Lahontan Cutthroat Trout in the Upper Truckee River

Total Page:16

File Type:pdf, Size:1020Kb

Lahontan Cutthroat Trout in the Upper Truckee River Lahontan Cutthroat Trout in the Upper Truckee River: Restoration of a Threatened Species in a Fluvial Headwater Environment Project Area N Expansion Area .2008 -2011: beginning of manual removal of brook trout in additional 10 miles stream .Future - 2023: continue implementation in streams and begin removal of brook trout in 85 acres of lake Meiss Meadows .1988-1990: rotenone to remove brook trout .early 1990s: LCT re-introduced & brook trout found .mid 1990s: manual removal of brook trout in upper 5 miles stream & 8 acres lake .2007-2009: no brook trout found, resting treatment .one of the only high meadow LCT populations in Sierra Nevada Project Area Expansion Area Meiss Meadows Manual Removal Methods • Late August thru October • Delineated reaches by natural barriers (low water barriers, falls, and beaver dams) • 3-pass depletion, on varying reach lenght • Species identified and measured to size class • Brook and Rainbow trout sacrificed • Speckled dace returned to upstream reach • LCT returned upstream of Barrier T1BA4 in RL trib and 36B in UTR; sacrificed below due to hybridization threats 3 Pass Depletion Depletion B37-B36A (307 m) 30 LCT 20 BKT SPD 10 # of fish 0 1 2 3 Pass Depletion B34-B33 (254 m) 40 LCT 30 BKT 20 RBT # of fish 10 0 1 2 3 Pass Meiss Meadows LCT in Meiss Meadows Lahontan Cutthroat1996-2009 Trout Catch Upper Truckee River 1996 - 2009 2000 1500 Adult 1000 Juveniles 500 NUMBER OF NUMBER OBSERVED FISH 0 1997 1999 2001 2003 2005 2007 2009 YEAR Brook Trout Catch in MeissBrook Meadows Trout Upper Truckee River1996 Electrofishing-2009 Catch 2009 - 1996 300 250 200 150 100 Frequency 50 0 1.5 2.5 3.5 4.5 5.5 6.5 7.5 2000 1997 8.5 2006 2003 9.5 2009 10.5 11.5 Total Length (Inches) Expansion Area Accomplishment Summary • 2008 • 0.8 miles treated • 3 passes completed • 230 brook trout removed • 213 speckled dace sampled • 194 LCT sampled • 2009 • 1.1 miles treated • 2-3 passes completed • 100 brook trout removed • 353 speckled dace sampled • 369 LCT sampled • 2010 • 5.8 miles treated Round Lake • 1-3 pass completed • 9,252 brook trout removed • 82 rainbow trout removed • 211 speckled dace sampled • 509 LCT sampled 2011 • 3.6 miles treated • 1-3 passes completed • 729 brook trout removed • 27 rainbow trout removed • 337 speckled dace sampled • 820 LCT sampled – 734 returned upstream of T1BA4 and 36B – 86 removed below T1BA4 and 36B Hybrids sampled in 2010 Round Lake (thanks USFWS & M. Peacock!) Upper Truckee River 140 N 120 100 80 # of fish 60 40 20 Species 0 0-5cm 5-10cm 10-15cm 15-20cm 20-25cm 25-30cm 30+cm Rainbow trout LCT 22 116 84 85 37 3 0 LCT BKT 39 68 96 83 18 2 0 Speckled dace SPD 123 5 1 0 0 0 0 RBT 0 7 3 6 0 1 0 Brook trout Round Lake tributary •LCT had last been planted in Round Lake in 2008 •CDFG surveyed Round Lake in summer 2010, and found only LCT and dace 200 N 180 160 140 120 # of fish 100 80 60 40 20 0 10- 15- 20- 25- Species 0-5cm 5-10cm 30+cm Round Lake 15cm 20cm 25cm 30cm Rainbow trout LCT 52 196 153 54 0 0 12 LCT BKT 29 86 162 122 24 0 0 SPD 162 46 0 0 0 0 0 Speckled dace RBT 0 9 1 0 0 0 0 Brook trout 2011: TOTAL FISH = 1,193 2011 UTR mainstem 2011 Round Lake tributary LCT BKT SPD LCT RBT BKT SPD RBT 2010 Round Lake tributary brook trout Lahontan cutthroat trout rainbow trout speckled dace Progress Reach B41-B41A = the most upstream reach in the Expansion Area Brook Trout 10 B41-B41A 9 2008 8 7 2009 6 5 2010 4 2011 3 2 1 0 BKT LCT B41-B41A 35 2008 30 25 2009 20 2010 15 2011 10 5 0 UTR Fish Assessment • CTC, CalTrout, CDFG, UC Davis, City SLT • Late July and August • Survey mouth to headwaters of perennial streams (where possible) • 1 pass electro-shocking • 100 meter reaches where possible • Record species and size class UTR Fish Assessment Species Total bluegill 44 brook trout 6 bluegill brown bullhead 9 brown bullhead brown trout 1954 brown trout Lahontan redside shiner Lahontan cutthroat trout 2 mountain sucker Lahontan redside shiner 108 Paiute sculpin mountain sucker 119 rainbow trout speckled dace mountain whitefish 12 Tahoe sucker Paiute sculpin 1613 rainbow trout 971 speckled dace 7528 Tahoe sucker 118 unknown sucker 37 UTR Fish Assessment .
