The Math Wars California Battles It out Over Mathematics Education Reform (Part II)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 13 National Science Foundation Systemic Initiatives
Chapter 13 National Science Foundation Systemic Initiatives: How a small amount of federal money promotes ill-designed mathematics and science programs in K-12 and undermines local control of education Michael McKeown Mathematically Correct David Klein California State University, Los Angeles Chris Patterson Education Connection of Texas Since its inception in 1950, the National Science Foundation (NSF) has played a strong, positive role in making American scientific research and technological application the best in the world. Through its funding of peer-reviewed, investigator-initiated research proposals, it has supported basic research in a wide variety of scientific disciplines, such as mathematics, biology, physics, chemistry, geology, astronomy, and psychology. American science owes much to the support it has received, and continues to receive, from NSF. This chapter deals with a program in the Education and Human Resources Division called the NSF Systemic Initiatives Program, not with NSF programs related directly to the support of basic research. We are highly critical of this particular NSF program. Not only do the Systemic Initiatives undermine local control of education, but, as our analysis in this chapter suggests, they also seem to lower academic standards for mathematics education and weaken the educational base for American science. This chapter is composed of three sections. The first section, an overview of NSF Systemic Initiatives, was written by Michael McKeown. The second section, an analysis of the development and 288 Standards Wars features of the Los Angeles Systemic Initiative, was written by David Klein. The third section, an analysis of the development and features of the Texas Statewide Systemic Initiative, was written by Chris Patterson. -
Mathematics in African History and Cultures
Paulus Gerdes & Ahmed Djebbar MATHEMATICS IN AFRICAN HISTORY AND CULTURES: AN ANNOTATED BIBLIOGRAPHY African Mathematical Union Commission on the History of Mathematics in Africa (AMUCHMA) Mathematics in African History and Cultures Second edition, 2007 First edition: African Mathematical Union, Cape Town, South Africa, 2004 ISBN: 978-1-4303-1537-7 Published by Lulu. Copyright © 2007 by Paulus Gerdes & Ahmed Djebbar Authors Paulus Gerdes Research Centre for Mathematics, Culture and Education, C.P. 915, Maputo, Mozambique E-mail: [email protected] Ahmed Djebbar Département de mathématiques, Bt. M 2, Université de Lille 1, 59655 Villeneuve D’Asq Cedex, France E-mail: [email protected], [email protected] Cover design inspired by a pattern on a mat woven in the 19th century by a Yombe woman from the Lower Congo area (Cf. GER-04b, p. 96). 2 Table of contents page Preface by the President of the African 7 Mathematical Union (Prof. Jan Persens) Introduction 9 Introduction to the new edition 14 Bibliography A 15 B 43 C 65 D 77 E 105 F 115 G 121 H 162 I 173 J 179 K 182 L 194 M 207 N 223 O 228 P 234 R 241 S 252 T 274 U 281 V 283 3 Mathematics in African History and Cultures page W 290 Y 296 Z 298 Appendices 1 On mathematicians of African descent / 307 Diaspora 2 Publications by Africans on the History of 313 Mathematics outside Africa (including reviews of these publications) 3 On Time-reckoning and Astronomy in 317 African History and Cultures 4 String figures in Africa 338 5 Examples of other Mathematical Books and 343 -
An Alternative Route to Teaching Fraction Division: Abstraction of Common Denominator Algorithm
International Electronic Journal of Elementary Education, 2015, 7(3), 399-422. An Alternative Route to Teaching Fraction Division: Abstraction of Common Denominator Algorithm İsmail Özgür ZEMBAT Mevlana (Rumi) University, Turkey Received: February 2015 / Revised: May 2015 / Accepted: May 2015 Abstract From a curricular stand point, the traditional invert and multiply algorithm for division of fractions provides few affordances for linking to a rich understanding of fractions. On the other hand, an alternative algorithm, called common denominator algorithm, has many such affordances. The current study serves as an argument for shifting curriculum for fraction division from use of invert and multiply algorithm as a basis to the use of common