Environment, McGill University, Montreal, Quebec, Canada, 2Makerere University Biological Field Station, 15 16 Kampala, Uganda, 3Bilingual Biology Program, Department of Multidisciplinary Studies, Glendon Campus, York University, 16 17 Toronto, Ontario, Canada, 4Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin- 17 18 5 18 Madison, Madison, Wisconsin, USA and Wildlife Conservation Society, Bronx, New York, USA 19 19 20 20 21 21 22 Abstract 22 23 23 Globally, habitat degradation is accelerating, especially in the tropics. Changes to interface habitats can increase 24 24 environmental overlap among nonhuman primates, people, and domestic animals and change stress levels in 25 25 wildlife, leading to changes in their risk of parasite infections. However, the direction and consequences of 26 26 these changes are unclear, since animals may benefit by exploiting human resources (e.g., improving nutrition- 27 27 al health by eating nutritious crops) and decreasing susceptibility to infection, or interactions with humans may 28 28 lead to chronic stress and increased susceptibility to infection. Vervet monkeys are an excellent model to under- 29 29 stand parasitic disease transmission because of their tolerance to anthropogenic disturbance. Here we quantify 30 30 the gastrointestinal parasites of a group of vervet monkeys (Chlorocebus aethiops) near Lake Nabugabo, Ugan- 31 31 da, that frequently overlaps with people in their use of a highly modified environment. We compare the parasites 32 32 found in this population to seven other sites where vervet monkey gastrointestinal parasites have been identi- 33 33 fied. The vervets of Lake Nabugabo have the greatest richness of parasites documented to date. We discuss how 34 34 this may reflect differences in sampling intensity or differences in the types of habitat where vervet parasites 35 35 have been sampled. 36 36 37 Key Words: anthropogenic disturbance, disease, gastrointestinal parasite, habitat degradation, Nabugabo, 37 38 vervet, zoonotic disease 38 39 39 40 40 41 41 42 INTRODUCTION Nunn & Altizer 2006). For example, the number of para- 42 43 site eggs in the environment is lower in hot, dry months 43 44 Parasitism is fundamentally linked to the environ- compared to wetter months, and increased environmen- 44 45 ment and the condition of the host (Holt et al. 2003; tal moisture is positively related to prevalence and in- 45 46 tensity of infections (Appleton & Henzi 1993; Apple- 46 47 ton & Brain 1995; Larsen & Roepstorff 1999; Chapman 47 48 Correspondence: Kim Valenta, McGill School of Environment, et al. 2010, 2015). Environmental conditions also affect 48 49 McGill University, 3534 University St. H3A 2A7 Montreal, the host, altering susceptibility to parasite infections. 49 50 Quebec, Canada. Marginal environmental conditions can cause physio- 50 51 Email: [email protected] logical stress, and chronic stress can suppress the im- 51 512 © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Parasite communities in vervet monkeys 1 mune system leading to greater risk of infections (Black pogenically-modified landscape neighboring Lake Nab- 1 2 1994; Coe & Erickson 1997; Padgett & Glaser 2003). ugabo, Uganda. Vervet monkeys are extremely flexible 2 3 For example, in free-ranging chamois (Rupicapra rupi- in terms of diet and habitat use. Vervets are often found 3 4 capra), stress hormone levels and gastrointestinal and living in urban, peri-urban or agricultural environments, 4 5 lung helminth counts were found to co-vary through- sometimes co-existing with humans, as well as in undis- 5 6 out the year (Hoby et al. 2006). Similarly, primates ex- turbed savanna, and woodland, riverine systems. Vervet 6 7 periencing chronically elevated stress and depressed im- monkeys are considered pests because they frequent- 7 8 mune function have increased parasite burden and are ly crop raid or steal human food (Boulton et al. 1996; 8 9 at a higher risk of acquiring parasites than those that ex- Saj et al. 2001; Gillingham & Lee 2003; Chapman et al. 9 10 perience less stress (Muehlenbein 2006; Chapman et al. 2016). Because of their proximity to (and frequent inter- 10 11 2015). Such host–parasite-environment linkages mean action with) humans and their ability to live in habitats 11 12 that when people cause environmental change it can ranging from old-growth forest to cities, vervet mon- 12 13 have cascading effects on parasitism and the health of keys are a good model for understanding parasitic infec- 13 14 nonhuman hosts in those environments. tions in wildlife populations inhabiting highly anthro- 14 15 The effects on wild animals living in habitats mod- pogenic habitats. Here we present data on the largest 15 16 ified by humans are complex. However, given cur- sample of vervet gastrointestinal parasites collected to 16 17 rent trends in forest loss, cropland expansion and hu- date, and discuss our findings in light of anthropogenic 17 18 man population growth (Foley et al. 2011; Balmford et and habitat variables that may influence vervet parasite 18 19 al. 2012; Estrada 2013; Hansen et al. 2013; Phalan et richness. 