Supplemental Material

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Material Supplemental Material Pronounced Cohabitation of Active Immunoglobulin Genes from Three Different Chromosomes in Transcription Factories during Maximal Antibody Synthesis Sung-Kyun Park1, Yougui Xiang1,2, Xin Feng3 and William T. Garrard1,4 1Department of Molecular Biology University of Texas Southwestern Medical Center Dallas, TX 75390, USA. 2Tianjin Research Center of Basic Medical Science Tianjin Medical University Tianjin 300070, Peoples Republic of China 3Depatment of Molecular and Human Genetics Baylor College of Medicine Houston, TX 77030, USA 4Corresponding author E-mail [email protected] Supplemental Figure 1. Transcription factories and features of transcribing Ig gene alleles in plasma cells. (A) Transcribing Ig genes are associated with transcription factories. 3D RNA immuno-FISH results of two independent experiments where data from >100 plasma cell nuclei each were scored. (B) Numbers of transcription factories per plasma cell nucleus. 3D RNA immuno-FISH results where data from 10 plasma cell nuclei were scored. Supplemental Figure 2. Primary transcript signals of Ig genes reflect their gene locus positions in plasma cells. (A-C) Representative sequential 3D RNA and DNA FISH images of the same 0.3 μm optical section of a plasma cell nucleus outlined by white dashed lines. A: [DAPI (blue), Igi-RNA FISH (green) and Ig-DNA FISH (red)]; B: [DAPI (blue), IgHi-RNA FISH (green) and IgH-DNA FISH (red)]; C: [DAPI (blue), IgJi-RNA FISH (green) and IgJ-DNA FISH (red)]. (D) Box and whiskers plot for the distribution of distances between RNA- and DNA-FISH signals for each Ig gene. Data are from 243, 241 and 285 plasma cells for Ig, IgH and IgJ, respectively, analyzed in three independent experiments. Lower and upper whiskers denote the 10th and 90th percentiles, respectively, of the distributions. The lower and upper limits of the boxes denote the 25th and 75th percentiles, respectively. Solid and dashed lines in the boxes indicate the medians and means, respectively. Outliers are shown as filled circles. (E) Representative multi-color 3D DNA FISH image of the same 0.3 μm optical section of a plasma cell nucleus outlined by white dashed lines [DAPI (white), Ig(green), IgH (red), and IgJ (blue)]. (F) The percentages of cells that possess the indicated gene localized <1.0 μm from a different Ig gene are depicted in the overlapping images as quantified from 3D DNA FISH results for 256 plasma cells in three independent experiments. The sums of the percentages in any one-gene- circle add to over 100% because the same cells sometimes include two different pairs of co- localized Ig genes (asterisks). Supplemental Figure 3. Primary transcripts from the β-actin (ACTB), or the plasma-cell- specific BLIMP-1 (PRDM1) and syndecan-1 (SDC1) genes do not exhibit peripheral enrichment nor significant co-localization with the actively transcribed Ig genes. (A-C) Representative multi- color 3D RNA FISH images of the same 0.3 μm optical section of a plasma cell nucleus outlined by white dashed lines [DAPI (white), Igi(red), IgHi (blue), and PRDM1i, SDC1i, or ACTBi (green)]. (D-E) Bar graphs of 3D RNA FISH results from 298, 307 and 201 plasma cells for PRDM1, SDC1, or ACTB, respectively, analyzed in three independent experiments. (D) Distributions of distances between genes’ primary transcripts paired with those of Ig or IgH alleles. (E) Primary transcript separation distances from the nuclear periphery. Supplemental Figure 4. The Ig gene enhancers mediate trans-chromosomal interactions at transcription factories in pre-B cells. (A, B) Pre-B cells from Rag-1-/-HCm mice were subjected to -Pol II ChIP-3C-seq analyses employing BamHI digestion. The biotinylated bait primer used for extensions is shown as a bold arrowhead above the restriction map. (A) Mouse Ig sequences used as bait with interrogation of mouse IgH locus interacting sequences. Shown on the x-axis are the positions of Vh-, Dh-, Jh-, and Ch-regions (top), and iE and 3RR enhancers (bottom). Depicted on the y-axis are normalized sequence counts per million reads mapped to the mouse IgH locus from the indicated experimental (expt.6 and expt.7) samples. (B) Long range interactions between the human iE region of an ecotopically integrated human IgH transgene and the mouse Ig locus. Depicted on the y-axis are normalized sequence counts per million reads mapped to the human IgH locus from the above experimental (expt.6 and expt.7) samples. Description of Supplemental Fig. 4 Results: As a control we also probed for trans- chromosomal interactions between Ig and IgH genes in pre-B cells, which are known to exhibit significant but less prominent pairing than seen in plasma cells (Fig. 1E) (Hewitt et al., 2008; Xiang et al., 2011). Interestingly, in the Rag1-/- animal model employed in these pre-B cell experiments, we