Blueprint Genetics Anemia Panel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hemoglobinopathies: Clinical & Hematologic Features And
Hemoglobinopathies: Clinical & Hematologic Features and Molecular Basis Abdullah Kutlar, MD Professor of Medicine Director, Sickle Cell Center Georgia Health Sciences University Types of Normal Human Hemoglobins ADULT FETAL Hb A ( 2 2) 96-98% 15-20% Hb A2 ( 2 2) 2.5-3.5% undetectable Hb F ( 2 2) < 1.0% 80-85% Embryonic Hbs: Hb Gower-1 ( 2 2) Hb Gower-2 ( 2 2) Hb Portland-1( 2 2) Hemoglobinopathies . Qualitative – Hb Variants (missense mutations) Hb S, C, E, others . Quantitative – Thalassemias Decrease or absence of production of one or more globin chains Functional Properties of Hemoglobin Variants . Increased O2 affinity . Decreased O2 affinity . Unstable variants . Methemoglobinemia Clinical Outcomes of Substitutions at Particular Sites on the Hb Molecule . On the surface: Sickle Hb . Near the Heme Pocket: Hemolytic anemia (Heinz bodies) Methemoglobinemia (cyanosis) . Interchain contacts: 1 1 contact: unstable Hbs 1 2 contact: High O2 affinity: erythrocytosis Low O2 affinity: anemia Clinically Significant Hb Variants . Altered physical/chemical properties: Hb S (deoxyhemoglobin S polymerization): sickle syndromes Hb C (crystallization): hemolytic anemia; microcytosis . Unstable Hb Variants: Congenital Heinz body hemolytic anemia (N=141) . Variants with altered Oxygen affinity High affinity variants: erythrocytosis (N=93) Low affinity variants: anemia, cyanosis (N=65) . M-Hemoglobins Methemoglobinemia, cyanosis (N=9) . Variants causing a thalassemic phenotype (N=51) -thalassemia Hb Lepore ( ) fusion Aberrant RNA processing (Hb E, Hb Knossos, Hb Malay) Hyperunstable globins (Hb Geneva, Hb Westdale, etc.) -thalassemia Chain termination mutants (Hb Constant Spring) Hyperunstable variants (Hb Quong Sze) Modified and updated from Bunn & Forget: Hemoglobin: Molecular, Genetic, and Clinical Aspects. WB Saunders, 1986. -
Diagnosis of Sickle Cell Disease and HBB Haplotyping in the Era of Personalized Medicine: Role of Next Generation Sequencing
Journal of Personalized Medicine Article Diagnosis of Sickle Cell Disease and HBB Haplotyping in the Era of Personalized Medicine: Role of Next Generation Sequencing Adekunle Adekile 1,*, Nagihan Akbulut-Jeradi 2, Rasha Al Khaldi 2, Maria Jinky Fernandez 2 and Jalaja Sukumaran 1 1 Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; jalajasukumaran@hotmail 2 Advanced Technology Company, Hawali 32060, Kuwait; [email protected] (N.A.-J.); [email protected] (R.A.); [email protected] (M.J.F.) * Correspondence: [email protected]; Tel.: +965-253-194-86 Abstract: Hemoglobin genotype and HBB haplotype are established genetic factors that modify the clinical phenotype in sickle cell disease (SCD). Current methods of establishing these two factors are cumbersome and/or prone to errors. The throughput capability of next generation sequencing (NGS) makes it ideal for simultaneous interrogation of the many genes of interest in SCD. This study was designed to confirm the diagnosis in patients with HbSS and Sβ-thalassemia, identify any ß-thal mutations and simultaneously determine the ßS HBB haplotype. Illumina Ampliseq custom DNA panel was used to genotype the DNA samples. Haplotyping was based on the alleles on five haplotype-specific SNPs. The patients studied included 159 HbSS patients and 68 Sβ-thal patients, previously diagnosed using high performance liquid chromatography (HPLC). There was Citation: Adekile, A.; considerable discordance between HPLC and NGS results, giving a false +ve rate of 20.5% with a S Akbulut-Jeradi, N.; Al Khaldi, R.; sensitivity of 79% for the identification of Sβthal. -
The Role of Methemoglobin and Carboxyhemoglobin in COVID-19: a Review