19 20 al. 2013), it is reasonable to expect increasing effects 20 21 of environmental change on wildlife, including chang- MATERIALS AND METHODS 21 22 es in the nature of parasite infection. For example, pri- 22 23 mates that frequent areas heavily used by humans and The study took place on the shores of Lake Nab- 23 24 domesticated animals may be exposed to a higher di- ugabo, Masaka District, Central Uganda (0°22′–12°S, 24 25 versity of parasites than primates in undisturbed hab- 31°54′E) near McGill’s Lake Nabugabo Research Sta- 25 26 itats. Furthermore, primates in such anthropogenical- tion. Lake Nabugabo is a satellite lake of Lake Victo- 26 27 ly-disturbed locations may be chronically stressed due ria and lies at an elevation of 1136 m. The lake is most- 27 28 to frequent conflict with people and their domesticat- ly surrounded by wetlands, grasslands and patches of 28 29 ed animals, thereby increasing their susceptibility to in- swamp forest; however, a portion to the west side of 29 30 fection (Chapman et al. 2006). Alternatively, suscepti- the lake consists of farmers’ fields, degraded forest and 30 31 bility to parasites may decrease as primates gain access a few buildings. The area receives an average of 1348 31 32 to nutritional crops, decreasing nutritional stress (Wal- mm of rain annually, and precipitation is primarily in- 32 33 lis 2000; Hahn et al. 2003). Ekanayake et al. (2006) fluenced by the north–south migration of the Intertropi- 33 34 showed higher prevalence of Cryptosporidium sp. infec- cal Convergence Zone (ITCZ), causing a bimodal rain- 34 35 tions in toque macaques (Macaca sinica), gray langurs fall pattern consisting of 2 rainy seasons (March through 35 36 (Semnopithecus priam) and purple-faced langurs (Tra- mid-May and November through early December), sep- 36 37 chypithecus vetulus) in areas used by humans than in ar- arated by 2 dry seasons (late December through Feb- 37 38 eas not used by humans. Furthermore, a greater preva- ruary and mid-May through October) (Stampone et al. 38 39 lence of Enterobius sp., Strongyloides sp., Trichuris sp., 2011). 39 40 strongyle-type eggs, Entamoeba coli and E. hystolyti- We assessed parasite infection non-invasively, by 40 41 ca/dispar were found in the macaques that ranged in ar- collecting feces from a single habituated group of ver- 41 42 eas used by humans (Ekanayake et al. 2006). Similarly, vets that has been studied since May 2011. The group 42 43 Chapman et al. (2006) found that red colobus (Procolo- contained on average 24 individuals (2 adult males, 5 43 44 bus rufomitratus) in forest fragments who were feeding adult females, 3 subadult males, 3 subadult females, and 44 45 on crops had higher levels of stress and greater parasite 11 juveniles and infants), all of which were individual- 45 46 infections than red colobus in continuous old-growth ly identifiable based on scars, markings and variation in 46 47 forest. pelage. Two of the juveniles that were sampled died be- 47 48 48 The objective of the present study was to identify the fore sex could be determined. Overall, we obtained 403 49 49 gastrointestinal parasites in a population of vervet mon- samples between May 2011–June 2014, and January– 50 50 keys (Chlorocebus aethiops) living in a highly anthro- February 2015. Fecal samples were labeled with the in- 51 51 © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, 513 Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd K. Valenta et al. 1 dividual, date, location and time of collection. At the DM2500 light microscope (71 Four Valley Drive, Con- 1 2 end of each day, observers weighed 1.0 g of wet fecal cord, Ontario, L4K 4V8 Canada) under 10–100× mag- 2 3 matter from each sample and stored it in 2.0 mL of 10% nification to examine thin preparations of sedimented 3 4 formalin solution for parasite identification.