found that the Ig gene made contacts not only with mouse iE, but also with the ecotopically integrated human IgH transgene’s iE region; moreover, in contrast to the results obtained with plasmablasts (Fig. 3A), the mouse Ig gene did not contact 3RR in these pre-B cells (Supplemental Fig. 4A). Significantly, 3RR has been shown to be essential for plasma cell but not for pre-B cell specific functions (Vincent-Fabert et al., 2010). We conclude that the trans-chromosomal enhancer interactions made between the Ig and IgH genes correlate with the differentiation-dependent functions of these elements. Besides the Ig gene interacting with the IgH locus, it also interacted with other genes involved in B cell-specific functions. For example, we found that in pre-B cells Ig interacted with the gene encoding the DNA damage- induced protein Gadd45a that regulates Rag1/2 gene expression (data not shown) (Amin and Schlissel, 2008), and in plasmablasts Ig interacted with the gene encoding Gimap5, a protein necessary for B cell proliferation upon Ag-receptor stimulation (Supplemental Table 10) (Barnes et al., 2010). Supplemental Figure 5. 3C analysis of the IgH gene’s iE and 3RR interactions with the Ig gene’s iE region. The indicated samples from plasmablasts of WT, 3E-/-, DKO (3E-/-dE-/-) mice and CD4+CD8+ T cells were processed through 3C after BamHI digestion. Interchromosomal interactions were analyzed by hemi-nested PCR using Ig and selected IgH primer pairs. The PCR products of the -actin gene were used as a template control. Supplemental Figure 6. Crescent-shaped signals of the Ig mRNA hybridization patterns correspond to the endoplasmic reticulum (ER)-rich sides of plasma cells. (A,B) Representative multi-color 3D RNA immuno-FISH images of the same 0.3 m optical sections of individual plasma cell nuclei outlined by white dashed lines A: [Cμ (blue), poly(A)+ RNA (red), and α-PDI (protein disulfide isomerase, green)]. B: [Cμ (blue), rRNA (red), and α-PDI (green)]. (C) Representative multi-color 3D RNA immuno-FISH images of the same 0.3 m optical section of a normal rat kidney cell nucleus [poly(A)+ RNA (red), α-PDI (green), and DAPI (blue)]. Supplemental Figure 7. Representative reconstructed 3D five-color RNA FISH images of individual plasma cells. (A-C) Transcripts of Ig genes located either near the nuclear periphery or interior apparently diffuse between dense chromatin regions toward the nuclear pores. [C (red), Igi (green), C or CJ (blue), IgHi or IgJi (yellow), and DAPI (white)]. Primary transcripts of co-localized alleles are indicated with green and yellow arrows, and inter-chromatin channels with white arrows. (A) Co-localized Igк-IgH alleles located near the periphery. (B) Co-localized Igк-IgJ alleles located near the periphery. (C) Co-localized Igк-IgH alleles located within the nuclear interior. Supplemental Figure 8. Quantification of the locations of Ig gene alleles from the results of five-color 3D RNA FISH experiments on plasma cells. (A) Schematic representing areas quantified with respect to the hybridizing cytoplasmic crescents. A circle was fitted based on DAPI DNA staining and a virtual bisector was set to divide the nucleus into regions A and B, according to the crescents of cytoplasmic mRNA using the Image J program. (B-D) Bar graphs summarizing the quantification for % location of transcribing genes in zone A and B. Data are represented as means ±SD from three independent experiments. (B) Locations of Ig genes positioned <1.0 μm from the nuclear periphery (see also Supplemental Table 7 for primary data and P values from two tailed Student’s t-tests). (C) Locations of paired or unpaired Ig genes (see also Supplemental Table 8 for primary data and P values from two tailed Student’s t-tests). (D) Locations of transcribing genes positioned throughout the whole nucleus. (see also Supplemental Table 9 for primary data and P values from two tailed Student’s t-tests). Supplemental Figure 9. Quantification of representative results of multi-color 3D RNA ±immuno-FISH images of plasma cells. (A-C) The degree of co-localization was determined by comparing the signal intensity of a given pixel in channel 1 with the intensity of the corresponding pixel in channel 2 for the z slices indicated by yellow rectangles. Pearson’s correlation coefficient (Rr) describes the correlation of the intensity distribution between channels (Rr= -1.0: complete negative correlation, Rr= 0: no significant correlation, Rr= 1.0: complete co-localization). Mander’s overlap coefficient (R) indicates the overlap of signals and represents the true degree of co-localization (R= 0-0.6: values indicating absence of co- localization, R= 0.6-1.0: values indicating co-localization; e.g., 0.672 in Panel A implies that 67.2% of the selected areas of both channels co-localize). (A) [C (red), C (blue) and DAPI (white)]. (B) [Poly(A)+ RNA (red) and DAPI (green)].