Journal of Clinical Medicine Review The Role of Methemoglobin and Carboxyhemoglobin in COVID-19: A Review Felix Scholkmann 1,2,*, Tanja Restin 2, Marco Ferrari 3 and Valentina Quaresima 3 1 Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland 2 Newborn Research Zurich, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; [email protected] 3 Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; [email protected] (M.F.); [email protected] (V.Q.) * Correspondence: [email protected]; Tel.: +41-4-4255-9326 Abstract: Following the outbreak of a novel coronavirus (SARS-CoV-2) associated with pneumonia in China (Corona Virus Disease 2019, COVID-19) at the end of 2019, the world is currently facing a global pandemic of infections with SARS-CoV-2 and cases of COVID-19. Since severely ill patients often show elevated methemoglobin (MetHb) and carboxyhemoglobin (COHb) concentrations in their blood as a marker of disease severity, we aimed to summarize the currently available published study results (case reports and cross-sectional studies) on MetHb and COHb concentrations in the blood of COVID-19 patients. To this end, a systematic literature research was performed. For the case of MetHb, seven publications were identified (five case reports and two cross-sectional studies), and for the case of COHb, three studies were found (two cross-sectional studies and one case report). The findings reported in the publications show that an increase in MetHb and COHb can happen in COVID-19 patients, especially in critically ill ones, and that MetHb and COHb can increase to dangerously high levels during the course of the disease in some patients. -
Thalassemia, Hemophilia & Sickle Cell Disease
10/22/2018 Global Best Practices in Care, Rehabilitation and Research Thalassemia Syndrome Blood Disorders (Thalassemia, Hemophilia & Sickle Cell Disease) Dr. J.S. Arora Thalassemialogist 7% of the world population MSc in Haemoglobinopathy University College London Carry Thalassemia/Hb’pathy gene General secretary: National Thalassemia Welfare Society Federation of Indian Thalassemics Member Ethics Committee: 400 million heterozygous carriers IIT Delhi Lady Hardinge Medical College and Associated Hospitals, New Delhi ITS Dental College Hospital & Research Centre, Greater NOIDA 3,00,000-4,00,000 babies with severe Founder Member: Indian Alliance of Patient Groups haemoglobinopathies born each year. Founding Trustee: Genomics And Public Health Foundation Formerly Coordinator Thalassemia Cell Govt. of Delhi Member Advisory Committee - D D U Hospital Govt. of Delhi INDIA , THAILAND AND INDONESIA “Life Time Service Award” from PHO Chambers of IAP ► 50% OF WORLD’S THALASSAEMIA CARRIERS Patients for Patient Safety (PFPS) Champion India Member: Patients for Patient Safety Advisory Group ► 50% OF THALASSAEMIA MAJORS [email protected] β Thalassemia Who are affected 100 million carriers of β Thalassemia. More than 100,000 Thalassemia Major born/year India • thalassemia : Carrier rate 1% - 17% (mean 3.9%) more prevalent in certain communities. 50 million carriers, Over 12,000 affected born every year. • Sickle Cell Disease : common in tribes carrier rate as high as 40% in some areas • HbE : Highly prevalent in West Bengal & North Eastern -
Congenital Methemoglobinemia-Induced Cyanosis in Assault Victim
Open Access Case Report DOI: 10.7759/cureus.14079 Congenital Methemoglobinemia-Induced Cyanosis in Assault Victim Atheer T. Alotaibi 1 , Abdullah A. Alhowaish 1 , Abdullah Alshahrani 2 , Dunya Alfaraj 2 1. Medicine Department, Imam Abdulrahman Bin Faisal University, Dammam, SAU 2. Emergency Department, Imam Abdulrahman Bin Faisal University, Dammam, SAU Corresponding author: Atheer T. Alotaibi , [email protected] Abstract Methemoglobinemia is a blood disorder in which there is an elevated level of methemoglobin. In contrast to normal hemoglobin, methemoglobin does not bind to oxygen, which leads to functional anemia. The signs of methemoglobinemia often overlap with other cardiovascular and pulmonary diseases, with cyanosis being the key sign of methemoglobinemia. Emergency physicians may find it challenging to diagnose cyanosis as a result of methemoglobinemia. Our patient is a healthy 28-year-old male, a heavy smoker, who presented to the emergency department with multiple minimum bruises on his body, claiming he was assaulted at work. He appeared cyanotic with an O2 saturation of 82% (normal range is 95-100%) in room air. He also mentioned that his sister complained of a similar presentation of cyanosis but was asymptomatic. All these crucial points strengthened the idea that methemoglobinemia was congenital in this patient. The case was challenging to the emergency physician, and there was significant controversy over whether the patient's hypoxia was a result of the trauma or congenital methemoglobinemia. Categories: Emergency Medicine, Trauma, Hematology Keywords: methemoglobinemia, cyanosis, hypoxia, trauma Introduction Methemoglobinemia is an important cause of cyanosis; however, clinical cyanosis is challenging in regard to forming a concrete diagnosis as causes are multiple especially in the absence of cardiopulmonary causes [1]. -