Recommended publications
  • Fecal Examination for Parasites 2015 Country Living Expo Classes #108 & #208
    Fecal Examination for Parasites 2015 Country Living Expo Classes #108 & #208 Tim Cuchna, DVM Northwest Veterinary Clinic Stanwood (360) 629-4571 [email protected] www.nwvetstanwood.com Fecal Examination for Parasites Today’s schedule – Sessions 1 & 2 1st part discussing fecal exam & microscopes 2nd part Lab – three areas Set-up your samples Demonstration fecals Last 15 minutes clean-up and last minute questions; done by 11:15 Fecal Examination for Parasites Today’s Topics How does fecal flotation work? Introduction to fecal parasite identification Parasite egg characteristics. Handout Parasites of concern Microscope basics and my preferences Microscopic exam Treatment plan based on simple flotation fecal exam Demonstration of Fecalyzer set-up How does Fecal Flotation work? Based on specific gravity – the ratio of the density of a substance (parasite eggs) compared to a standard (water) Water has a specific gravity(sp. gr.) of 1.00. Parasite eggs range from 1.05 – 1.20 sp.gr. Fecal flotation solution – approximately 1.18 – 1.27 sp. gr. Fecal debris usually is greater than 1.30 sp. gr. Fecasol solution – 1.2 – 1.25 sp. gr. Fecal Examination for Parasites Important topics NOT covered today Parasite treatment protocols Parasite management Other parasites such as external and blood-borne Fecal Examination for Parasites My Plan Parasite Identification 1. Animal ID (name, species, age & condition of animal) 2. Characteristics of parasite eggs, primarily looking for eggs in fecal samples a) Size - microns (µm)/micrometer – 1 µm=1/1000mm = 1/1millionth of a meter. Copy paper thickness = 100 microns (µm) b) Shape – Round, oval, pear, triangular shapes c) Shell thickness – Thin to thick d) Caps (operculum) One or both ends; smooth or protruding Parasites of Concern Nematodes – Roundworms Protozoa – Coccidia, Giardia, Toxoplasma Trematodes – Flukes – Minor concern in W.
    [Show full text]
  • Small Animal Intestinal Parasites
    Small Animal Intestinal Parasites Parasite infections are commonly encountered in veterinary medicine and are often a source of zoonotic disease. Zoonosis is transmission of a disease from an animal to a human. This PowerPage covers the most commonly encountered parasites in small animal medicine and discusses treatments for these parasites. It includes mostly small intestinal parasites but also covers Trematodes, which are more common in large animals. Nematodes Diagnosed via a fecal flotation with zinc centrifugation (gold standard) Roundworms: • Most common roundworm in dogs and cats is Toxocara canis • Causes the zoonotic disease Ocular Larval Migrans • Treated with piperazine, pyrantel, or fenbendazole • Fecal-oral, trans-placental infection most common • Live in the small intestine Hookworms: • Most common species are Ancylostoma caninum and Uncinaria stenocephala • Causes the zoonotic disease Cutaneous Larval Migrans, which occurs via skin penetration (often seen in children who have been barefoot in larval-infected dirt); in percutaneous infection, the larvae migrate through the skin to the lung where they molt and are swallowed and passed into the small intestine • Treated with fenbendazole, pyrantel • Can cause hemorrhagic severe anemia (especially in young puppies) • Fecal-oral, transmammary (common in puppies), percutaneous infections Whipworms: • Trichuris vulpis is the whipworm • Fecal-oral transmission • Severe infection may lead to hyperkalemia and hyponatremia (similar to what is seen in Addison’s cases) • Trichuris vulpis is the whipworm • Large intestinal parasite • Eggs have bipolar plugs on the ends • Treated with fenbendazole, may be prevented with Interceptor (milbemycin) Cestodes Tapeworms: • Dipylidium caninum is the most common tapeworm in dogs and cats and requires a flea as the intermediate host; the flea is usually inadvertently swallowed during grooming • Echinococcus granulosus and Taenia spp.