Recommended publications
  • A Small De Novo 16Q24.1 Duplication in a Woman with Severe Clinical Features
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-Université de Bretagne Occidentale A small de novo 16q24.1 duplication in a woman with severe clinical features. Sylvia Qu´em´ener-Redon,Caroline B´enech, S´everine Audebert-Bellanger, Ga¨elleFriocourt, Marc Planes, Philippe Parent, Claude F´erec To cite this version: Sylvia Qu´em´ener-Redon, Caroline B´enech, S´everine Audebert-Bellanger, Ga¨elle Friocourt, Marc Planes, et al.. A small de novo 16q24.1 duplication in a woman with severe clini- cal features.. European Journal of Medical Genetics, Elsevier, 2013, epub ahead of print. <10.1016/j.ejmg.2013.01.001>. <inserm-00788405> HAL Id: inserm-00788405 http://www.hal.inserm.fr/inserm-00788405 Submitted on 14 Feb 2013 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. A small de novo 16q24.1 duplication in a woman with severe clinical features Sylvia Quéméner-Redon1,2, Caroline Bénech1,3, Séverine Audebert-Bellanger4, Gaëlle Friocourt1, Marc Planes4, Philippe Parent4 and Claude Férec1,2,3 1 Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1078, Brest, France, 2 Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Universitaire (CHU), Hôpital Morvan, Brest, France, 3 Etablissement Français du Sang (EFS) – Bretagne, Brest, France, 4Service de Pédiatrie et de Génétique Médicale, Centre Hospitalier Universitaire de Brest, Brest, France.
    [Show full text]
  • FAM158A Polyclonal Antibody Catalog Number:23919-1-AP
    For Research Use Only FAM158A Polyclonal antibody www.ptgcn.com Catalog Number:23919-1-AP Catalog Number: GenBank Accession Number: Recommended Dilutions: Basic Information 23919-1-AP BC002491 WB 1:200-1:1000 Size: GeneID (NCBI): IHC 1:20-1:200 500 μg/ml 51016 IF 1:20-1:200 Source: Full Name: Rabbit family with sequence similarity 158, Isotype: member A IgG Calculated MW: Purification Method: 208 aa, 23 kDa Antigen Affinity purified Observed MW: Immunogen Catalog Number: 23 kDa AG20744 Applications Tested Applications: Positive Controls: IF, IHC, WB,ELISA WB : HEK-293 cells; Species Specificity: IHC : human pancreas tissue; human Note-IHC: suggested antigen retrieval with IF : HEK-293 cells; TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0 UPF0172 protein FAM158A, also known as c14orf122 or CGI112, is a protein that in humans is encoded by the Background Information FAM158A gene located on chromosome 14q11.2. Human FAM158A and its paralogs in other species are part of the uncharacterized protein family UPF0172 family, which is a subset of the JAB1/Mov34/MPN/PAD-1 ubiquitin protease protein family. The MPN superfamily contributes to ubiquitination and de-ubiquitination activity within the cell. The UPF0172 subset no longer has a functional ubiquitination domain and the function is uncharacterized. Fam158a is nearly ubiquitously expressed throughout the human body. The homolog in mice also shows expression throughout the entire body. Several micro-arrays demonstrate the variable expression of Fam158a in response to other factors and in various cancer types. None of this information gives any indication of a specific function but the wide expression of the gene and its high conservation indicate that Fam158a plays an important role in cellular function.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]
  • Genome-Wide Sirna Screen for Mediators of NF-Κb Activation
    Genome-wide siRNA screen for mediators SEE COMMENTARY of NF-κB activation Benjamin E. Gewurza, Fadi Towficb,c,1, Jessica C. Marb,d,1, Nicholas P. Shinnersa,1, Kaoru Takasakia, Bo Zhaoa, Ellen D. Cahir-McFarlanda, John Quackenbushe, Ramnik J. Xavierb,c, and Elliott Kieffa,2 aDepartment of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; bCenter for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; cProgram in Medical and Population Genetics, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142; dDepartment of Biostatistics, Harvard School of Public Health, Boston, MA 02115; and eDepartment of Biostatistics and Computational Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115 Contributed by Elliott Kieff, December 16, 2011 (sent for review October 2, 2011) Although