Neural Stochastic Differential Equations: Deep Latent Gaussian
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application of Malliavin Calculus and Wiener Chaos to Option Pricing Theory
Application of Malliavin Calculus and Wiener Chaos to Option Pricing Theory by Eric Ben-Hamou The London School of Economics and Political Science Thesis submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy at the University of London UMI Number: U615447 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U615447 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 weseS F 7855 % * A bstract This dissertation provides a contribution to the option pricing literature by means of some recent developments in probability theory, namely the Malliavin Calculus and the Wiener chaos theory. It concentrates on the issue of faster convergence of Monte Carlo and Quasi-Monte Carlo simulations for the Greeks, on the topic of the Asian option as well as on the approximation for convexity adjustment for fixed income derivatives. The first part presents a new method to speed up the convergence of Monte- Carlo and Quasi-Monte Carlo simulations of the Greeks by means of Malliavin weighted schemes. We extend the pioneering works of Fournie et al. -
The Divergence As the Rate of Change in Area Or Volume
The divergence as the rate of change in area or volume Here we give a very brief sketch of the following fact, which should be familiar to you from multivariable calculus: If a region D of the plane moves with velocity given by the vector field V (x; y) = (f(x; y); g(x; y)); then the instantaneous rate of change in the area of D is the double integral of the divergence of V over D: ZZ ZZ rate of change in area = r · V dA = fx + gy dA: D D (An analogous result is true in three dimensions, with volume replacing area.) To see why this should be so, imagine that we have cut D up into a lot of little pieces Pi, each of which is rectangular with width Wi and height Hi, so that the area of Pi is Ai ≡ HiWi. If we follow the vector field for a short time ∆t, each piece Pi should be “roughly rectangular”. Its width would be changed by the the amount of horizontal stretching that is induced by the vector field, which is difference in the horizontal displacements of its two sides. Thisin turn is approximated by the product of three terms: the rate of change in the horizontal @f component of velocity per unit of displacement ( @x ), the horizontal distance across the box (Wi), and the time step ∆t. Thus ! @f ∆W ≈ W ∆t: i @x i See the figure below; the partial derivative measures how quickly f changes as you move horizontally, and Wi is the horizontal distance across along Pi, so the product fxWi measures the difference in the horizontal components of V at the two ends of Wi. -
Multivariable Calculus Workbook Developed By: Jerry Morris, Sonoma State University
Multivariable Calculus Workbook Developed by: Jerry Morris, Sonoma State University A Companion to Multivariable Calculus McCallum, Hughes-Hallett, et. al. c Wiley, 2007 Note to Students: (Please Read) This workbook contains examples and exercises that will be referred to regularly during class. Please purchase or print out the rest of the workbook before our next class and bring it to class with you every day. 1. To Purchase the Workbook. Go to the Sonoma State University campus bookstore, where the workbook is available for purchase. The copying charge will probably be between $10.00 and $20.00. 2. To Print Out the Workbook. Go to the Canvas page for our course and click on the link \Math 261 Workbook", which will open the file containing the workbook as a .pdf file. BE FOREWARNED THAT THERE ARE LOTS OF PICTURES AND MATH FONTS IN THE WORKBOOK, SO SOME PRINTERS MAY NOT ACCURATELY PRINT PORTIONS OF THE WORKBOOK. If you do choose to try to print it, please leave yourself enough time to purchase the workbook before our next class in case your printing attempt is unsuccessful. 2 Sonoma State University Table of Contents Course Introduction and Expectations .............................................................3 Preliminary Review Problems ........................................................................4 Chapter 12 { Functions of Several Variables Section 12.1-12.3 { Functions, Graphs, and Contours . 5 Section 12.4 { Linear Functions (Planes) . 11 Section 12.5 { Functions of Three Variables . 14 Chapter 13 { Vectors Section 13.1 & 13.2 { Vectors . 18 Section 13.3 & 13.4 { Dot and Cross Products . 21 Chapter 14 { Derivatives of Multivariable Functions Section 14.1 & 14.2 { Partial Derivatives . -