    [Show full text]
  • Heather D. Stockdale Walden
    HEATHER D. STOCKDALE WALDEN College of Veterinary Medicine, Department of Comparative, Diagnostic and Population Medicine, PO Box 110123, Gainesville, Florida | 352-294-4125 | [email protected] EDUCATION Auburn University Ph.D. Biomedical Sciences 2008 Area of Concentration: Parasitology Dissertation: “Biological characterization of Tritrichomonas foetus of bovine and feline origin” Appalachian State University M.S. Biology 2004 Area of Concentration: Genetics Thesis: “Differences in male courtship behavior of Drosophila melanogaster: Sex, flies and videotape” University of Kentucky B.S. Biology 1999 AWARDS Zoetis Distinguished Veterinary Teacher Award 2016 Intervet/AAVP Outstanding Graduate Student 2008 Byrd Dunn (SSP) Award for Best Graduate Student Presentation 2008 Phi Zeta – Auburn University, Best Graduate Student Presentation 2007 Bayer/AAVP Best Graduate Student Presentation 2007 Auburn University Graduate Assistantship 2004-2008 PROFESSIONAL EXPERIENCE University of Florida College of Veterinary Medicine Assistant Professor of Parasitology 2015 – present Department of Infectious Diseases and Pathology Gainesville, Florida University of Florida College of Veterinary Medicine Research Assistant Professor of Parasitology 2010 –2015 Department of Infectious Diseases and Pathology Gainesville, Florida University of Florida College of Veterinary Medicine Biological Scientist 2009 – 2010 Department of Infectious Diseases and Pathology Gainesville, Florida University of Florida College of Veterinary Medicine Biological Scientist 2008
    [Show full text]
  • Veterinary Public Health
    Veterinary Public Health - MPH Increasing focus on zoonotic diseases, foodborne illness, public health preparedness, antibiotic resistance, the human-animal bond, and environmental health has dramatically increased opportunities for public health veterinarians - professionals who address key issues surrounding human and animal health. Adding the MPH to your DVM degree positions you to work at the interface of human wellness and animal health, spanning agriculture and food industry concerns, emerging infectious diseases, and ecosystem health. Unique Features Curriculum Veterinary Public Health • Earn a MPH degree in the same four 42 credits MPH Program Contacts: years as your DVM. Core Curriculum (21.5 credits) • PubH 6299 - Public Health is a Team Sport: The Power www.php.umn.edu • The MPH is offered through a mix of Collaboration (1.5 cr) of online and in-person classes. Online • PubH 6020-Fundanmentals of Social and Behavioral Program Director: courses are taken during summer Science (3 cr) Larissa Minicucci, DVM, MPH terms, before and during your • PubH 6102 - Issues in Environmental and [email protected] veterinary curriculum. Attendance at Occupational Health (2 cr) 612-624-3685 the Public Health Institute, held each • PubH 6320 - Fundamentals of Epidemiology (3 cr) Program Coordinator: summer at the University of • PubH 6414 - Biostatistical Methods (3 cr) Sarah Summerbell, BS Minnesota, provides you with the • PubH 6741 - Ethics in Public Health: Professional [email protected] opportunity to earn elective credits. Practice and Policy (1 cr) 612-626-1948 The Public Health Institute is a unique • PubH 6751 - Principles of Management in Health forum for professionals from multiple Services Organizations (2 cr) disciplines to connect and immerse • PubH 7294 - Master’s Project (3 cr) Cornell Faculty Liaisons: themselves in emerging public health • PubH 7296 - Field Experience (3 cr) Alfonso Torres, DVM, MS, PhD issues.
    [Show full text]
  • 2011 -- Helminths of Pigs: New Challenges
    Veterinary Parasitology 180 (2011) 72–81 Contents lists available at ScienceDirect Veterinary Parasitology j ournal homepage: www.elsevier.com/locate/vetpar Helminth parasites in pigs: New challenges in pig production and current research highlights ∗ A. Roepstorff , H. Mejer, P. Nejsum, S.M. Thamsborg Danish Centre for Experimental Parasitology, Department for Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Dyrlægevej 100, DK-1870 Frederiksberg C, Copenhagen, Denmark a r t i c l e i n f o a b s t r a c t Keywords: Helminths in pigs have generally received little attention from veterinary parasitologists, Ascaris despite Ascaris suum, Trichuris suis, and Oesophagostomum sp. being common worldwide. Trichuris The present paper presents challenges and current research highlights connected with these Oesophagostomum parasites. Pigs Review In Danish swine herds, new indoor production systems may favour helminth transmis- sion and growing knowledge on pasture survival and infectivity of A. suum and T. suis eggs indicates that they may constitute a serious threat to outdoor pig production. Furthermore, it is now evident that A. suum is zoonotic and the same may be true for T. suis. With these ‘new’ challenges and the economic impact of the infections, further research is warranted. Better understanding of host–parasite relationships and A. suum and T. suis egg ecology may also improve the understanding and control of human A. lumbricoides and T. trichiura infections. The population dynamics of the three parasites are well documented and may be used to study phenomena, such as predisposition and worm aggregation. Furthermore, better methods to recover larvae have provided tools for quantifying parasite transmission.