canonical NFκB is frequently critical for cell proliferation, (RIPK1). TRADD engages TNFR-associated factor 2 (TRAF2), survival, or differentiation, NFκB hyperactivation can cause malig- which recruits the ubiquitin (Ub) E2 ligase UBC5 and the E3 nant, inflammatory, or autoimmune disorders. Despite intensive ligases cIAP1 and cIAP2. CIAP1/2 polyubiquitinate RIPK1 and study, mammalian NFκB pathway loss-of-function RNAi analyses TRAF2, which recruit and activate the K63-Ub binding proteins have been limited to specific protein classes. We therefore under- TAB1, TAB2, and TAB3, as well as their associated kinase took a human genome-wide siRNA screen for novel NFκB activa- MAP3K7 (TAK1). TAK1 in turn phosphorylates IKKβ activa- tion pathway components. Using an Epstein Barr virus latent tion loop serines to promote IKK activity (4).
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Mutation in the COX4I1 Gene Is Associated with Short Stature, Poor Weight Gain and Increased Chromosomal Breaks, Simulating Fanconi Anemia
    European Journal of Human Genetics (2017) 25, 1142–1146 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg ARTICLE Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia Bassam Abu-Libdeh*,1,4, Liza Douiev2,3,4, Sarah Amro1, Maher Shahrour1, Asaf Ta-Shma2, Chaya Miller2,3, Orly Elpeleg2 and Ann Saada*,2,3 We describe a novel autosomal recessive form of mitochondrial disease in a child with short stature, poor weight gain, and mild dysmorphic features with highly suspected Fanconi anemia due to a mutation in COX4I1 gene. Whole Exome Sequencing was performed then followed by Sanger confirmation, identified a K101N mutation in COX4I1, segregating with the disease. This nuclear gene encodes the common isoform of cytochrome c oxidase (COX) subunit 4 (COX 4-1), an integral regulatory part of COX (respiratory chain complex IV) the terminal electron acceptor of the mitochondrial respiratory chain. The patient’s fibroblasts disclosed decreased COX activity, impaired ATP production, elevated ROS production, decreased expression of COX4I1 mRNA and undetectable (COX4) protein. COX activity and ATP production were restored by lentiviral transfection with the wild-type gene. Our results demonstrate the first human mutation in the COX4I1 gene linked to diseases and confirm its role in the pathogenesis. Thus COX4I1 mutations should be considered in any patient with features suggestive of this diagnosis. European Journal of Human Genetics (2017) 25, 1142–1146; doi:10.1038/ejhg.2017.112; published online 2 August 2017 INTRODUCTION normal vaginal delivery with birth weight of 2.8 kg after an uneventful Mitochondrial cytochrome c oxidase (COX, complex IV) is the terminal pregnancy.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency And
    cells Article Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis Kristýna Cunˇ átová 1,2, David Pajuelo Reguera 1 , Marek Vrbacký 1, Erika Fernández-Vizarra 3 , Shujing Ding 3, Ian M. Fearnley 3, Massimo Zeviani 3 , Josef Houštˇek 1 , Tomáš Mráˇcek 1,* and Petr Pecina 1,* 1 Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, 142 00 Prague, Czech Republic; [email protected] (K.C.);ˇ [email protected] (D.P.R.); [email protected] (M.V.); [email protected] (J.H.) 2 Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic 3 MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; [email protected] (E.F.-V.); [email protected] (S.D.); [email protected] (I.M.F.); [email protected] (M.Z.) * Correspondence: [email protected] (T.M.); [email protected] (P.P.) Abstract: The oxidative phosphorylation (OXPHOS) system localized in the inner mitochondrial membrane secures production of the majority of ATP in mammalian organisms. Individual OXPHOS complexes form supramolecular assemblies termed supercomplexes. The complexes are linked not only by their function but also by interdependency of individual complex biogenesis or maintenance. For instance, cytochrome c oxidase (cIV) or cytochrome bc1 complex (cIII) deficiencies affect the level of fully assembled NADH dehydrogenase (cI) in monomeric as well as supercomplex forms. It was hypothesized that cI is affected at the level of enzyme assembly as well as at the level of cI stability and maintenance.
