Care and Feeding of Autopilots
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acnmanual.Pdf
Advanced Coastal Navigation Coast Guard Auxiliary Association Inc. Washington, D. C. First Edition..........................................................................1987 Second Edition .....................................................................1990 Third Edition ........................................................................1999 Fourth Edition.......................................................................2002 ii iii iv v vi Advanced Coastal Navigation TABLE OF CONTENTS Introduction...................................................................................................ix Chapter 1 INTRODUCTION TO COASTAL NAVIGATION . .1-1 Chapter 2 THE MARINE MAGNETIC COMPASS . .2-1 Chapter 3 THE NAUTICAL CHART . .3-1 Chapter 4 THE NAVIGATOR’S TOOLS & INSTRUMENTS . .4-1 Chapter 5 DEAD RECKONING . .5-1 Chapter 6 PILOTING . .6-1 Chapter 7 CURRENT SAILING . .7-1 Chapter 8 TIDES AND TIDAL CURRENTS . .8-1 Chapter 9 RADIONAVIGATION . .9-1 Chapter 10 NAVIGATION REFERENCE PUBLICATIONS . .10-1 Chapter 11 FUEL AND VOYAGE PLANNING . .11-1 Chapter 12 REFLECTIONS . .12-1 Appendix A GLOSSARY . .A-1 INDEX . .Index-1 vii Advanced Coastal Navigation viii intRodUction WELCOME ABOARD! Welcome to the exciting world of completed the course. But it does marine navigation! This is the fourth require a professional atti tude, care- edition of the text Advanced Coastal ful attention to classroom presenta- Navigation (ACN), designed to be tions, and diligence in working out used in con cert with the 1210-Tr sample problems. chart in the Public Education (PE) The ACN course has been course of the same name taught by designed to utilize the 1210-Tr nau - the United States Coast Guard tical chart. It is suggested that this Auxiliary (USCGAUX). Portions of chart be readily at hand so that you this text are also used for the Basic can follow along as you read the Coastal Navigation (BCN) PE text. We recognize that students course. -
Use of Rudder on Boeing Aircraft
12ADOBL02 December 2011 Use of rudder on Boeing aircraft According to Boeing the Primary uses for rudder input are in crosswind operations, directional control on takeoff or roll out and in the event of engine failure. This Briefing Leaflet was produced in co-operation with Boeing and supersedes the IFALPA document 03SAB001 and applies to all models of the following Boeing aircraft: 707, 717, 727, 737, 747, 757, 767, 777, 787, DC-8, DC-9, DC-10, MD-10, md-11, MD-80, MD-90 Sideslip Angle Fig 1: Rudder induced sideslip Background As part of the investigation of the American Airlines Flt 587 crash on Heading Long Island, USA the United States National Transportation Safety Board (NTSB) issued a safety recommendation letter which called Flight path for pilots to be made aware that the use of “sequential full opposite rudder inputs can potentially lead to structural loads that exceed those addressed by the requirements of certification”. Aircraft are designed and tested based on certain assumptions of how pilots will use the rudder. These assumptions drive the FAA/EASA, and other certifica- tion bodies, requirements. Consequently, this type of structural failure is rare (with only one event over more than 45 years). However, this information about the characteristics of Boeing aircraft performance in usual circumstances may prove useful. Rudder manoeuvring considerations At the outset it is a good idea to review and consider the rudder and it’s aerodynamic effects. Jet transport aircraft, especially those with wing mounted engines, have large and powerful rudders these are neces- sary to provide sufficient directional control of asymmetric thrust after an engine failure on take-off and provide suitable crosswind capability for both take-off and landing. -
Touring Rudder Sit-On Top Kit Kit to Fit Rudder Enabled Sit-On Tops with a 10Mm Rudder Fixing Point
touring rudder sit-on top kit Kit to fit rudder enabled sit-on tops with a 10mm rudder fixing point. Note: It is easier to fit the Touring Rudder System if you have a screw hatch fitted to the rear stowage area of the kayak. If your kayak does not have this screw hatch and you wish to fit one, please contact a Perception dealer for advice. These instructions explain how to fit the rudder kit to a kayak with or without a rear screw hatch in place. Please make sure you follow the correct steps for your version of sit-on top kayak. This kit should contain the following: 1x rudder assembly with up-haul rope & split ring 4x deck fittings 4x length of rudder hose 5x self tapping screws 2x Dyneema control line - with cord end assembly 2x oval toggle 1x pair of Tip-Toes control footrests with foam washers 1x length of 4mm shock cord 6x footrest screws, washers and nuts - pre-fitted 1x rudder park - inc. hook, shock cord & fixing block You will also require some tools to fit this kit: Drill with 3mm, 5mm and 6mm drill bits Marker pen Short phillips screwdriver Wire cutters Small adjustable spanner or pair of pliers Lighter Tape measure Small amount of sticky tape Please read these instructions carefully before fitting! Step 1 - Control line entry points The rudder will need to have two control lines attached, each one running through hose sections inside the kayak from the rudder to the Tip-Toes footrests. This kit has four hose sections (two pairs) as two sections are needed per control line. -