    [Show full text]
  • Veterinary Parasitology
    VETERINARY PARASITOLOGY An international scientific journal and the Official Organ of the American Association of Veterinary Parasitologists (AAVP), the European Veterinary Parasitology College (EVPC) and the World Association for the Advancement of Veterinary Parasitology (WAAVP) AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.2 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.5 ISSN: 0304-4017 DESCRIPTION . Veterinary Parasitology is concerned with those aspects of helminthology, protozoology and entomology which are of interest to animal health investigators, veterinary practitioners and others with a special interest in parasitology. Papers of the highest quality dealing with all aspects of disease prevention, pathology, treatment, epidemiology, and control of parasites in all domesticated animals, fall within the scope of the journal. Papers of geographically limited (local) interest which are not of interest to an international audience will not be accepted. Authors who submit papers based on local data will need to indicate why their paper is relevant to a broader readership. Or they can submit to the journal?s companion title, Veterinary Parasitology: Regional Studies and Reports, which welcomes manuscripts with a regional focus. Parasitological studies on laboratory animals fall within the scope of Veterinary Parasitology only if they provide a reasonably close model of a disease of domestic animals. Additionally the journal will consider papers relating to wildlife species where they may act as disease reservoirs to domestic animals, or as a zoonotic reservoir. Case studies considered to be unique or of specific interest to the journal, will also be considered on occasions at the Editors' discretion.
    [Show full text]
  • 2006 Waller Industry Perspectives On
    Veterinary Parasitology 139 (2006) 1–14 www.elsevier.com/locate/vetpar Review From discovery to development: Current industry perspectives for the development of novel methods of helminth control in livestock§ P.J. Waller * SWEPAR, National Veterinary Institute, SE 751 89 Uppsala, Sweden Received 11 November 2005; received in revised form 23 February 2006; accepted 27 February 2006 Abstract Despite the extraordinary success in the development of anthelmintics in the latter part of the last century, helminth parasites of domestic ruminants continue to pose the greatest infectious disease problem in grazing livestock systems worldwide. Newly emerged threats to continuing successful livestock production, particularly with small ruminants, are the failure of this chemotherapeutic arsenal due to the widespread development of anthelmintic resistance at a time when the likelihood of new products becoming commercially available seems more remote. Changing public attitudes with regards to animal welfare, food preferences and safety will also significantly impact on the ways in which livestock are managed and their parasites are controlled. Superimposed on this are changes in livestock demographics internationally, in response to evolving trade policies and demands for livestock products. In addition, is the apparently ever-diminishing numbers of veterinary parasitology researchers in both the public and private sectors. Industries, whether being the livestock industries, the public research industries, or the pharmaceutical industries that provide animal health products, must adapt to these changes. In the context of helminth control in ruminant livestock, the mind-set of ‘suppression’ needs to be replaced by ‘management’ of parasites to maintain long-term profitable livestock production. Existing effective chemical groups need to be carefully husbanded and non-chemotherapeutic methods of parasite control need to be further researched and adopted, if and when, they become commercially available.