    [Show full text]
  • Identification of Genes Involved in Radioresistance of Nasopharyngeal Carcinoma by Integrating Gene Ontology and Protein-Protein Interaction Networks
    INTERNATIONAL JOURNAL OF ONCOLOGY 40: 85-92, 2012 Identification of genes involved in radioresistance of nasopharyngeal carcinoma by integrating gene ontology and protein-protein interaction networks YA GUO1, XIAO-DONG ZHU1, SONG QU1, LING LI1, FANG SU1, YE LI1, SHI-TING HUANG1 and DAN-RONG LI2 1Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Cancer Institute of Guangxi Zhuang Autonomous Region; 2Guang xi Medical Scientific Research Center, Guangxi Medical University, Nanning 530021, P.R. China Received June 15, 2011; Accepted July 29, 2011 DOI: 10.3892/ijo.2011.1172 Abstract. Radioresistance remains one of the important factors become potential biomarkers for predicting NPC response to in relapse and metastasis of nasopharyngeal carcinoma. Thus, it radiotherapy. is imperative to identify genes involved in radioresistance and explore the underlying biological processes in the development Introduction of radioresistance. In this study, we used cDNA microarrays to select differential genes between radioresistant CNE-2R Nasopharyngeal carcinoma (NPC) is a major malignant tumor and parental CNE-2 cell lines. One hundred and eighty-three of the head and neck region and is endemic to Southeast significantly differentially expressed genes (p<0.05) were Asia, especially Guangdong and Guangxi Provinces, and the identified, of which 138 genes were upregulated and 45 genes Mediterranean basin (1,3). Radiotherapy is the major treatment were downregulated in CNE-2R. We further employed publicly modality for nasopharyngeal carcinoma (NPC). However, in available bioinformatics related software, such as GOEAST some cases, it is radioresistant. Although microarray methods and STRING to examine the relationship among differen- have been used to assess genes involved in radioresistance in a tially expressed genes.
    [Show full text]
  • Hypoxia Inducible Factors Modulate Mitochondrial Oxygen Consumption and Transcriptional Regulation of Nuclear-Encoded Electron T
    Article pubs.acs.org/biochemistry Hypoxia Inducible Factors Modulate Mitochondrial Oxygen Consumption and Transcriptional Regulation of Nuclear-Encoded Electron Transport Chain Genes † § † ‡ ∥ † † ‡ † Hye Jin Hwang, , Scott G. Lynn, , , Ajith Vengellur, Yogesh Saini, , Elizabeth A. Grier, † § † § ‡ Shelagh M. Ferguson-Miller, , and John J. LaPres*, , , † ‡ § Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824-1319, United States *S Supporting Information ABSTRACT: Hypoxia inducible factor-1 (HIF1) is a stress-responsive nuclear transcription factor that is activated with a decrease in oxygen availability. HIF1 regulates the expression of genes involved in a cell’s adaptation to hypoxic stress, including those with mitochondrial specific function. To gain a more comprehensive understanding of the role of HIF1 in mitochondrial homeostasis, we studied the link between hypoxia, HIF1 transactivation, and electron transport chain (ETC) function. We established immortalized mouse embryonic fibroblasts (MEFs) for HIF1α wild-type (WT) and null cells and tested whether HIF1α regulates mitochondrial respiration by modulating gene expressions of nuclear-encoded ETC components. High- throughput quantitative real-time polymerase chain reaction was performed to screen nuclear- encoded mitochondrial genes related to the ETC to identify those whose regulation was HIF1α- dependent. Our data suggest that HIF1α regulates transcription of cytochrome c oxidase (CcO) heart/muscle isoform 7a1 (Cox7a1) under hypoxia, where it is induced 1.5−2.5-fold, whereas Cox4i2 hypoxic induction was HIF1α-independent. We propose that adaptation to hypoxic stress of CcO as the main cellular oxygen consumer is mediated by induction of hypoxia-sensitive tissue-specific isoforms.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]