Aerosport Modeling Rudder Trim
AEROSPORT MODELING RUDDER TRIM Segment: MOBILITY PARTS PROVIDERS | Engineering companies Application vertical: MOBILITY AND TRANSPORTATION | AircraFt Application type: FINAL PART: Short runs THE CUSTOMER FINAL PART: SHORT RUNS AEROSPORT MODELING RUDDER TRIM COMPANY DESCRIPTION APPLICATION TRADITIONAL MANUFACTURING Some planes are equipped with small tabs on the control surfaces (e.g., rudder trim Assembly of 26 different machined and standard parts Aerosport Modeling & Design was established in tabs, aileron tabs, elevator tabs) so the pilot can make minute adjustments to pitch, September 1996, and since then, they have worked to yaw, and roll to keep the airplane flying a true, clean line through the air. This produce the highest-possible quality prototypes, improves speed by reducing drag from the larger, constant movements of the full appearance models, working models, and machined rudder, aileron, and elevator. parts, and to meet or exceed client expectations. The company strives to be seen as a partner to their Many airplanes also have rudder and/or aileron trim systems. On some, the rudder clients and an extension of their design and trim tab is rigid but adjustable on the ground by bending: It is angled slightly to the development team, not just a supplier of prototyping left (when viewed from behind) to lessen the need for the pilot to push the rudder services. pedal constantly in order to overcome the left-turning tendencies of many prop- driven aircraft. Some aircraft have hinged rudder trim tabs that the pilot can adjust Aerosport Products spun off from sister company in flight. Aerosport Modeling & Design in 2009 to develop products for experimental aircraft, the first of which When a servo tab is employed, it is moved into the slipstream opposite of the was the RV-10 Carbon Fiber Instrument Panel. -
Science and the Instrument-Maker
r f ^ Science and the Instrument-maker MICHELSON, SPERRY, AND THE SPEED OF LIGHT Thomas Parke Hughes SMITHSONIAN STUDIES IN HISTORY AND TECHNOLOGY • NUMBER 37 Science and the Instrument-maker MICHELSON, SPERRY, AND THE SPEED OF LIGHT Thomas Parke Hughes Qmit/isoDian Ij;i^titution 'PJ^SS City of Washington 1976 ABSTRACT Hughes, Thomas Parke. Science and the Instrument-maker: Michelson, Sperry, and the Speed of Light. Smithsonian Studies in History and Technology, number 37, 18 pages, 9 figures, 2 tables, 1976.-This essay focuses on the cooperative efforts between A. A. Michelson, physicist, and Elmer Ambrose Sperry, inventor, to produce the instr.umentation for the determination of the speed of light. At the conclusion of experiments made in 1926, Michelson assigned the Sperry in struments the highest marks for accuracy. The value of the speed of light accepted by many today (299,792.5 km/sec) varies only 2.5 km/sec from that obtained using the Sperry octagonal steel mirror. The main problems of producing the instrumentation, human error in the communication of ideas to effect that in strumentation, a brief description of the experiments to determine the speed of light, and the analysis and evaluation of the results are discussed. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's report, Smithsonian Year. Si PRESS NUMBER 6I41. COVER: A. A. Michelson and Elmer Ambrose Sperry. Library of Congress Cataloging in Publication Data Hughes, Thomas Parke. Science and the instrument-maker. (Smithsonian studies in histoi7 and technology ; no. 37) Supt. -
COURSE INFORMATION M1
AII/1 Standard Wheel Orders All wheel orders given should be repeated by the helmsman and the officer of the watch should ensure that they are carried out correctly and immediately. All wheel orders should be held until countermanded. The helmsman should report immediately if the vessel does not answer the wheel. When there is concern that the helmsman is inattentive s/he should be questioned: "What is your heading ?" And s/he should respond: "My heading is ... degrees." Order Meaning 1. Midships Rudder to be held in the fore and aft position. 2. Port / starboard five 5° of port / starboard rudder to be held. 3. Port / starboard ten 10°of port / starboard rudder to be held. 4. Port / starboard fifteen 15°of port / starboard rudder to be held. 5. Port / starboard twenty 20° of port / starboard rudder to be held. 6. Port / starboard twenty-five 25°of port / starboard rudder to be held. 7. Hard -a-port / starboard Rudder to be held fully over to port / starboard. 8. Nothing to port/starboard Avoid allowing the vessel’s head to go to port/starboard . 9.Meet her Check the swing of the vessel´s head in a turn. 10. Steady Reduce swing as rapidly as possible. 11. Ease to five / ten Reduce amount of rudder to 5°/10°/15°/20° and hold. / fifteen / twenty 12. Steady as she goes Steer a steady course on the compass headin g indicated at the time of the order. The helmsman is to repeat the order and call out the compass heading on receiving the order. -
