The Embedding Theorems of Whitney and Nash

Total Page:16

File Type:pdf, Size:1020Kb

The Embedding Theorems of Whitney and Nash GENERAL ARTICLE The Embedding Theorems of Whitney and Nash Harish Seshadri and Kaushal Verma We begin by briefly motivating the idea of a manifold and then discuss the embedding the- orems of Whitney and Nash that allow us to view these objects inside appropriately large Eu- clidean spaces. 1. Introduction (left) Harish Seshadri is with the Department of Let us begin by motivating the concept of a manifold. Mathematics, Indian Start with the unit circle C in the plane given by Institute of x2 + y2 =1. Science, Bengaluru. His research interest is in This is not a graph of a single function y = f(x). How- differential geometry. ever, apart√ from (±1, 0), C is the union of the graphs y ± − x2 (right) Kaushal Verma is of = 1 . Each graph is in one-to-one (bijec- with the Department of tive) correspondence with its domain, namely the inter- Mathematics, Indian val (−1, 1) on the x-axis – apart from the end points Institute of ±1. To take care of points on C near (±1, 0), we see Science, Bengaluru. His that apart from (0, ±1), C is the union of the graphs of research interest is in complex analysis. x = ± 1 − y2. Again, each graph is in bijective cor- respondence with its domain, namely the interval from (0, −1) to (0, 1) on the y-axis. Thus, to accommodate the two exceptional points (±1, 0) we had to change our coordinate axes and hence the functions that identify the pieces of C. Doing all this allows us to describe all points on C in a bijective manner by associating them with points either on the x-axis or the y-axis. It is nat- ural to ask whether such a bijection can be given for all points of the circle in a single stroke without having to resort to a two-step approach given above. The answer is no. Let us look at another example. We consider the sphere Keywords S R3 Manifold, embedding, immer- in given by sion, Nash, Whitney, smooth x2 + y2 + z2 =1. map, chart, Riemannian metric. RESONANCE ⎜ September 2016 815 GENERAL ARTICLE The theorems of As before, it is possible to solve for one of the vari- Whitney and Nash ables in terms of the other two. For example, writing concern general z = ± 1 − x2 − y2 exhibits two hemispheres of S as spaces called graphs over the unit disc in the xy-plane. The analog of ‘compact the exceptional points in the case of C above is a much 2 2 manifolds’ like the bigger set, namely the ‘equator’ x + y = 1. To accom- circle and the modate it, we write y (or x) in terms of the other two sphere. variables and proceed as before. Again, the conclusion of doing all this is that we are able to create a bijective correspondence between all points on S and discs that lie in the xy, yz or the zx planes. If we ask whether it is possible to build such a correspondence at one stroke instead of so many steps, the answer again is no. Both C and S furnish examples of what are called manifolds. These are spaces that ‘locally’ look Euclidean – that is, locally look like an open interval or an open rectangular region. Indeed, on C, consider the point (0, 1) and note that the entire upper arc is a neighbourhood containing 1 A topological space is second it, that is in bijective correspondence with an interval countable, if there exists some − , x countable collection of open sub- ( 1 1) on the -axis. The theorems of Whitney and sets such that any open subset Nash concern general spaces called ‘compact manifolds’ of the space can be written as a like the circle and the sphere; in a neighbourhood of union of elements of some sub- each of its points, a manifold of dimension n looks like family of this countable collec- the n-space Rn. The theorems address the question of tion. The property of being sec- ond countable restricts the num- whether these abstract spaces can be thought of as sit- N ber of open sets that a space ting inside R for some N. Of course, in doing so, there can have. For the usual Euclid- must be no distortions – the image must be an exact ean space, the set of all open replica of the given manifold. balls with rational radii and whose centers have rational coordi- The purpose of this note is to provide an overview of nates, is countable and forms a some of the main ideas behind the embedding theo- basis as above. rems of Whitney and Nash. To describe them briefly, 2 A Hausdorff space is a topo- we start with the definition of what we formally mean logical space in which any two by a smooth real n-dimensional manifold M. The man- different points admit disjoint ifolds we define are firstly required to be well-behaved open neighbourhoods. This property allows one to deduce sets in the sense of topology; they are topological spaces 1 2 uniqueness of limits of se- that are second countable and Hausdorff .Ahome- quences. Hausdorff was one of omorphism between topological spaces is a one-to-one the founders of topology. 