    [Show full text]
  • Infectious Organisms of Ophthalmic Importance
    INFECTIOUS ORGANISMS OF OPHTHALMIC IMPORTANCE Diane VH Hendrix, DVM, DACVO University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996 OCULAR BACTERIOLOGY Bacteria are prokaryotic organisms consisting of a cell membrane, cytoplasm, RNA, DNA, often a cell wall, and sometimes specialized surface structures such as capsules or pili. Bacteria lack a nuclear membrane and mitotic apparatus. The DNA of most bacteria is organized into a single circular chromosome. Additionally, the bacterial cytoplasm may contain smaller molecules of DNA– plasmids –that carry information for drug resistance or code for toxins that can affect host cellular functions. Some physical characteristics of bacteria are variable. Mycoplasma lack a rigid cell wall, and some agents such as Borrelia and Leptospira have flexible, thin walls. Pili are short, hair-like extensions at the cell membrane of some bacteria that mediate adhesion to specific surfaces. While fimbriae or pili aid in initial colonization of the host, they may also increase susceptibility of bacteria to phagocytosis. Bacteria reproduce by asexual binary fission. The bacterial growth cycle in a rate-limiting, closed environment or culture typically consists of four phases: lag phase, logarithmic growth phase, stationary growth phase, and decline phase. Iron is essential; its availability affects bacterial growth and can influence the nature of a bacterial infection. The fact that the eye is iron-deficient may aid in its resistance to bacteria. Bacteria that are considered to be nonpathogenic or weakly pathogenic can cause infection in compromised hosts or present as co-infections. Some examples of opportunistic bacteria include Staphylococcus epidermidis, Bacillus spp., Corynebacterium spp., Escherichia coli, Klebsiella spp., Enterobacter spp., Serratia spp., and Pseudomonas spp.
    [Show full text]
  • Diagnostic Notes
    DIAGNOSTIC NOTES Pig parasite diagnosis Robert M. Corwin, DVM, PhD arasites in swine have an impact on performance, with effects and the persistence or life span of the parasite. ranging from impaired growth and wasteful feed consumption Postmortem examination should reveal adult worms in their principal to clinical disease, debilitation, and perhaps even death. It is sites of infection, e.g., ascarids in the small intestine. Lesions associ- particularly important to diagnose subclinical parasitism, which can ated with larval infection, such as nodules of Oesophagostomum in have serious economic consequences and which should be treated the colon may not have larvae present or apparent. Lungworms also with ongoing preventive measures. have rather specific sites at least in young worm populations, viz., the Internal parasitism is caused by nematode roundworms and coccidia bronchioles of the diaphragmatic lobes of the lungs. in the gastrointestinal tract, lungworms in the respiratory tract, and by All of these parasites are directly transmissible from the environment ectoparasites. The most commonly encountered gastrointestinal para- with ingestion of eggs or larvae. Strongyloides may also be passed in sites are the large roundworm Ascaris suum, the threadworm Stron- the colostrum or penetrate skin, and transmission of the lung worm gyloides ransomi, the whipworm Trichuris suis, the nodular worm and the kidney worm may involve earthworms. Oesophagostomum dentatum, and the coccidia, especially lsospora suis and Cryptosporidium parvum in neonates and Eimeria spp at Ascaris suum --”large roundworm” weaning. (Figure 1A) Diagnosis of internal parasites is best accomplished by fecal examina- egg: 45-60 µm, yellowish brown, spherical, mammillated (Figure 1B) tion using a flotation technique and/or by necropsy.
    [Show full text]
  • Easwaran Thekkady Parasites
    NOTE ZOOS' PRINT JOURNAL 18(2): 1030 Acknowledgement The authors are thankful to the Dean, College of Veterinary and Animal Sciences, Mannuthy for the facilities provided for this PARASITIC INFECTION OF SOME WILD study. ANIMALS AT THEKKADY IN KERALA References Fowler, M.E. (1986). Zoo and Wild Animal Medicine. 2 nd edition. W.B. 1 2 3 K.R. Easwaran , Reghu Ravindran and K. Madhavan Pillai Saunders Company, Philadelphia. Gour, S.N.S., M.S. Sethi, H.C. Thivari and O. Prakash (1979). 1 Assistant Forest Veterinary Officer, Project Tiger, Thekkady, Kerala Prevalence of helminthic parasties in wild and zoo animals in Uttar 685536, India. Pradesh. Indian Journal of Animal Sciences 49: 159-161. 2 Ph.D. Scholar, Division of Parasitology, I.V.R.I., Izatnagar, Bareilly, Henry, V.G. and R.H. Conley (1970). Some parasties of wild hogs in Uttar Pradesh 243122, India. southern Appalachians. Journal of Wildlife Management 34: 913-917. 3 Professor of Parasitology (Retd.), Department of Parasitology of Noda, R. (1973). A new species of Metastrongylus from a wild boar Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India. with remarks on other species. Bulletin of Agricultural Biology 25: 21- 29. Rajagopalan, P.K., A.P. Patil and M.J. Boshell (1968). Ixodid ticks on their mammalian hosts in the Kyasannur forest disease area of Mysore State, India. Indian Journal of Medical Research 56: 510-526. Soulsby, E.J.L. (1982). Helminths, Arthropods and Protozoa of Helminthic infection is wide spread in wild animals and may Domesticated Animals. 7th edition. English Language Book Society and cause mortality and morbidity of varying degrees.