denominator algorithm as a basis. This was accomplished with the analysis of learning of two prospective elementary teachers being an illustration of how to realize those conceptual affordances. In doing so, the article proposes an instructional sequence and details it by referring to both the (mathematical and pedagogical) advantages and the disadvantages. As a result, this algorithm has a conceptual basis depending on basic operations of partitioning, unitizing, and counting, which make it accessible to learners. Also, when participants are encouraged to construct this algorithm based on their work with diagrams, common denominator algorithm formalizes the work that they do with diagrams. Keywords: Teaching fraction division, abstracting common denominator algorithm, curriculum development Introduction Arithmetic operations, and teaching and learning of them have always been an interest for mathematics education community. In his historical analysis, Usiskin (2007) pointed out that operations (especially on fractions) still preserve its importance in school mathematics and they should be given enough emphasis. -
AVAILABLE from ABSTRACT DOCUMENT RESUME Exemplary
DOCUMENT RESUME ED 434 033 SE 062 877 TITLE Exemplary and Promising Mathematics Programs. INSTITUTION Department of Education, Washington, DC. PUB DATE 1999-00-00 NOTE 71p.; Prepared by the "Math and Science Education Expert Panel." AVAILABLE FROM ED Pubs, P.O. Box 1389, Jessup, MD. Tel: 877-433-7827 (Toll Free); Web site: <http://www.enc.org>. PUB TYPE Reports Descriptive (141) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS *Academic Standards; Demonstration Programs; Elementary Secondary Education; Mathematics Curriculum; *Mathematics Education; *Program Descriptions; *Program Evaluation ABSTRACT Selecting programs, textbooks, and curriculum materials is one of the most important decisions educators make. An Expert Panel on Mathematics and Science was established by the U.S. Department of Education to develop a high-quality, research-based process for selecting programs and to use that selecting process to identify exemplary and promising programs. This booklet describes eight mathematics programs designated as exemplary or promising. A detailed explanation of the submission and selection process and an explanation of how the programs were separated into exemplary and promising categories is included. The four characteristics used for the selection criteria include quality of program, usefulness to others, educational significance, and evidence of effectiveness and success. Each characteristic has multiple criteria with specific indicators of achievement. Each program is described in terms of the four selection characteristics and professional -
A Primer on America's Schools
chapter 9 Standards and Accountability Williamson M. Evers The idea seems simple enough. Set standards for what students should be learning, and then hold them and their teachers account- able for seeing that the learning actually takes place. So why, then, after years of various benchmarks and commissions and legislative agendas, are the standards and accountability programs in this country all too often mediocre and ineffective? Because they are the product of politics. Standards and accountability, like most of the contentious issues concerning public schools today, are caught between powerful and conflicting political forces—forces that hold sway even in the face of a clear and widespread desire to improve the public education that 89 percent of this nation’s children re- ceive. In the specific case of standards and accountability, two forces in particular are at play: resistance from the teachers’ unions and the rest of the education establishment (which includes school boards, The author wishes to thank Mychele Brickner, Beth Ann Bryan, Paul Clopton, Ralph Cohen, Maureen DiMarco, Michelle Easton, Eric Hanushek, David Klein, Bill Lucia, Doug McRae, Stan Metzenberg, James Milgram, Terry Moe, Janet Nicholas, Sandra Stotsky, Abigail Thernstrom, Kate Walsh, Darv Winick, and Ze’ev Wurman for reading earlier drafts of this paper, in whole or in part, and offering valuable suggestions. He also wishes to thank Kate Feinstein for her help with research and editing and Peggy Dooley for extensive help with editing and revising. 205 .......................... 8774$$ $CH9 09-10-01 10:08:06 PS 206 Williamson M. Evers superintendents, and principals) who often want to avoid being evaluated when it comes to whether their students are learning; and struggles between the progressive and traditionalist schools of thought as to what educational standards should look like, and, indeed, whether there should be any standards at all. -