816 RESONANCE ⎜ September 2016 GENERAL ARTICLE continuous map whose inverse is also continuous. The notion of diffeomorphism is defined analogously when the continuity assumption is replaced by differentiabil- ity. A topological space M which is second countable and has the Hausdorff property, can be equipped with a so-called smooth structure which enables us to do differ- ential calculus near each point. More precisely, a smooth structure on M consists of pairs (Uα,φα)whereUα is open in M and n φα : Uα → φα(Uα) ⊂ R is a homeomorphism such that M is covered by the union of the Uα’s, and for all α, β with Uα ∩ Uβ = ∅,the homeomorphism −1 φαβ = φα ◦ φβ : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ)(1) between open sets in Rn is infinitely differentiable. Thus, M is made by gluing together open pieces (usually called ‘charts’) that are equivalent to open subsets of Rn.Fur- thermore, the collection {(Uα,φα)} is called an atlas; it is maximal in the sense that it contains all possible pairs (Uγ ,φγ) that satisfy the compatibility condition (1). The pair (Uα,φα) can be thought of as giving coor- dinates since points in Uα can be assigned coordinates by n identifying them with their images φα(p) ∈ R .There is, of course, an ambiguity in this process since the same point on M can belong to several such coordinate charts. This is accounted for by viewing the transition maps φαβ as a change of coordinates. The manifold M is said to have dimension n. Loosely speaking, Whitney’s theorem – there are, in fact, several such – says that every smooth manifold can be viewed as sitting inside RN for some large N, i.e., it can be embedded in RN . The word ‘embedding’ is used in a technically precise sense which will be ex- plained shortly. It is of interest to determine the least N that works for all manifolds with a given dimension. RESONANCE ⎜ September 2016 817 GENERAL ARTICLE ‘Riemannian Taking this one step further, we may consider a notion metric’ provides a of distance on a manifold M; this is a so-called ‘Rieman- notion of length of nian metric’ g on M. It provides a notion of length of a a tangent vector tangent vector and hence a way to measure the distance and hence a way between two points. The pair (M, g) is called a ‘Rie- to measure the mannian manifold’. More precisely, fix p ∈ M and let 1 2 n distance between x =(x ,x ,...,x ) be local coordinates near p.Fora 1 2 n two points. tangent vector v =(v ,v ,...,v )inTpM, the tangent space to M at p, the square of the length of v is given by n i j g(v,v)= gij(x)v v , i,j=1 where the matrix (gij(x))1≤i,j≤n, each of whose entries is a smooth function of x, is symmetric and positive definite. Now, there is a natural notion of a submanifold of a manifold, and every submanifold S of Rn is clearly Riemannian since the standard inner product on Rn may be restricted to S. Nash’s theorem says that not only can we embed M in RN (for some N) but we can do this in such a way that the intrinsic notion of length of a tangent vector on M is inherited from RN .We discuss these theorems in more detail in Sections 2 and 3 wherein we adopt the convention that ‘smooth’ will always mean infinitely differentiable (denoted by C∞), either for manifolds or maps between them. 2. The Whitney Embedding Theorem(s) Let us begin by recalling two definitions. Let M, N be smooth manifolds of dimensions m, n respectively and f : M → N a smooth map. The tangent space at a point p ∈ M is a linear space Rn;itisthespaceofall directions in which one can pass through p tangentially. The above informal description is dependent on think- ing of the manifold as sitting inside a Euclidean space already. However, there is an intrinsic definition of tan- gent vectors and tangent space at each point which we do not recall here. The key property of tangent spaces 818 RESONANCE ⎜ September 2016 GENERAL ARTICLE is that a smooth map f : M → N gives a natural linear The map f is said to be map an immersion if the df (p):TpM → Tf(p)N.