Recommended publications
  • The Native Trouts of the Genus Salmo of Western North America
    CItiEt'SW XHPYTD: RSOTLAITYWUAS 4 Monograph of ha, TEMPI, AZ The Native Trouts of the Genus Salmo Of Western North America Robert J. Behnke "9! August 1979 z 141, ' 4,W \ " • ,1■\t 1,es. • . • • This_report was funded by USDA, Forest Service Fish and Wildlife Service , Bureau of Land Management FORE WARD This monograph was prepared by Dr. Robert J. Behnke under contract funded by the U.S. Fish and Wildlife Service, the Bureau of Land Management, and the U.S. Forest Service. Region 2 of the Forest Service was assigned the lead in coordinating this effort for the Forest Service. Each agency assumed the responsibility for reproducing and distributing the monograph according to their needs. Appreciation is extended to the Bureau of Land Management, Denver Service Center, for assistance in publication. Mr. Richard Moore, Region 2, served as Forest Service Coordinator. Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. Rocky Mountain Region September, 1980 Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. it TABLE OF CONTENTS Page Preface ..................................................................................................................................................................... Introduction ..................................................................................................................................................................
    [Show full text]
  • Truckee River, Nevada
    TMDL Case Study: Truckee River, Nevada EPA TMDL Case Study, EPA 841-F-94-006, August 1994, Number 13 TMDLs protecting instream beneficial uses and the Key Feature: quality of a downstream lake Project Name: Truckee River EPA Region IX/East-central California, Western Location: Nevada Scope/Size: River, watershed 2,300 mi2 Ecoregion 5 (high mountains) and Ecoregion 13 Land Type: (plains with low to high mountains) (USEPA, 1989) Type of Agriculture, urban Activity: Pollutant(s): Nitrogen, phosphorus, total dissolved solids TMDL PS, NPS Development: State, Truckee Meadows Wastewater Reclamation Data Sources: Facility, Desert Research Institute, cities of Reno and Sparks Data DSSAM III Mechanisms: Monitoring Yes Plan: Riparian corridor protection, irrigation modification, Control stormwater permitting, public education, agricultural Measures: BMPs, wetlands treatment systems Summary: The Truckee River flows from Lake Tahoe, California, into Nevada's Northern Basin, terminating at Pyramid Lake (Figure 1). In recent years, heavy growths of aquatic weeds and benthic algae, caused by high nutrient loads and low flows, have plagued the river. Plant respiration and decaying biomass have decreased dissolved oxygen (DO) levels in the river. The low levels of DO have, in turn, impaired the river's ability to support populations of Lahontan cutthroat trout, a threatened species, and cui-ui (kwee-wee), a national endangered species. In response to these problems, the Nevada Division of Environmental Protection (NDEP) developed the Truckee River Strategy, a plan to coordinate the activities of agencies involved in restoring the quality of the Truckee River and Pyramid Lake. The strategy includes timetables for numerous nonpoint source control projects, such as stormwater permitting, wetlands treatment systems, pasture improvements, riparian restoration, and landowner education.