Problematizing the Philosophy of Mathematics in a Time of Curriculum Reform Kimberly White-Fredette
The Mathematics Educator 2009/2010, Vol. 19, No. 2, 21–31 Why Not Philosophy? Problematizing the Philosophy of Mathematics in a Time of Curriculum Reform Kimberly White-Fredette This article argues that, as teachers struggle to implement curriculum reform in mathematics, an explicit discussion of philosophy of mathematics is missing from the conversation. Building on the work of Ernest (1988, 1991, 1994, 1998, 1999, 2004), Lerman (1990, 1998, 1999), the National Council of Teachers of Mathematics (1989, 1991, 2000), Davis and Hersh (1981), Hersh (1997), Lakatos (1945/1976), Kitcher (1984), and others, the author draws parallels between social constructivism and a humanism philosophy of mathematics. While practicing mathematicians may be entrenched in a traditional, Platonic philosophy of mathematics, and mathematics education researchers have embraced the fallibilist, humanist philosophy of mathematics (Sfard, 1998), the teachers of school mathematics are caught somewhere in the middle. Mathematics teachers too often hold true to the traditional view of mathematics as an absolute truth independent of human subjectivity. At the same time, they are pushed to teach mathematics as a social construction, an activity that makes sense only through its usefulness. Given these dichotomous views of mathematics, without an explicit conversation about and exploration of the philosophy of mathematics, reform in the teaching and learning of mathematics may be certain to fail. The teaching and learning of mathematics is without a radical change in instructional practices going through tremendous changes. The National and an equally radical change in teachers’ views of Council of Teachers of Mathematics’ (NCTM, 2000) mathematics teaching and learning, as well as the Principles and Standards for School Mathematics discipline of mathematics itself. -
May 2001 What Are the Children Learning and Who Decides
May 2001 THE TEXTBOOK CONUNDRUM What are the Children Learning and Who Decides? Introduction With the quality of education in the United States now the biggest domestic concern, demands for accountability are in vogue. The drive for better schools however, is usually limited to issues of standards, testing, choice and teachers. Missing from most discussions is the role that textbooks play in the achievement of children. A few facts to consider: • In more than twenty states, the state (state board of education, department of education, secretary or commissioner of education, or another specially designated state textbook committee) picks the textbooks for every classroom in the state – either through outright text selection, or recommendations from a short list. To control curriculum, they tie funding to compliance with the states’ textbook adoption policy. • Textbooks supplied to three states, California, Texas and Florida – all of which give significant influence to state agencies for textbook selection – account for 30 percent of the more than $3.3 billion K-12 textbook market in 1998, the most recent year for which statistics are available.i • Four publishers (McGraw-Hill, Houghton Mifflin, Harcourt, and Pearson) control 70 percent of the industry. Size means money means influence in the textbook world. They are a strong, quiet interest group that works behind the scenes and through major education groups to ensure that the process favoring them stays exactly the way it is. The process for putting books in front of children then, looks something like this: The “big three” states draw up textbook adoption policies to which the “big four” publishers try to align their textbook content. -
An Examination of the Potential of Secondary Mathematics