Malliavin Calculus in the Canonical Levy Process: White Noise Theory and Financial Applications
Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations January 2015 Malliavin Calculus in the Canonical Levy Process: White Noise Theory and Financial Applications. Rolando Dangnanan Navarro Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Recommended Citation Navarro, Rolando Dangnanan, "Malliavin Calculus in the Canonical Levy Process: White Noise Theory and Financial Applications." (2015). Open Access Dissertations. 1422. https://docs.lib.purdue.edu/open_access_dissertations/1422 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated 1/15/2015 PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Rolando D. Navarro, Jr. Entitled Malliavin Calculus in the Canonical Levy Process: White Noise Theory and Financial Applications For the degree of Doctor of Philosophy Is approved by the final examining committee: Frederi Viens Chair Jonathon Peterson Michael Levine Jose Figueroa-Lopez To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Approved by Major Professor(s): Frederi Viens Approved by: Jun Xie 11/24/2015 Head of the Departmental Graduate Program Date MALLIAVIN CALCULUS IN THE CANONICAL LEVY´ PROCESS: WHITE NOISE THEORY AND FINANCIAL APPLICATIONS A Dissertation Submitted to the Faculty of Purdue University by Rolando D. Navarro, Jr. -
Multivariable and Vector Calculus
Multivariable and Vector Calculus Lecture Notes for MATH 0200 (Spring 2015) Frederick Tsz-Ho Fong Department of Mathematics Brown University Contents 1 Three-Dimensional Space ....................................5 1.1 Rectangular Coordinates in R3 5 1.2 Dot Product7 1.3 Cross Product9 1.4 Lines and Planes 11 1.5 Parametric Curves 13 2 Partial Differentiations ....................................... 19 2.1 Functions of Several Variables 19 2.2 Partial Derivatives 22 2.3 Chain Rule 26 2.4 Directional Derivatives 30 2.5 Tangent Planes 34 2.6 Local Extrema 36 2.7 Lagrange’s Multiplier 41 2.8 Optimizations 46 3 Multiple Integrations ........................................ 49 3.1 Double Integrals in Rectangular Coordinates 49 3.2 Fubini’s Theorem for General Regions 53 3.3 Double Integrals in Polar Coordinates 57 3.4 Triple Integrals in Rectangular Coordinates 62 3.5 Triple Integrals in Cylindrical Coordinates 67 3.6 Triple Integrals in Spherical Coordinates 70 4 Vector Calculus ............................................ 75 4.1 Vector Fields on R2 and R3 75 4.2 Line Integrals of Vector Fields 83 4.3 Conservative Vector Fields 88 4.4 Green’s Theorem 98 4.5 Parametric Surfaces 105 4.6 Stokes’ Theorem 120 4.7 Divergence Theorem 127 5 Topics in Physics and Engineering .......................... 133 5.1 Coulomb’s Law 133 5.2 Introduction to Maxwell’s Equations 137 5.3 Heat Diffusion 141 5.4 Dirac Delta Functions 144 1 — Three-Dimensional Space 1.1 Rectangular Coordinates in R3 Throughout the course, we will use an ordered triple (x, y, z) to represent a point in the three dimensional space. -
Weak Approximations for Arithmetic Means of Geometric Brownian Motions and Applications to Basket Options Romain Bompis
Weak approximations for arithmetic means of geometric Brownian motions and applications to Basket options Romain Bompis To cite this version: Romain Bompis. Weak approximations for arithmetic means of geometric Brownian motions and applications to Basket options. 2017. hal-01502886 HAL Id: hal-01502886 https://hal.archives-ouvertes.fr/hal-01502886 Preprint submitted on 6 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Weak approximations for arithmetic means of geometric Brownian motions and applications to Basket options ∗ Romain Bompis y Abstract. In this work we derive new analytical weak approximations for arithmetic means of geometric Brownian mo- tions using a scalar log-normal Proxy with an averaged volatility. The key features of the approach are to keep the martingale property for the approximations and to provide new integration by parts formulas for geometric Brownian motions. Besides, we also provide tight error bounds using Malliavin calculus, estimates depending on a suitable dispersion measure for the volatilities and on the maturity. As applications we give new price and im- plied volatility approximation formulas for basket call options. The numerical tests reveal the excellent accuracy of our results and comparison with the other known formulas of the literature show a valuable improvement. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