Recommended publications
  • Introduction to Gauge Theory Arxiv:1910.10436V1 [Math.DG] 23
    Introduction to Gauge Theory Andriy Haydys 23rd October 2019 This is lecture notes for a course given at the PCMI Summer School “Quantum Field The- ory and Manifold Invariants” (July 1 – July 5, 2019). I describe basics of gauge-theoretic approach to construction of invariants of manifolds. The main example considered here is the Seiberg–Witten gauge theory. However, I tried to present the material in a form, which is suitable for other gauge-theoretic invariants too. Contents 1 Introduction2 2 Bundles and connections4 2.1 Vector bundles . .4 2.1.1 Basic notions . .4 2.1.2 Operations on vector bundles . .5 2.1.3 Sections . .6 2.1.4 Covariant derivatives . .6 2.1.5 The curvature . .8 2.1.6 The gauge group . 10 2.2 Principal bundles . 11 2.2.1 The frame bundle and the structure group . 11 2.2.2 The associated vector bundle . 14 2.2.3 Connections on principal bundles . 16 2.2.4 The curvature of a connection on a principal bundle . 19 arXiv:1910.10436v1 [math.DG] 23 Oct 2019 2.2.5 The gauge group . 21 2.3 The Levi–Civita connection . 22 2.4 Classification of U(1) and SU(2) bundles . 23 2.4.1 Complex line bundles . 24 2.4.2 Quaternionic line bundles . 25 3 The Chern–Weil theory 26 3.1 The Chern–Weil theory . 26 3.1.1 The Chern classes . 28 3.2 The Chern–Simons functional . 30 3.3 The modui space of flat connections . 32 3.3.1 Parallel transport and holonomy .
    [Show full text]
  • Ricci Curvature and Minimal Submanifolds
    Pacific Journal of Mathematics RICCI CURVATURE AND MINIMAL SUBMANIFOLDS Thomas Hasanis and Theodoros Vlachos Volume 197 No. 1 January 2001 PACIFIC JOURNAL OF MATHEMATICS Vol. 197, No. 1, 2001 RICCI CURVATURE AND MINIMAL SUBMANIFOLDS Thomas Hasanis and Theodoros Vlachos The aim of this paper is to find necessary conditions for a given complete Riemannian manifold to be realizable as a minimal submanifold of a unit sphere. 1. Introduction. The general question that served as the starting point for this paper was to find necessary conditions on those Riemannian metrics that arise as the induced metrics on minimal hypersurfaces or submanifolds of hyperspheres of a Euclidean space. There is an abundance of complete minimal hypersurfaces in the unit hy- persphere Sn+1. We recall some well known examples. Let Sm(r) = {x ∈ Rn+1, |x| = r},Sn−m(s) = {y ∈ Rn−m+1, |y| = s}, where r and s are posi- tive numbers with r2 + s2 = 1; then Sm(r) × Sn−m(s) = {(x, y) ∈ Rn+2, x ∈ Sm(r), y ∈ Sn−m(s)} is a hypersurface of the unit hypersphere in Rn+2. As is well known, this hypersurface has two distinct constant principal cur- vatures: One is s/r of multiplicity m, the other is −r/s of multiplicity n − m. This hypersurface is called a Clifford hypersurface. Moreover, it is minimal only in the case r = pm/n, s = p(n − m)/n and is called a Clifford minimal hypersurface. Otsuki [11] proved that if M n is a com- pact minimal hypersurface in Sn+1 with two distinct principal curvatures of multiplicity greater than 1, then M n is a Clifford minimal hypersur- face Sm(pm/n) × Sn−m(p(n − m)/n), 1 < m < n − 1.
    [Show full text]
  • Isoparametric Hypersurfaces with Four Principal Curvatures Revisited
    ISOPARAMETRIC HYPERSURFACES WITH FOUR PRINCIPAL CURVATURES REVISITED QUO-SHIN CHI Abstract. The classification of isoparametric hypersurfaces with four principal curvatures in spheres in [2] hinges on a crucial charac- terization, in terms of four sets of equations of the 2nd fundamental form tensors of a focal submanifold, of an isoparametric hypersur- face of the type constructed by Ferus, Karcher and Munzner.¨ The proof of the characterization in [2] is an extremely long calculation by exterior derivatives with remarkable cancellations, which is mo- tivated by the idea that an isoparametric hypersurface is defined by an over-determined system of partial differential equations. There- fore, exterior differentiating sufficiently many times should gather us enough information for the conclusion. In spite of its elemen- tary nature, the magnitude of the calculation and the surprisingly pleasant cancellations make it desirable to understand the under- lying geometric principles. In this paper, we give a conceptual, and considerably shorter, proof of the characterization based on Ozeki and Takeuchi's expan- sion formula for the Cartan-Munzner¨ polynomial. Along the way the geometric meaning of these four sets of equations also becomes clear. 1. Introduction In [2], isoparametric hypersurfaces with four principal curvatures and multiplicities (m1; m2); m2 ≥ 2m1 − 1; in spheres were classified to be exactly the isoparametric hypersurfaces of F KM-type constructed by Ferus Karcher and Munzner¨ [4]. The classification goes as follows. Let M+ be a focal submanifold of codimension m1 of an isoparametric hypersurface in a sphere, and let N be the normal bundle of M+ in the sphere. Suppose on the unit normal bundle UN of N there hold true 1991 Mathematics Subject Classification.