Paroxysmal Nocturnal Haemoglobinuria: a Case Series from Oman Arwa Z
Paroxysmal Nocturnal Haemoglobinuria: A Case Series from Oman Arwa Z. Al-Riyami1*, Yahya Al-Kindi2, Jamal Al-Qassabi1, Sahimah Al-Mamari1, Naglaa Fawaz1, Murtadha Al-Khabori1 , Mohammed Al-Huneini1 and Salam AlKindi3 1Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman 2College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman 3Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman Received: 17 August 2020 Accepted: 23 December 2020 *Corresponding author: [email protected] DOI 10.5001/omj.2022.13 Abstract Introduction Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired stem cell disorder that manifests by hemolytic anemia, thrombosis and cytopenia. There are no data on PNH among Omani patients. Methods We performed a retrospective review of all patients tested for PNH by flow cytometry at the Sultan Qaboos University Hospital between 2012 and 2019. Manifestations, treatment modalities and outcomes were assessed. Results Total of 10 patients were diagnosed or were on follow up for PNH (median age 22.5 years). Clinical manifestations included fatigue (80%) and anemia (70%). There were six patients who had classical PNH with evidence of hemolysis, three patient had PNH in the context of aplastic anemia, and one patient with subclinical PNH. The median reported total type II+III clone size was 95.5 (range 1.54-97) in neutrophils (FLAER/CD24) and 91.6 (range 0.036-99) in monocytes (FLAER/CD14). There were four patients who were found to have a clone size > 50% at time of diagnosis. The median follow up of the patients were 62 months (range: 8-204). -
Bone Marrow (Stem Cell) Transplant for Sickle Cell Disease Bone Marrow (Stem Cell) Transplant
Bone Marrow (Stem Cell) Transplant for Sickle Cell Disease Bone Marrow (Stem Cell) Transplant for Sickle Cell Disease 1 Produced by St. Jude Children’s Research Hospital Departments of Hematology, Patient Education, and Biomedical Communications. Funds were provided by St. Jude Children’s Research Hospital, ALSAC, and a grant from the Plough Foundation. This document is not intended to take the place of the care and attention of your personal physician. Our goal is to promote active participation in your care and treatment by providing information and education. Questions about individual health concerns or specifi c treatment options should be discussed with your physician. For more general information on sickle cell disease, please visit our Web site at www.stjude.org/sicklecell. Copyright © 2009 St. Jude Children’s Research Hospital How did bone marrow (stem cell) transplants begin for children with sickle cell disease? Bone marrow (stem cell) transplants have been used for the treatment and cure of a variety of cancers, immune system diseases, and blood diseases for many years. Doctors in the United States and other countries have developed studies to treat children who have severe sickle cell disease with bone marrow (stem cell) transplants. How does a bone marrow (stem cell) transplant work? 2 In a person with sickle cell disease, the bone marrow produces red blood cells that contain hemoglobin S. This leads to the complications of sickle cell disease. • To prepare for a bone marrow (stem cell) transplant, strong medicines, called chemotherapy, are used to weaken or destroy the patient’s own bone marrow, stem cells, and infection fi ghting system. -
Methemoglobinemia in Patient with G6PD Deficiency and SARS-Cov-2
RESEARCH LETTERS Methemoglobinemia in A 62-year-old Afro-Caribbean man with a medi- cal history of type 2 diabetes and hypertension came Patient with G6PD Deficiency to the hospital for a 5-day history of fever, dyspnea, and SARS-CoV-2 Infection vomiting, and diarrhea. Auscultation of his chest showed bilateral crackles. He was tachycardic, hypo- tensive, and dehydrated, with a prolonged capillary Kieran Palmer, Jonathan Dick, Winifred French, refill time and dry mucous membranes. Lajos Floro, Martin Ford Laboratory tests showed an acute kidney injury. Author affiliation: King’s College Hospital National Health Service Blood urea nitrogen was 140 mg/dL, creatinine 5.9 Foundation