MULTIVARIABLE CALCULUS Sample Midterm Problems October 1, 2009 INSTRUCTOR: Anar Akhmedov
MULTIVARIABLE CALCULUS Sample Midterm Problems October 1, 2009 INSTRUCTOR: Anar Akhmedov 1. Let P (1, 0, 3), Q(0, 2, 4) and R(4, 1, 6) be points. − − − (a) Find the equation of the plane through the points P , Q and R. (b) Find the area of the triangle with vertices P , Q and R. Solution: The vector P~ Q P~ R = < 1, 2, 1 > < 3, 1, 9 > = < 17, 6, 5 > is the normal vector of this plane,× so equation− of− the− plane× is 17(x 1)+6(y −0)+5(z + 3) = 0, which simplifies to 17x 6y 5z = 32. − − − − − Area = 1 P~ Q P~ R = 1 < 1, 2, 1 > < 3, 1, 9 > = √350 2 | × | 2 | − − − × | 2 2. Let f(x, y)=(x y)3 +2xy + x2 y. Find the linear approximation L(x, y) near the point (1, 2). − − 2 2 2 2 Solution: fx = 3x 6xy +3y +2y +2x and fy = 3x +6xy 3y +2x 1, so − − − − fx(1, 2) = 9 and fy(1, 2) = 2. Then the linear approximation of f at (1, 2) is given by − L(x, y)= f(1, 2)+ fx(1, 2)(x 1) + fy(1, 2)(y 2)=2+9(x 1)+( 2)(y 2). − − − − − 3. Find the distance between the parallel planes x +2y z = 1 and 3x +6y 3z = 3. − − − Use the following formula to find the distance between the given parallel planes ax0+by0+cz0+d D = | 2 2 2 | . Use a point from the second plane (for example (1, 0, 0)) as (x ,y , z ) √a +b +c 0 0 0 and the coefficents from the first plane a = 1, b = 2, c = 1, and d = 1. -
Stochastic Differential Equations and Hypoelliptic
. STOCHASTIC DIFFERENTIAL EQUATIONS AND HYPOELLIPTIC OPERATORS Denis R. Bell Department of Mathematics University of North Florida Jacksonville, FL 32224 U. S. A. In Real and Stochastic Analysis, 9-42, Trends Math. ed. M. M. Rao, Birkhauser, Boston. MA, 2004. 1 1. Introduction The first half of the twentieth century saw some remarkable developments in analytic probability theory. Wiener constructed a rigorous mathematical model of Brownian motion. Kolmogorov discovered that the transition probabilities of a diffusion process define a fundamental solution to the associated heat equation. Itˆo developed a stochas- tic calculus which made it possible to represent a diffusion with a given (infinitesimal) generator as the solution of a stochastic differential equation. These developments cre- ated a link between the fields of partial differential equations and stochastic analysis whereby results in the former area could be used to prove results in the latter. d More specifically, let X0,...,Xn denote a collection of smooth vector fields on R , regarded also as first-order differential operators, and define the second-order differen- tial operator n 1 L ≡ X2 + X . (1.1) 2 i 0 i=1 Consider also the Stratonovich stochastic differential equation (sde) n dξt = Xi(ξt) ◦ dwi + X0(ξt)dt (1.2) i=1 where w =(w1,...,wn)isann−dimensional standard Wiener process. Then the solution ξ to (1.2) is a time-homogeneous Markov process with generator L, whose transition probabilities p(t, x, dy) satisfy the following PDE (known as the Kolmogorov forward equation) in the weak sense ∂p = L∗p. ∂t y A differential operator G is said to be hypoelliptic if, whenever Gu is smooth for a distribution u defined on some open subset of the domain of G, then u is smooth. -
Math 56A: Introduction to Stochastic Processes and Models