    [Show full text]
  • History of Lahontan Cutthroat Trout in Spring Creek, Utah
    Spring Creek Population History of the Pyramid Lake Rediscovery (Again) Unfortunately, given its small size, the trout Lahontan Cutthroat population at Spring Creek has a very low In October 2009, a team from Weber State probability of survival. It lacks the numbers The Lahontan cutthroat trout, Oncorhynchus University in conjunction with personnel and space necessary to maintain sufficient clarkii henshawi, is native to the Lahontan Basin from the DWR identified several specimens genetic diversity. It is believed that for a on the border between California and Nevada. believed to be of a pure or hybrid strain of mountain stream cutthroat population to For thousands of years it thrived and played the Pyramid Lake Lahontan cutthroat trout survive it must have a minimum of 3.3 km an important economic and cultural role in Spring Creek in Uintah, Utah. Using of habitat and an abundance in the area of among the Native American tribes of the electrofishers and dip nets, a 600 m stretch 0.3 fish per meter.3 Based on our region. The largest strain of this fish of the stream was sampled. A maximum observations, the Spring Creek population originated in Pyramid Lake, in western of 16 different individuals was collected in A Unique Environment has a maximum abundance of 0.1 fish/m Nevada and has reached recorded weights of two sampling trips. The fish appeared to Spring Creek’s unique vegetation and only 200 m of habitat. However, against up to 41 pounds, making it the largest “The Fish that Won’t Die” be restricted to a 200 m stretch.
    [Show full text]
  • Mountain Whitefish Chances for Survival: Better 4 Prosopium Williamsoni
    Mountain Whitefish chances for survival: better 4 Prosopium williamsoni ountain whitefish are silvery in color and coarse-scaled with a large and the mackenzie and hudson bay drainages in the arctic. to sustain whatever harvest exists today. mountain whitefish in California and Nevada, they are present in the truckee, should be managed as a native salmonid that is still persisting 1 2 3 4 5 WHITEFISH adipose fin, a small mouth on the underside of the head, a short Carson, and Walker river drainages on the east side of in some numbers. they also are a good indicator of the dorsal fin, and a slender, cylindrical body. they are found the sierra Nevada, but are absent from susan river and “health” of the Carson, Walker, and truckee rivers, as well as eagle lake. lake tahoe and other lakes where they still exist. Whitefish m Mountain Whitefish Distribution throughout western North america. While mountain whitefish are regarded aBundanCe: mountain whitefish are still common in populations in sierra Nevada rivers and tributaries have California, but they are now divided into isolated popula- been fragmented by dams and reservoirs, and are generally as a single species throughout their wide range, a thorough genetic analysis tions. they were once harvested in large numbers by Native scarce in reservoirs. a severe decline in the abundance of americans and commercially harvested in lake tahoe. mountain whitefish in sagehen and prosser Creeks followed would probably reveal distinct population segments. the lahontan population there are still mountain whitefish in lake tahoe, but they the construction of dams on each creek.