Trust, London, UK mg/dL (baseline 1.1 mg/dL), capillary blood glu- cose >31 mmol/L, and blood ketones 1.1 mmol/L. DOI: https://doi.org/10.3201/eid2609.202353 A chest radiograph showed bilateral infiltrates, and We report a case of intravascular hemolysis and methe- a result for a SARS-CoV-2 reverse transcription PCR moglobinemia, precipitated by severe acute respiratory specific for the RNA-dependent RNA polymerase syndrome coronavirus 2 infection, in a patient with un- gene was positive (validated by Public Health Eng- diagnosed glucose-6-phosphate dehydrogenase defi- land, London, UK). ciency. Clinicians should be aware of this complication of The patient was treated for SARS-CoV-2 pneu- coronavirus disease as a cause of error in pulse oximetry monitis and a hyperosmolar hyperglycemic state and a potential risk for drug-induced hemolysis. with crystalloid fluid, oxygen therapy, and an insulin infusion. His creatinine increased to 9.3 mg/dL, sus- oronavirus disease is a novel infectious disease pected secondary to hypovolemia and viremia, and Cthat primarily manifests as an acute respiratory acute hemodialysis was started. -
The Hematological Complications of Alcoholism
The Hematological Complications of Alcoholism HAROLD S. BALLARD, M.D. Alcohol has numerous adverse effects on the various types of blood cells and their functions. For example, heavy alcohol consumption can cause generalized suppression of blood cell production and the production of structurally abnormal blood cell precursors that cannot mature into functional cells. Alcoholics frequently have defective red blood cells that are destroyed prematurely, possibly resulting in anemia. Alcohol also interferes with the production and function of white blood cells, especially those that defend the body against invading bacteria. Consequently, alcoholics frequently suffer from bacterial infections. Finally, alcohol adversely affects the platelets and other components of the blood-clotting system. Heavy alcohol consumption thus may increase the drinker’s risk of suffering a stroke. KEY WORDS: adverse drug effect; AODE (alcohol and other drug effects); blood function; cell growth and differentiation; erythrocytes; leukocytes; platelets; plasma proteins; bone marrow; anemia; blood coagulation; thrombocytopenia; fibrinolysis; macrophage; monocyte; stroke; bacterial disease; literature review eople who abuse alcohol1 are at both direct and indirect. The direct in the number and function of WBC’s risk for numerous alcohol-related consequences of excessive alcohol increases the drinker’s risk of serious Pmedical complications, includ- consumption include toxic effects on infection, and impaired platelet produc- ing those affecting the blood (i.e., the the bone marrow; the blood cell pre- tion and function interfere with blood cursors; and the mature red blood blood cells as well as proteins present clotting, leading to symptoms ranging in the blood plasma) and the bone cells (RBC’s), white blood cells from a simple nosebleed to bleeding in marrow, where the blood cells are (WBC’s), and platelets. -
Download Download
Acta Biomed 2021; Vol. 92, N. 1: e2021169 DOI: 10.23750/abm.v92i1.11345 © Mattioli 1885 Update of adolescent medicine (Editor: Vincenzo De Sanctis) Rare anemias in adolescents Joan-Lluis Vives Corrons, Elena Krishnevskaya Red Blood Cell Pathology and Hematopoietic Disorders (Rare Anaemias Unit) Institute for Leukaemia Research Josep Car- reras (IJC). Badalona (Barcelona) Abstract. Anemia can be the consequence of a single disease or an expression of external factors mainly nutritional deficiencies. Genetic issues are important in the primary care of adolescents because a genetic diagnosis may not be made until adolescence, when the teenager presents with the first signs or symptoms of the condition. This situation is relatively frequent for rare anemias (RA) an important, and relatively heteroge- neous group of rare diseases (RD) where anaemia is the first and most relevant clinical manifestation. RA are characterised by their low prevalence (< 5 cases per 10,000 individuals), and, in some cases, by their complex mechanism. For these reasons, RA are little known, even among health professionals, and patients tend to re- main undiagnosed or misdiagnosed for long periods of time, making impossible to know the prognosis of the disease, or to carry out genetic counselling for future pregnancies. Since this situation is an important cause of anxiety for both adolescent patients and their families, the physician’s knowledge of the natural history of a genetic disease will be the key factor for the anticipatory guidance for diagnosis and clinical follow-up. RA can be due to three primary causes: 1. Bone marrow erythropoietic defects, 2. Excessive destruction of mature red blood cells (hemolysis), and 3. -