AN EXAMINATION OF THE POTENTIAL OF SECONDARY MATHEMATICS CURRICULUM MATERIALS TO SUPPORT TEACHER AND STUDENT LEARNING OF PROBABIILITY AND STATISTICS by Joshua E. Williams B. S., Clarion University, 2000 M. S., Salisbury University, 2006 Submitted to the Graduate Faculty of The School of Education in partial fulfillment of the requirements for the degree of Doctor of Education University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH THE SCHOOL OF EDUCATION This dissertation was presented by Joshua E. Williams It was defended on September 7, 2016 and approved by Dr. Ellen Ansell, Associate Professor, Instruction and Learning Dr. James Greeno, Emeritus Professor, Standford University Dr. Mary Kay Stein, Professor, Learning Science and Policy Dissertation Advisor: Dr. Margaret S. Smith, Emeritus Professor, Instruction and Learning ii Copyright © by Joshua E. Williams 2016 iii AN EXAMINATION OF THE POTENTIAL OF SECONDARY MATHEMATICS CURRICULUM MATERIALS TO SUPPORT TEACHER AND STUDENT LEARNING OF PROBABIILITY AND STATISTICS Joshua E. Williams, EdD University of Pittsburgh, 2016 The Common Core State Standards for Mathematics (CCSSSM) suggest many changes to secondary mathematics education including an increased focus on conceptual understanding and the inclusion of content and processes that are beyond what is currently taught to most high school students. To facilitate these changes, students will need opportunities to engage in tasks that are cognitively demanding in order to develop this conceptual understanding and to engage in such tasks over a breadth of content areas including probability and statistics. However, teachers may have a difficult time facilitating a change from traditional mathematics instruction to instruction that centers around the use of high-level tasks and a focus on conceptual understanding and that include content from the areas of probability and statistics that may go beyond their expertise and experience. -
The Impact of Information and Communication Technology on Our Understanding of the Nature of Mathematics
FLM 26(1) 2/2/06 12:33 PM Page 29 THE IMPACT OF INFORMATION AND COMMUNICATION TECHNOLOGY ON OUR UNDERSTANDING OF THE NATURE OF MATHEMATICS FREDERICK K. S. LEUNG The incorporation of information and communication tech- scientific calculator) and it can also be used as a transforma- nology (ICT) into mathematics education constitutes one of tional tool, a data collection and analysis tool, a visualizing the most important themes in contemporary mathematics tool and/or a checking tool. Doerr and Zangor (2000) sum- education. For example, one of the six principles of school marized the different roles the graphing calculator plays and mathematics as espoused by the National Council of Teach- the corresponding student actions as follows: ers of Mathematics (NCTM, 2000) is that Role of the Description of Student Actions Technology is essential in teaching and learning math- Graphing Calculator ematics; it influences the mathematics that is taught and enhances students’ learning. (p. 24, emphasis added). Computational Tool Evaluating numerical expressions, esti- mating and rounding The purpose of this article is to review research findings on the effectiveness of the use of some selected ICT tools in Transformational Tool Changing the nature of the task mathematics teaching and learning. [1] This review is then Data Collection and Gathering data, controlling phenomena, set against a summary of the actual use of ICT tools in real Analysis Tool fiding patterns classrooms. Various issues related to the incorporation of Visualizing Tool Finding symbolic functions, displaying ICT into mathematics education arise, including: data, interpreting data, solving equations • the reasons for the discrepancy between the poten- Checking Tool Confirming conjectures, understanding tial and actual use of ICT multiple symbolic forms Figure 1: Table showing the patterns and modes of use of a • the impact of ICT on our understanding of the graphing calculator (p. -
Book Report Winning the Math Wars