    [Show full text]
  • Cui-Ui Recovery Plan
    1 ESA 81 RECOVERY PLAN DRAWING BY: JOSETTECUILEY I CUI-UI RECOVERY PLAN Prepared by the Cui-ui Recovery Team December 1977 TEAM MEMBERS Earl Pyle, Team Leader, U.S. Fish and Wildlife Service, Reno, Nevada John Frazier, Pyramid Lake Paiute Indian Tribe, Nixon, Nevada Donald King, U.S. Fish and Wildlife Service, Reno, Nevada Kay Johnson, Nevada Department of Fish and Game, Reno, Nevada Dale Lockard, Nevada Department of Fish and Game, Reno, Nevada Thomas J.. Trelease, Team Advisor, Verdi , Nevada Published by U.S. Fish and Wildlife Service Endangered Species Program Region 1 Portland, Oregon Approved Director, U.S. Fish & Wildlife Service Title Date TABLE OF CONTENTS Page PART I. INTRODUCTION .................. 1 Former Status ................. 2 Reasons for Decline of the Fishery ....... 3 Figure 1 .................... 4 PART II . THE RECOVERY PLAN ............... Objectives and Rationale ............ Accomplishments ................ Specific Problem Areas ............. Recovery Plan Out1 ine ............. Action Diagram ................. Action Narrative ................ PART I11 . SCHEDULE OF PRIORITIES. RESPONSIBILITIES & COSTS APPENDIX A . REFERENCES CITED ................ APPENDIX B . PROPOSED ESSENTIAL HABITAT ........... Maps . Proposed Essential Habitat ....... APPENDIX C . LETTERS OF COMMENT ............... CUI-UI RECOVERY PLAN PART I INTRODUCTION The history of the cui-ui 1 (Chasmistes cujus) and the Pyramid Lake Paiute Indian Tribe is so intimately entwined that the unwritten, ancestral name for the tribe is Kuyuidokado (Wheeler, 1969) or Ku-yu-wi-kut-teh (Hermann, 1973) meaning "sucker eaters". Spawning runs of cui-ui and cutthroat trout (mclarki provided a readily available and dependable source of food. There can be no doubt the shores of Pyramid Lake were highly val- ued as a haven against the uncertainty and hardship of obtaining food in the arid and often inhospitable lands of the Great Basin.
    [Show full text]
  • Truckee River 2007
    NEVADA DEPARTMENT OF WILDLIFE STATEWIDE FISHERIES MANAGEMENT FEDERAL AID JOB PROGRESS REPORT F-20-54 2018 TRUCKEE RIVER WESTERN REGION NEVADA DEPARTMENT OF WILDLIFE, FISHERIES DIVISION ANNUAL PROGRESS REPORT Table of Contents SUMMARY ................................................................................................................... 1 BACKGROUND .............................................................................................................. 1 OBJECTIVES .................................................................................................................. 3 PROCEDURES ............................................................................................................... 3 FINDINGS ................................................................................................................... 5 MANAGEMENT REVIEW ............................................................................................. 17 RECOMMENDATIONS ................................................................................................. 18 NEVADA DEPARTMENT OF WILDLIFE, FISHERIES DIVISION ANNUAL PROGRESS REPORT State: Nevada Project Title: Statewide Fisheries Program Job Title: Truckee River Period Covered: January 1, 2018 through December 31, 2018 SUMMARY On April 1, 2018, the designated end of the snow-measuring season, the snowpack in the Truckee River Basin stood at 75% of the median for that date and the amount of precipitation for the year stood at 90% of average. While the 2017/18 winter was slightly
    [Show full text]
  • Onseriation of Bull Trout
    United States - De artment of Iariculture Demographic and Forest Service Intermountain Research Statlon Habit4 Reauirements General Technical Report INT-302 for ~onseriationof September 1993 Bull Trout Bruce E. Rieman John D. Mclntyre THE AUTHORS CONTENTS BRUCE E. RlEMAN is a research fishery biologist with Page the lntermountain Research Station, Forestry Sciences Introduction ................................................................... 1 Laboratory in Boise, ID. He received a master's degree Ecology ......................................................................... 1 in fisheries management and a Ph.D. degree in for- Biology and Life History ............................................ 2 estry, wildlife, and range sciences from the University Population Structure.................................................. 3 of Idaho. He has worked in fisheries management and Biotic Interactions ...................................................... 3 research for 17 years with the ldaho Department of Habitat Relationships ................................................ 4 Fish and Game and the Oregon Department of Fish Summary ...................................................................7 and Wildlife. He joined the Forest Service in 1992. His Implications of Habitat Disturbance .............................. 7 current work focuses on the biology, dynamics, and' Extinction Risks ......................................................... 9 conservation of salmonid populations in the Intermoun- Viability ...................................................................