    [Show full text]
  • Veterinary Parasitology and Parasitic Diseases
    2014 AUSTRALIAN AND NEW ZEALAND COLLEGE OF VETERINARY SCIENTISTS MEMBERSHIP GUIDELINES Veterinary Parasitology and Parasitic Diseases ELIGIBILITY REQUIREMENTS OF CANDIDATE The candidate must meet the eligibility prerequisites for Membership outlined in the Membership Candidate Handbook. OBJECTIVES To demonstrate that the candidate has acquired a sufficient level of postgraduate knowledge and skill in the field of Veterinary Parasitology and Parasitic Diseases, to be able to give sound advice in this field to veterinary colleagues. LEARNING OUTCOMES 1. The candidate will have sound1 knowledge of: 1.1. General and systemic pathobiology, including: 1.1.1. The concepts of host-pathogen-environment interactions to produce parasitic disease. 1.1.2. Principles of disease related to pathological processes (mechanisms of cell injury, inflammation and repair, vascular disturbances, disorders of growth, and pigmentations and deposits) and their causes (physical, chemical, infectious, genetic and immune-mediated). 1.1.3. Pathobiology of organ systems, including the structural and functional changes at the subcellular, cellular, tissue and organ levels. 1.2. The aetiology, pathogenesis, and pathological features of: 1.2.1. Arthropod, helminth and protozoal diseases of companion and commercial animals, including poultry and commercially-farmed aquatic species in Australia and New Zealand. 1.2.2. Major parasitic animal diseases exotic to Australia and New Zealand. 1.3. Diagnostic (technical and interpretive) aspects of Veterinary Parasitology and Parasitic Diseases, including: 1Knowledge levels: Detailed knowledge — candidates must be able to demonstrate an in-depth knowledge of the topic including differing points of view and published literature. The highest level of knowledge. Sound knowledge — candidate must know all of the principles of the topic including some of the finer detail, and be able to identify areas where opinions may diverge.
    [Show full text]
  • Sri Venkateswara Veterinary University, Tirupati
    Volume - 15 Issue - 8 Jan-March, 2019 SRI VENKATESWARA VETERINARY UNIVERSITY, TIRUPATI Visit us at : svvu.edu.in From the Desk of Hon'ble Vice-Chancellor TIME TO RE-ORIENT OUR APPROACH Patron It gives me immense pleasure to announce that SVVU got two Dr. Y. Hari Babu mega projects of International collaboration coordinated by Royal Vice-Chancellor Veterinary College at London and the Scientific Research of Veterinary Republic of Tunisia. Chief Editor During this quarter, University has focused on the capacity building programmes for field Veterinarians, shepherds and dairy Dr. D. Sreenivasulu farmers, organization of kisan mela and breeding ram distribution Director of Extension at LRS, Palamaner, organization of special NSS camps, inaugurations of Diamond Jubilee pylon (1955- 2015), new boys hostel at CVSc, Advisors Tirupati and 10th sports, games, cultural and literary meet at CFSc., Dr. D. Srinivasa Rao Muthukur and a national conference organized by Dept. of Registrar Veterinary Parasitology of CVSc, Tirupati. The Principal Secretary, AHDD & Fishery, AP visited the campus Dr. T.S. Chandrasekhara Rao Dean, Faculty of Veterinary and reviewed the activities of University. The then Hon’ble Chief Science Minister of Andhra Pradesh, inaugurated the new spacious Veterinary Clinical Complex building with the state of art Dr. V. Padmanabha Reddy equipments to cater the needs of animal owners. The activities of Dean, Faculty of Dairy Science KVK, Lam, Guntur were remarkably appreciated by the farmers. The Dr. Y. Hari Babu, Vice-Chancellor work progress on conservation of Ongole and Punganur was Sri Venkateswara Veterinary University, Tirupati. Dr. T.V. Ramana Dean, Faculty of Fishery Science appreciated by the Principal Secretary.
    [Show full text]