FAA-H-8083-15, Instrument Flying Handbook -- 1 of 2
i ii Preface This Instrument Flying Handbook is designed for use by instrument flight instructors and pilots preparing for instrument rating tests. Instructors may find this handbook a valuable training aid as it includes basic reference material for knowledge testing and instrument flight training. Other Federal Aviation Administration (FAA) publications should be consulted for more detailed information on related topics. This handbook conforms to pilot training and certification concepts established by the FAA. There are different ways of teaching, as well as performing, flight procedures and maneuvers and many variations in the explanations of aerodynamic theories and principles. This handbook adopts selected methods and concepts for instrument flying. The discussion and explanations reflect the most commonly used practices and principles. Occasionally the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). All of the aeronautical knowledge and skills required to operate in instrument meteorological conditions (IMC) are detailed. Chapters are dedicated to human and aerodynamic factors affecting instrument flight, the flight instruments, attitude instrument flying for airplanes, basic flight maneuvers used in IMC, attitude instrument flying for helicopters, navigation systems, the National Airspace System (NAS), the air traffic control (ATC) system, instrument flight rules (IFR) flight procedures, and IFR emergencies. Clearance shorthand and an integrated instrument lesson guide are also included. This handbook supersedes Advisory Circular (AC) 61-27C, Instrument Flying Handbook, which was revised in 1980. -
Flight Instruments - Rev
Flight Instruments - rev. 9/12/07 Ground Lesson: Flight Instruments Objectives: 1. to understand the flight instruments, and the systems that drive them 2. to understand the pitot static system, and possible erroneous behavior 3. to understand the gyroscopic instruments 4. to understand the magnetic instrument, and the short comings of the instrument Justification: 1. understanding of flight instruments is critical to evaluating proper response in case of failure 2. knowledge of flight instruments is required for the private pilot checkride. Schedule: Activity Est. Time Ground 1.0 Total 1.0 Elements Ground: • overview • pitot-static instruments • gyroscopic instruments • magnetic instrument Completion Standards: 1. when the student exhibits knowledge relating to flight instruments including their failure symptoms 1 of 3 Flight Instruments - rev. 9/12/07 Presentation Ground: pitot-static system 1. overview (1) pitot-static system uses ram- air and static air measurements to produce readings. (2) pressure and temperature effect the altimeter i. remember - “Higher temp or pressure = Higher altitude” ii. altimeters are usually adjustable for non-standard temperatures via a window in the instrument (i) 1” of pressure difference is equal to approximately 1000’ of altitude difference 2. components (1) static ports (2) pitot tube (3) pitot heat (4) alternate static ports (5) instruments - altimeter, airspeed, VSI gyroscopic system 1. overview (1) vacuum :system to allow high-speed air to spin certain gyroscopic instruments (2) typically vacuum engine-driven for some instruments, AND electrically driven for other instruments, to allow back-up in case of system failure (3) gyroscopic principles: i. rigidity in space - gyroscopes remains in a fixed position in the plane in which it is spinning ii. -
3D Rigid Body Dynamics: Tops and Gyroscopes
J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30 - 3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced the Euler angles as a framework for formulating and solving the equations for conservation of angular momentum. We applied this framework to the free-body motion of a symmetrical body whose angular momentum vector was not aligned with a principal axis. The angular moment was however constant. We now apply Euler angles and Euler’s equations to a slightly more general case, a top or gyroscope in the presence of gravity. We consider a top rotating about a fixed point O on a flat plane in the presence of gravity. Unlike our previous example of free-body motion, the angular momentum vector is not aligned with the Z axis, but precesses about the Z axis due to the applied moment. Whether we take the origin at the center of mass G or the fixed point O, the applied moment about the x axis is Mx = MgzGsinθ, where zG is the distance to the center of mass.. Initially, we shall not assume steady motion, but will develop Euler’s equations in the Euler angle variables ψ (spin), φ (precession) and θ (nutation). 1 Referring to the figure showing the Euler angles, and referring to our study of free-body motion, we have the following relationships between the angular velocities along the x, y, z axes and the time rate of change of the Euler angles. The angular velocity vectors for θ˙, φ˙ and ψ˙ are shown in the figure. -