    [Show full text]
  • Life History of the Cui-Ui, Chasmistes Cujus Cope, in Pyramid Lake, Nevada: a Review
    Great Basin Naturalist Volume 45 Number 4 Article 1 10-31-1985 Life history of the cui-ui, Chasmistes cujus Cope, in Pyramid Lake, Nevada: a review William F. Sigler W.F. Sigler and Associates Inc., Logan, Utah Steven Vigg University of Nevada, Reno Mimi Bres George Washington University, Washington, D.C. Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Sigler, William F.; Vigg, Steven; and Bres, Mimi (1985) "Life history of the cui-ui, Chasmistes cujus Cope, in Pyramid Lake, Nevada: a review," Great Basin Naturalist: Vol. 45 : No. 4 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol45/iss4/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. The Great Basin Naturalist Published AT Provo, Utah, by Bricham Young University ISSN 0017-3614 Volume 45 31 October 1985 No. 4 LIFE HISTORY OF THE CUI-UI, CHASMISTES CUJUS COPE, IN PYRAMID LAKE, NEVADA: A REVIEW William F". Sigler', Steven Vigg", and Minii Bres' Abstract—The cui-ui, Chasmistcs ciijus Cope, a member of the .sucker family and endemic to Pyramid Lake, Nevada, is listed as endangered by the U.S. Fish and Wildlife Service. Cui-ui was once a major source of sustenance for native Americans, who have inhabited the Lahontan region for at least 11,000 years. The Northern Paiutes developed sophisticated fishing technology to harvest this resource.
    [Show full text]
  • Stream Habitat Needs for Brook Trout and Brown Trout in the Driftless Area
    Stream Habitat Needs for Brook Trout and Brown Trout in the Driftless Area Douglas J. Dietermana,1 and Matthew G. Mitrob aMinnesota Department of Natural Resources, Lake City, Minnesota, USA; bWisconsin Department of Natural Resources, Madison, Wisconsin, USA This manuscript was compiled on February 5, 2019 1. Several conceptual frameworks have been proposed to organize in Driftless Area streams. Our specific objectives were and describe fish habitat needs. to: (1) summarize information on the basic biology 2. The five-component framework recognizes that stream trout pop- of Brook Trout and Brown Trout in Driftless Area ulations are regulated by hydrology, water quality, physical habi- streams, (2) briefly review conceptual frameworks or- tat/geomorphology, connectivity, and biotic interactions and man- ganizing fish habitat needs, (3) trace the historical agement of only one component will be ineffective if a different com- evolution of studies designed to identify Brook Trout ponent limits the population. and Brown Trout habitat needs in the context of 3. The thermal niche of both Brook Trout Salvelinus fontinalis and these conceptual frameworks, (4) review Brook Trout- Brown Trout Salmo trutta has been well described. Brown Trout interactions and (5) discuss lingering un- 4. Selected physical habitat characteristics such as pool depths and certainties in habitat management for these species. adult cover, have a long history of being manipulated in the Driftless Area leading to increased abundance of adult trout. Brook Trout and Brown Trout Biology 5. Most blue-ribbon trout streams in the Driftless Area probably pro- vide sufficient habitat for year-round needs (e.g., spawning, feeding, Brook Trout.
    [Show full text]
  • Coyote Lake Lahontan Cutthroat Trout
    Oregon Native Fish Status Report – Volume II Coyote Lake Lahontan Cutthroat Trout Existing Populations Lahontan cutthroat trout populations in the Coyote Lakes basin are remnant of a larger population inhabiting pluvial Lake Lahontan during the Pleistocene era. Hydrologic access routes of founding cutthroat trout from Lake Lahontan basin into the Coyote Lakes basin have yet to be described (Coffin and Cowan 1995). The Coyote Lake Lahontan Cutthroat Trout SMU is comprised of five populations (Table 1). All populations express a resident life history strategy; however large individuals in the Willow and Whitehorse Complex populations suggest a migratory component may exist. Table 1. Populations, existence status, and life history of the Coyote Lake Lahontan Cutthroat Trout SMU. Exist Population Description Life History Yes Willow Willow Creek and tributaries. Resident / Migratory Yes Whitehorse Complex Whitehorse and Little Whitehorse Creeks, and Resident / Migratory tributaries. Yes Doolittle Doolittle Creek above barrier. Resident Yes Cottonwood Cottonwood Creek above barrier. Resident Yes Antelope Antelope Creek. Resident Lahontan cutthroat trout from Willow and Whitehorse creeks were transplanted into Cottonwood Creek in 1971 and 1980, and into Antelope Creek in 1972 (Hanson et al. 1993). Whether Lahontan cutthroat trout were present in these creeks prior to stocking activities is disputed (Behnke 1992, Hanson et al. 1993, Coffin and Cowan 1995, K. Jones, ODFW Research Biologist, Corvallis, OR personal communication). For the purpose of this review these populations are considered native. Lahontan cutthroat trout were also transplanted into Fifteenmile Creek above a natural barrier (Hanson et al. 1993), but they did not establish a self- sustaining population (ODFW Aquatic Inventory Project, unpublished data).