    [Show full text]
  • Tight Immersions of Simplicial Surfaces in Three Space
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Pergamon Topology Vol. 35, No. 4, pp. 863-873, 19% Copyright Q 1996 Elsevier Sctence Ltd Printed in Great Britain. All tights reserved CO4&9383/96 $15.00 + 0.00 0040-9383(95)00047-X TIGHT IMMERSIONS OF SIMPLICIAL SURFACES IN THREE SPACE DAVIDE P. CERVONE (Received for publication 13 July 1995) 1. INTRODUCTION IN 1960,Kuiper [12,13] initiated the study of tight immersions of surfaces in three space, and showed that every compact surface admits a tight immersion except for the Klein bottle, the real projective plane, and possibly the real projective plane with one handle. The fate of the latter surface went unresolved for 30 years until Haab recently proved [9] that there is no smooth tight immersion of the projective plane with one handle. In light of this, a recently described simplicial tight immersion of this surface [6] came as quite a surprise, and its discovery completes Kuiper’s initial survey. Pinkall [17] broadened the question in 1985 by looking for tight immersions in each equivalence class of immersed surfaces under image homotopy. He first produced a complete description of these classes, and proceeded to generate tight examples in all but finitely many of them. In this paper, we improve Pinkall’s result by giving tight simplicial examples in all but two of the immersion classes under image homotopy for which tight immersions are possible, and in particular, we point out and resolve an error in one of his examples that would have left an infinite number of immersion classes with no tight examples.
    [Show full text]
  • Lecture Notes on Foliation Theory
    INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Department of Mathematics Seminar Lectures on Foliation Theory 1 : FALL 2008 Lecture 1 Basic requirements for this Seminar Series: Familiarity with the notion of differential manifold, submersion, vector bundles. 1 Some Examples Let us begin with some examples: m d m−d (1) Write R = R × R . As we know this is one of the several cartesian product m decomposition of R . Via the second projection, this can also be thought of as a ‘trivial m−d vector bundle’ of rank d over R . This also gives the trivial example of a codim. d- n d foliation of R , as a decomposition into d-dimensional leaves R × {y} as y varies over m−d R . (2) A little more generally, we may consider any two manifolds M, N and a submersion f : M → N. Here M can be written as a disjoint union of fibres of f each one is a submanifold of dimension equal to dim M − dim N = d. We say f is a submersion of M of codimension d. The manifold structure for the fibres comes from an atlas for M via the surjective form of implicit function theorem since dfp : TpM → Tf(p)N is surjective at every point of M. We would like to consider this description also as a codim d foliation. However, this is also too simple minded one and hence we would call them simple foliations. If the fibres of the submersion are connected as well, then we call it strictly simple. (3) Kronecker Foliation of a Torus Let us now consider something non trivial.
    [Show full text]
  • Lecture 10: Tubular Neighborhood Theorem
    LECTURE 10: TUBULAR NEIGHBORHOOD THEOREM 1. Generalized Inverse Function Theorem We will start with Theorem 1.1 (Generalized Inverse Function Theorem, compact version). Let f : M ! N be a smooth map that is one-to-one on a compact submanifold X of M. Moreover, suppose dfx : TxM ! Tf(x)N is a linear diffeomorphism for each x 2 X. Then f maps a neighborhood U of X in M diffeomorphically onto a neighborhood V of f(X) in N. Note that if we take X = fxg, i.e. a one-point set, then is the inverse function theorem we discussed in Lecture 2 and Lecture 6. According to that theorem, one can easily construct neighborhoods U of X and V of f(X) so that f is a local diffeomor- phism from U to V . To get a global diffeomorphism from a local diffeomorphism, we will need the following useful lemma: Lemma 1.2. Suppose f : M ! N is a local diffeomorphism near every x 2 M. If f is invertible, then f is a global diffeomorphism. Proof. We need to show f −1 is smooth. Fix any y = f(x). The smoothness of f −1 at y depends only on the behaviour of f −1 near y. Since f is a diffeomorphism from a −1 neighborhood of x onto a neighborhood of y, f is smooth at y. Proof of Generalized IFT, compact version. According to Lemma 1.2, it is enough to prove that f is one-to-one in a neighborhood of X. We may embed M into RK , and consider the \"-neighborhood" of X in M: X" = fx 2 M j d(x; X) < "g; where d(·; ·) is the Euclidean distance.