Math 56a: Introduction to Stochastic Processes and Models Kiyoshi Igusa, Mathematics August 31, 2006 A stochastic process is a random process which evolves with time. The basic model is the Markov chain. This is a set of “states” together with transition probabilities from one state to another. For example, in simple epidemic models there are only two states: S = “susceptible” and I = “infected.” The probability of going from S to I increases with the size of I. In the simplest model The S → I probability is proportional to I, the I → S probability is constant and time is discrete (for example, events happen only once per day). In the corresponding deterministic model we would have a first order recursion. In a continuous time Markov chain, transition events can occur at any time with a certain prob- ability density. The corresponding deterministic model is a first order differential equation. This includes the “general stochastic epidemic.” The number of states in a Markov chain is either finite or countably infinite. When the collection of states becomes a continuum, e.g., the price of a stock option, we no longer have a “Markov chain.” We have a more general stochastic process. Under very general conditions we obtain a Wiener process, also known as Brownian motion. The mathematics of hedging implies that stock options should be priced as if they are exactly given by this process. Ito’s formula explains how to calculate (or try to calculate) stochastic integrals which give the long term expected values for a Wiener process. This course will be a theoretical mathematics course. -
An Intuitive Introduction to Fractional and Rough Volatilities
mathematics Review An Intuitive Introduction to Fractional and Rough Volatilities Elisa Alòs 1,* and Jorge A. León 2 1 Department d’Economia i Empresa, Universitat Pompeu Fabra, and Barcelona GSE c/Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain 2 Departamento de Control Automático, CINVESTAV-IPN, Apartado Postal 14-740, 07000 México City, Mexico; [email protected] * Correspondence: [email protected] Abstract: Here, we review some results of fractional volatility models, where the volatility is driven by fractional Brownian motion (fBm). In these models, the future average volatility is not a process adapted to the underlying filtration, and fBm is not a semimartingale in general. So, we cannot use the classical Itô’s calculus to explain how the memory properties of fBm allow us to describe some empirical findings of the implied volatility surface through Hull and White type formulas. Thus, Malliavin calculus provides a natural approach to deal with the implied volatility without assuming any particular structure of the volatility. The aim of this paper is to provides the basic tools of Malliavin calculus for the study of fractional volatility models. That is, we explain how the long and short memory of fBm improves the description of the implied volatility. In particular, we consider in detail a model that combines the long and short memory properties of fBm as an example of the approach introduced in this paper. The theoretical results are tested with numerical experiments. Keywords: derivative operator in the Malliavin calculus sense; fractional Brownian motion; future average volatility; Hull and White formula; Itô’s formula; Skorohod integral; stochastic volatility models; implied volatility; skews and smiles; rough volatility Citation: Alòs, E.; León, J.A. -
Stokes' Theorem
V13.3 Stokes’ Theorem 3. Proof of Stokes’ Theorem. We will prove Stokes’ theorem for a vector field of the form P (x, y, z) k . That is, we will show, with the usual notations, (3) P (x, y, z) dz = curl (P k ) · n dS . � C � �S We assume S is given as the graph of z = f(x, y) over a region R of the xy-plane; we let C be the boundary of S, and C ′ the boundary of R. We take n on S to be pointing generally upwards, so that |n · k | = n · k . To prove (3), we turn the left side into a line integral around C ′, and the right side into a double integral over R, both in the xy-plane. Then we show that these two integrals are equal by Green’s theorem. To calculate the line integrals around C and C ′, we parametrize these curves. Let ′ C : x = x(t), y = y(t), t0 ≤ t ≤ t1 be a parametrization of the curve C ′ in the xy-plane; then C : x = x(t), y = y(t), z = f(x(t), y(t)), t0 ≤ t ≤ t1 gives a corresponding parametrization of the space curve C lying over it, since C lies on the surface z = f(x, y). Attacking the line integral first, we claim that (4) P (x, y, z) dz = P (x, y, f(x, y))(fxdx + fydy) . � C � C′ This looks reasonable purely formally, since we get the right side by substituting into the left side the expressions for z and dz in terms of x and y: z = f(x, y), dz = fxdx + fydy.