ASA Ch 3 the Instrument - Workbook Questions
ASA Ch 3 The Instrument - Workbook Questions 1. The flight instruments are commonly grouped into basic categories based on the a. physical properties they rely on to work. b. whether they are used on the ground or in flight. c. Library of Congress catalog system, Dewey Decimal. 2. The basis of a conventional attitude indicator is a self-erecting a. vertical card mounted on a swivel. b. attitude flag arranged on a diagonal. c. gyroscope spinning on a vertical axis. 3. If the spin axis of the attitude indicator gyroscope moves off the vertical for some reason, the internal mechanism will realign it at a rate of approximately a. 3 degrees per second. b. 3 degrees per minute. c. 3 degrees per hour. 4. Occasionally, the miniature airplane on the attitude indicator may require repositioning while in level flight, due to changes in a. altitude (and corresponding air density). b. pitch attitude (associated with airspeed changes). c. the Earth’s gravitational forces. 5. If the attitude indicator experiences a failure of the power source, it will a. be unusable. b. continue to function if you maintain the same heading. c. still be a valid source of bank attitude. 6. Acceleration of the aircraft may cause the gyroscope to move off vertical, moving the horizon line a. toward the pilot. b. in the direction of the turn. c. to an incorrect position. 7. During a rapid acceleration, the horizon line will move down and the attitude indicator will indicate a false climb. a. True b. False 8. To avoid false indications when speeding up or slowing down, a pilot should increase the instrument scan rate a. -
Finish Your Private Pilot License
THE PRIVATE PILOT LEARNING GUIDE STOPPING A TURN CARDINAL DIRECTIONS Coordinated aileron and rudder pressure in the direction opposite When referencing the magnetic compass or heading indicator, always TURNS the bank will return the airplane to a level attitude. As with the associate one of the eight cardinal directions with the number on roll in the roll out of a bank attitude requires rudder deflection to the indicator. This will assist you in keeping spatially oriented and overcome adverse yaw. Relax elevator back pressure to return to a will be very important later in your training when you must visualize Rolling the airplane into a banked attitude results in a turn. Since the flight path is now curved there is an level pitch attitude as the bank attitude decreases. Neutralize the runway directions and while doing cross country navigation. controls when reaching a level sight picture. acceleration force. The increased force is directly related to the bank attitude used for the turn. A shallow As an aircraft rotates about its longitudinal axis, the lifting force bank attitude results in a slowly changing flight path, creating only a small increase in load factor. also rotates remaining perpendicular to the wingspan. When the airplane is in a bank, this redirected lift causes the airplane to turn. 60o As discussed earlier in this chapter, turning results in a curved flight path and additional load. The increase in load is due to centrifugal 40o force and is present anytime the airplane is turning. The centrifugal force combines with the airplane’s weight resulting in “load” opposite to lift. -
Chapter 7 – Autopilot Models for Course and Heading Control
Chapter 7 – Autopilot Models for Course and Heading Control 7.1 Autopilot Models for Course Control 7.2 Autopilot Models for Heading Control Automatic pilot, “also called autopilot, or autohelmsman, device for controlling an aircraft or other vehicle without constant human intervention.” Ref. Encyclopedia Britannica The first aircraft autopilot was developed by Sperry Corporation in 1912. It permitted the aircraft to fly straight and level on a compass course without a pilot's attention, greatly reducing the pilot's workload. Elmer Ambrose Sperry, Sr. (1860–1930) Lawrence Sperry (the son of famous inventor Elmer Sperry) demonstrated it in 1914 at an aviation safety contest held in Paris. Sperry demonstrated the credibility of the invention by flying the aircraft with his hands away from the controls. He was killed in 1923 when his aircraft crashed in the English channel. In the early 1920s, the Standard Oil tanker J.A. Moffet became the first ship to use an autopilot. Ref. Wikipedia Lawrence Burst Sperry (1892—1923) 1 Lecture Notes TTK 4190 Guidance, Navigation and Control of Vehicles (T. I. Fossen) Chapter Goals • Be able to explain the differences of course and heading controlled marine craft. In what applications are they used. • Understand what the crab angle is for a marine craft: • Understand why heading control is used instead of course control during stationkeeping. • Be able to compute the COG using two waypoints • Know what kind of sensors that give you a direct measurement of SOG and COG under water and on the surface. • Understand the well-celebrated Nomoto models for heading and course control, and it is extension to nonlinear theory (maneuvering characteristics) • Be able to explain what the pivot point is.