Book Report Winning the Math Wars: No Teacher Left Behind Samantha A Peterson Seattle Pacific University 2 Winning the Math Wars: No Teacher Left Behind, is a book written by four Seattle Pacific University scholars, who present a well-articulated and non-biased assessment of the state of mathematics education in the world, in the United States, and specifically in Washington State. The authors divided the book into four chapters, which address the following four topics respectively; what the world is thinking about math education, the American dilemma about math education, math education in Washington State, and ending with a discussion about the implications and conclusions of the math debate. The focus of the book is to present a broad analysis of the math wars and to come to some conclusion about what’s needed in order to realize effective change in the teaching and learning of mathematics. The underlying theme throughout the discussion of reform mathematics is the lack of attention that has been given to the teacher’s role in education reform; “effective reform requires the coordination among standards, assessment, and instruction,” (pg.123). The authors begin by exploring the historical development of the math wars and comparing the United States educational system to that of other cultures. This comparison is helpful because it addresses some of the cultural implications for differences in performance between American students and students from other countries. For instance, Japanese students typically spend far more time on homework and math study. Japanese and American teachers also differ fundamentally in their approach to math teaching. -
Reforming Mathematics Education Dr. Barry Fagin Professor Of
Reforming K-12 Mathematics Education Dr. Barry Fagin Professor of Computer Science USAFA (opinions are mine, not USAFA’s) What’s the problem? 8th grade math scores, IAEEA 2000 Report 700 600 500 400 300 200 100 0 y n a a a A ia n ca re a i ri S n ra ri o p ss ysi a U a rke I f p u la lg u A a Ja a m T g R u o th in M B R u S o S 1. Singapore 2. Korea 3. China 13. Australia 4. Hong Kong 2. Czechoslovakia 5. Japan 3. Finland 1. Moldova 6. Belgium 4. Malaysia 2. Thailand 7. Netherlands 5. Bulgaria 3. Israel 8. Slovak Rep. 6. USA 4. Tunisia 9. Hungary 7. England 5. Macedonia 10.Canada 8. New Zealand 6. Turkey 11.Slovenia 9. Lithuania 7. Jordan 12.Russia 10.Italy 8. Iran 11.Cyprus 9. Indonesia 12.Romania 10.Chile 11.Philippines 12.Morocco 13.South Africa % CSAP Advanced or Proficient (5th grade) 100 90 80 70 60 W 50 H 40 B 30 20 10 0 2001 2002 2003 % CSAP Advanced or Proficient (8th grade) 100 90 80 70 60 W 50 H 40 B 30 20 10 0 2001 2002 2003 % CSAP Advanced or Proficient (10th grade) 100 90 80 70 60 W 50 H 40 B 30 20 10 0 2001 2002 2003 Class of 2005 100 90 80 70 60 W 50 H 40 B 30 20 10 0 8th (2001) 9th (2002) 10th (2003) What’s the cause? Widespread adoption of curricula that: • Emphasize process over content • De-emphasize math facts • Embrace constructivism • Encourage calculator use in early grades • Encourage group work How did this happen? Open letter of protest published in Post, Carter elected DOE forms expert signed by > 200 panel to identify mathematicians and DOE created noteworthy math scientists programs Reagan elected, Secretary -
Geometry Terms That Start with K
Geometry Terms That Start With K Dorian remains pokier after Stavros chafe hiddenly or bewitches any cudweed. Completive and microcosmical Georges still trade-in his somebodies enough. Austin reflect ingratiatingly? Maximize time to share with geometry and more lines, research has one that by a surface polygons that have predictable similarities and Record all that start with k on interactive whiteboards or whole number ideas about our extensive math terms that can extend any time or. Geometry Pdf. Table K-1 highlights the content emphases at the cluster level watching the. Theses items are very inexpensive and necessities for Geometry Homework so elect will. Numbers objects words or mathematical language acting out the situation making your chart. Geometry National Council of Teachers of Mathematics. Drawing standardsindd The University of Memphis. The term or sometimes restricted to grain the socket of algebraic geometry and commutative algebra in statistics. The cross products. Begincases operatorname lVoverlineu1ldots overlineukoverlinev1ldots. Pre-K2 Expectations In pre-K through grade 2 each award every student should. Start to identify shapes they develop a beginning understanding of geometry. This where is protected by reCAPTCHA and the Google Privacy first and literate of time apply Geometry Geeks. In words Ab Kmil's book begins with plain brief explanation of the standard. Mathcom Glossary. In Euclidean geometric terms one of the below would be the best. K Cool math com Online Math Dictionary. Top 5 Things to an About Teaching Geometry in 3rd Grade. Start studying Math nation geometry section 1 vocab math nation geometry. Your web page jump to terms come across any geometry term.