    [Show full text]
  • Math 600 Day 6: Abstract Smooth Manifolds
    Math 600 Day 6: Abstract Smooth Manifolds Ryan Blair University of Pennsylvania Tuesday September 28, 2010 Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 1 / 21 Outline 1 Transition to abstract smooth manifolds Partitions of unity on differentiable manifolds. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 2 / 21 A Word About Last Time Theorem (Sard’s Theorem) The set of critical values of a smooth map always has measure zero in the receiving space. Theorem Let A ⊂ Rn be open and let f : A → Rp be a smooth function whose derivative f ′(x) has maximal rank p whenever f (x) = 0. Then f −1(0) is a (n − p)-dimensional manifold in Rn. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 3 / 21 Transition to abstract smooth manifolds Transition to abstract smooth manifolds Up to this point, we have viewed smooth manifolds as subsets of Euclidean spaces, and in that setting have defined: 1 coordinate systems 2 manifolds-with-boundary 3 tangent spaces 4 differentiable maps and stated the Chain Rule and Inverse Function Theorem. Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 4 / 21 Transition to abstract smooth manifolds Now we want to define differentiable (= smooth) manifolds in an abstract setting, without assuming they are subsets of some Euclidean space. Many differentiable manifolds come to our attention this way. Here are just a few examples: 1 tangent and cotangent bundles over smooth manifolds 2 Grassmann manifolds 3 manifolds built by ”surgery” from other manifolds Ryan Blair (U Penn) Math 600 Day 6: Abstract Smooth Manifolds Tuesday September 28, 2010 5 / 21 Transition to abstract smooth manifolds Our starting point is the definition of a topological manifold of dimension n as a topological space Mn in which each point has an open neighborhood homeomorphic to Rn (locally Euclidean property), and which, in addition, is Hausdorff and second countable.
    [Show full text]
  • Floer Homology, Gauge Theory, and Low-Dimensional Topology
    Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given.
    [Show full text]
  • Riemannian Submanifolds: a Survey
    RIEMANNIAN SUBMANIFOLDS: A SURVEY BANG-YEN CHEN Contents Chapter 1. Introduction .............................. ...................6 Chapter 2. Nash’s embedding theorem and some related results .........9 2.1. Cartan-Janet’s theorem .......................... ...............10 2.2. Nash’s embedding theorem ......................... .............11 2.3. Isometric immersions with the smallest possible codimension . 8 2.4. Isometric immersions with prescribed Gaussian or Gauss-Kronecker curvature .......................................... ..................12 2.5. Isometric immersions with prescribed mean curvature. ...........13 Chapter 3. Fundamental theorems, basic notions and results ...........14 3.1. Fundamental equations ........................... ..............14 3.2. Fundamental theorems ............................ ..............15 3.3. Basic notions ................................... ................16 3.4. A general inequality ............................. ...............17 3.5. Product immersions .............................. .............. 19 3.6. A relationship between k-Ricci tensor and shape operator . 20 3.7. Completeness of curvature surfaces . ..............22 Chapter 4. Rigidity and reduction theorems . ..............24 4.1. Rigidity ....................................... .................24 4.2. A reduction theorem .............................. ..............25 Chapter 5. Minimal submanifolds ....................... ...............26 arXiv:1307.1875v1 [math.DG] 7 Jul 2013 5.1. First and second variational formulas
    [Show full text]
  • Two Classes of Slant Surfaces in Nearly Kahler Six Sphere
    TWO CLASSES OF SLANT SURFACES IN NEARLY KAHLER¨ SIX SPHERE K. OBRENOVIC´ AND S. VUKMIROVIC´ Abstract. In this paper we find examples of slant surfaces in the nearly K¨ahler six sphere. First, we characterize two-dimensional small and great spheres which are slant. Their description is given in terms of the associative 3-form in Im O. Later on, we classify the slant surfaces of S6 which are orbits of maximal torus in G2. We show that these orbits are flat tori which are linearly S5 S6 1 π . full in ⊂ and that their slant angle is between arccos 3 and 2 Among them we find one parameter family of minimal orbits. 1. Introduction It is known that S2 and S6 are the only spheres that admit an almost complex structure. The best known Hermitian almost complex structure J on S6 is defined using octonionic multiplication. It not integrable, but satisfies condition ( X J)X = 0, for the Levi-Civita connection and every vector field X on S6. Therefore,∇ sphere S6 with this structure J is usually∇ referred as nearly K¨ahler six sphere. Submanifolds of nearly Kahler¨ sphere S6 are subject of intensive research. A. Gray [7] proved that almost complex submanifolds of nearly K¨ahler S6 are necessarily two-dimensional and minimal. In paper [3] Bryant showed that any Riemannian surface can be embedded in the six sphere as an almost complex submanifold. Almost complex surfaces were further investigated in paper [1] and classified into four types. Totally real submanifolds of S6 can be of dimension two or three.