    [Show full text]
  • Are Brown Trout Replacing Or Displacing Bull Trout Populations In
    Pagination not final (cite DOI) / Pagination provisoire (citer le DOI) 1 ARTICLE Are brown trout replacing or displacing bull trout populations in a changing climate? Robert Al-Chokhachy, David Schmetterling, Chris Clancy, Pat Saffel, Ryan Kovach, Leslie Nyce, Brad Liermann, Wade Fredenberg, and Ron Pierce Abstract: Understanding how climate change may facilitate species turnover is an important step in identifying potential conservation strategies. We used data from 33 sites in western Montana to quantify climate associations with native bull trout (Salvelinus confluentus) and non-native brown trout (Salmo trutta) abundance and population growth rates (␭). We estimated ␭ using exponential growth state-space models and delineated study sites based on bull trout use for either spawning and rearing (SR) or foraging, migrating, and overwintering (FMO) habitat. Bull trout abundance was negatively associated with mean August stream temperatures within SR habitat (r = −0.75). Brown trout abundance was generally highest at temperatures between 12 and 14 °C. We found bull trout ␭ were generally stable at sites with mean August temperature below 10 °C but significantly decreasing, rare, or extirpated at 58% of the sites with temperatures exceeding 10 °C. Brown trout ␭ were highest in SR and sites with temperatures exceeding 12 °C. Declining bull trout ␭ at sites where brown trout were absent suggest brown trout are likely replacing bull trout in a warming climate. Résumé : Il importe de comprendre comment le climat pourrait faciliter le renouvellement des espèces pour cerner des stratégies de conservation potentielles. Nous avons utilisé des données de 33 sites de l’ouest du Montana pour quantifier les associations climatiques avec l’abondance et les taux de croissance de populations (␭) d’ombles a` tête plate (Salvelinus confluentus) indigènes et de truites brunes (Salmo trutta) non indigènes.
    [Show full text]
  • Growth of Brook Trout (Salvelinus Fontinalis) and Brown Trout (Salmo Trutta) in the Pigeon River, Otsego County, Michigan*
    [Reprinted from PAPERS OF THE MICHIGAN ACADEMY OF SCIENCE, ARTS, AND LETTERS, VOL. XXXVIII, 1952. Published 1953] GROWTH OF BROOK TROUT (SALVELINUS FONTINALIS) AND BROWN TROUT (SALMO TRUTTA) IN THE PIGEON RIVER, OTSEGO COUNTY, MICHIGAN* EDWIN L. COOPER INTRODUCTION ITIHE Pigeon River Trout Research Area was established in Ot- sego County, Michigan, in April, 1949, by the Michigan De- partment of Conservation. It includes 4.8 miles of trout stream and seven small lakes. The stream has been divided into four ex- perimental sections, and fishing is allowed only on the basis of daily permits. This makes possible a creel census that assures examination and recording by trained fisheries workers of the total catch. Most of the scale samples upon which the present study is based are from fish taken in the portion of the stream in the research area. The fish were collected by two different methods: by hook and line, and by electric shocking. In all, scale samples were obtained from 4,439 brook trout (Salvelinus fontinalis) and 1,429 brown trout (Salmo trutta) older than one year; the collections were made be- tween April 20, 1949, and November 30, 1951. VALIDITY OF AGE DETERMINATION BY MEANS OF SCALES Evidence in favor of the method of determining the age of brook trout by means of scales was 'presented in an earlier publication (Cooper, 1951). Further support for this method is given here because of the availability of fish of known age and also because the trout in the Pigeon River usually form quite distinct annuli, making the interpretation of age a relatively simple task (Pl.
    [Show full text]