Methemoglobinemia and Ascorbate Deficiency in Hemoglobin E Β Thalassemia: Metabolic and Clinical Implications
From www.bloodjournal.org by guest on April 2, 2015. For personal use only. Plenary paper Methemoglobinemia and ascorbate deficiency in hemoglobin E  thalassemia: metabolic and clinical implications Angela Allen,1,2 Christopher Fisher,1 Anuja Premawardhena,3 Dayananda Bandara,4 Ashok Perera,4 Stephen Allen,2 Timothy St Pierre,5 Nancy Olivieri,6 and David Weatherall1 1MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; 2College of Medicine, Swansea University, Swansea, United Kingdom; 3University of Kelaniya, Colombo, Sri Lanka; 4National Thalassaemia Centre, District Hospital, Kurunegala, Sri Lanka; 5School of Physics, University of Western Australia, Crawley, Australia; and 6Hemoglobinopathy Research, University Health Network, Toronto, ON During investigations of the phenotypic man hypoxia induction factor pathway is There was, in addition, a highly signifi- diversity of hemoglobin (Hb) E  thalasse- not totally dependent on ascorbate lev- cant correlation between methemoglobin mia, a patient was encountered with per- els. A follow-up study of 45 patients with levels, splenectomy, and factors that sistently high levels of methemoglobin HbE  thalassemia showed that methemo- modify the degree of globin-chain imbal- associated with a left-shift in the oxygen globin levels were significantly increased ance. Because methemoglobin levels are dissociation curve, profound ascorbate and that there was also a significant re- modified by several mechanisms and may deficiency, and clinical features of scurvy; duction in plasma ascorbate levels. Hap- play a role in both adaptation to anemia these abnormalities were corrected by toglobin levels were significantly re- and vascular damage, there is a strong treatment with vitamin C. -
Increased Red Cell Distribution Width in Fanconi Anemia: a Novel Marker Of
Sousa et al. Orphanet Journal of Rare Diseases (2016) 11:102 DOI 10.1186/s13023-016-0485-0 RESEARCH Open Access Increased red cell distribution width in Fanconi anemia: a novel marker of stress erythropoiesis Rosa Sousa1, Cristina Gonçalves2, Isabel Couto Guerra3, Emília Costa3, Ana Fernandes4, Maria do Bom Sucesso4, Joana Azevedo5, Alfredo Rodriguez6, Rocio Rius6, Carlos Seabra7, Fátima Ferreira8, Letícia Ribeiro5, Anabela Ferrão9, Sérgio Castedo10, Esmeralda Cleto3, Jorge Coutinho2, Félix Carvalho11, José Barbot3 and Beatriz Porto1* Abstract Background: Red cell distribution width (RDW), a classical parameter used in the differential diagnosis of anemia, has recently been recognized as a marker of chronic inflammation and high levels of oxidative stress (OS). Fanconi anemia (FA) is a genetic disorder associated to redox imbalance and dysfunctional response to OS. Clinically, it is characterized by progressive bone marrow failure, which remains the primary cause of morbidity and mortality. Macrocytosis and increased fetal hemoglobin, two indicators of bone marrow stress erythropoiesis, are generally the first hematological manifestations to appear in FA. However, the significance of RDW and its possible relation to stress erythropoiesis have never been explored in FA. In the present study we analyzed routine complete blood counts from 34 FA patients and evaluated RDW, correlating with the hematological parameters most consistently associated with the FA phenotype. Results: We showed, for the first time, that RDW is significantly increased in FA. We also showed that increased RDW is correlated with thrombocytopenia, neutropenia and, most importantly, highly correlated with anemia. Analyzing sequential hemograms from 3 FA patients with different clinical outcomes, during 10 years follow-up, we confirmed a consistent association between increased RDW and decreased hemoglobin, which supports the postulated importance of RDW in the evaluation of hematological disease progression.