    [Show full text]
  • MA4E0 Lie Groups
    MA4E0 Lie Groups December 5, 2012 Contents 0 Topological Groups 1 1 Manifolds 2 2 Lie Groups 3 3 The Lie Algebra 6 4 The Tangent space 8 5 The Lie Algebra of a Lie Group 10 6 Integrating Vector fields and the exponential map 13 7 Lie Subgroups 17 8 Continuous homomorphisms are smooth 22 9 Distributions and Frobenius Theorem 23 10 Lie Group topics 24 These notes are based on the 2012 MA4E0 Lie Groups course, taught by John Rawnsley, typeset by Matthew Egginton. No guarantee is given that they are accurate or applicable, but hopefully they will assist your study. Please report any errors, factual or typographical, to [email protected] i MA4E0 Lie Groups Lecture Notes Autumn 2012 0 Topological Groups Let G be a group and then write the group structure in terms of maps; multiplication becomes m : G × G ! G −1 defined by m(g1; g2) = g1g2 and inversion becomes i : G ! G defined by i(g) = g . If we suppose that there is a topology on G as a set given by a subset T ⊂ P (G) with the usual rules. We give G × G the product topology. Then we require that m and i are continuous maps. Then G with this topology is a topological group Examples include 1. G any group with the discrete topology 2. Rn with the Euclidean topology and m(x; y) = x + y and i(x) = −x 1 2 2 2 3. S = f(x; y) 2 R : x + y = 1g = fz 2 C : jzj = 1g with m(z1; z2) = z1z2 and i(z) =z ¯.
    [Show full text]
  • What Can We Do with Nash's Embedding Theorem ?
    SOOCHOW JOURNAL OF MATHEMATICS Volume 30, No. 3, pp. 303-338, July 2004 WHATCANWEDOWITHNASH’SEMBEDDING THEOREM ? BY BANG-YEN CHEN Abstract. According to the celebrated embedding theorem of J. F. Nash, every Riemannian manifold can be isometrically embedded in some Euclidean spaces with sufficiently high codimension. An immediate problem concerning Nash’s theorem is the following: Problem: What can we do with Nash’s embedding theorem ? In other words, what can we do with arbitrary Euclidean submanifolds of arbitrary high codimension if no local or global assumption were imposed on the submanifold ? In this survey, we present some general optimal solutions to this and related prob- lems. We will also present many applications of the solutions to the theory of submanifolds as well as to Riemannian geometry. 1. What Can We Do with Nash’s Embedding Theorem ? According to the celebrated embedding theorem of J. F. Nash [65] published in 1956, every Riemannian manifold can be isometrically embedded in some Eu- clidean spaces with sufficiently high codimension. Received May 27, 2004. AMS Subject Classification. Primary 53C40, 53C42, 53B25; secondary 53A07, 53B21, 53C25, 53D12. Key words. Nash’s embedding theorem, δ-invariant, σ-invariant, warped product manifold, conformally flat submanifold, inequality, real space form, minimal immersion, Lagrangian im- mersion, Einstein manifold. This survey has been delivered at the International Workshop on “Theory of Submanifolds” held at Valenciennes, France from June 25th to 26th and at Leuven, Belgium from June 27th to 28th, 2003. The author would like to express his hearty thanks to Professors F. Dillen, L. Vrancken and L. Verstraelen for organizing this four days conference dedicated to his sixtieth birthday.
    [Show full text]