PELLETS – a FAST GROWING ENERGY CARRIER WBA Fact Sheet WBA Sheet Fact
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Magnum Countryside® Owner's Manual
MAGNUM COUNTRYSIDE® BIOMASS CORN/WOOD PELLET STOVE /FIREPLACE INSERT Safety tested and EPA exemption tested by Omni-Test Laboratories, Inc to UL 1482, CAN/ULC-S627, ULC-S628, APFI requirements, Oregon administrative rules 814-23-900 to 814-23-909 and E.P.A. Method 28A. OWNER’S MANUAL Installation – Operation – Maintenance Instructions NOTE: These instructions must be saved PLEASE READ THIS ENTIRE MANUAL BEFORE INSTALLATION AND USE OF THIS BIOMASS CORN/ WOOD PELLET BURNING STOVE. FAILURE TO FOLLOW THESE INSTRUCTIONS MAY RESULT IN PROPERTY DAMAGE, BODILY INJURY OR EVEN DEATH. IMPORTANT: Always contact your local dealer/installer with questions before contacting the factory. When you call have your serial number, purchase date, who installed the unit and a list of questions. This appliance must be installed by a qualified/trained factory approved installer to assure proper operation/warranty. 9 When installing your Countryside Biomass Corn/Pellet stove, particular attention needs to be made in regards to fire protection. If the unit is not properly installed, a house fire may result. For your safety, follow the installation and operation instructions provided, and if a question arises contact local building or fire officials about restrictions and installation requirements in your area. 9 Read the operations and fuel section of this manual before plugging in your unit. 9 Always unplug the unit before attempting any service work. 9 Do not connect the unit to a chimney flue already serving another appliance. 9 When installing the chimney pipe to the unit, it is important to remember that the unit operates on a negative pressure and the chimney on a positive pressure. -
Developing a Wood Pellet/ Densified Biomass Industry in Washington State: Opportunities and Challenges
Developing a Wood Pellet/ Densified Biomass Industry in Washington State: Opportunities and Challenges A Report to the Washington State Legislature December 2012 Page 1 Densified biomass: Part of Washington’s energy solution The Washington State University (WSU) Energy Program was directed by the Washington State Legislature [3ESHB-2127, section 603 (8)] to conduct a study of densified biomass as a renew- able fuel for heating homes, businesses and other facilities in our state. This report to Governor Chris Gregoire and the Legislature presents a summary of the WSU Energy Program’s densified biomass study findings. What is densified biomass? Washington’s pellet mill industry has shrunk by Raw biomass materials, such as forest slash and one-third in recent years, primarily due to the construction waste, are irregular in shape, low facilities’ debt loads. in energy density, greatly affected by moisture, • In 2009, three mills – located in Omak, and can be difficult to transport. Shelton and Tacoma – had a combined capacity of 180,000 tons per year. Another Biomass densification solves these problems by mill in Skagit County was in the permitting compressing sawdust and chipped wood to process, but never opened. create solid biofuel pellets that provide consis- • By 2012, the state had only two operating tent quality, low moisture content, high energy mills – Olympus Pellets in Shelton and density and homogenous size and shape. Manke in Tacoma – with a combined Densification increases the energy density of capacity of 160,000 tons per year. biomass by approximately 10 to 15 percent, so more heat is produced per unit of pellets This report provides insights to reinvigorate burned than if the same amount of raw wood the densified biomass/wood pellet industry in was burned. -
Specific Chimney Emissions and Biofuel Characteristics of Softwood Pellets for Residential Heating in Sweden
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Chalmers Publication Library WOOD COMBUSTION STOVE BURNER SMOKE PHENOLS BENZENE PAH ANALYSIS GC - MS Open access revised manuscript version of Biomass and bioenergy 24 (2003) 51-57 Link to publisher: doi:10.1016/S0961-9534(02)00083-1 Specific chimney emissions and biofuel characteristics of softwood pellets for residential heating in Sweden Maria Olsson, Jennica Kjällstrand and Göran Petersson Related articles on burning of wood pellets emphasize phenolic compounds and volatile hydrocarbons Front page 2010 - Göran Petersson Specific chimney emissions and biofuel characteristics of softwood pellets for residential heating in Sweden Maria Olsson, Jennica Kjallstrand, Goran Petersson* Department of Chemical Environmental Science, Chalmers University of Technology, SE - 412 96 Goteborg, Sweden Abstract Softwood pellets are mainly produced from sawdust and to some extent from wood shavings. The moisture content is typically less than half of that in firewood. The present annual residential use in Sweden for pellet burners in boilers and for pellet stoves amounts to more than 100 000 tonnes and is increasing rapidly. The total annual production capacity at the more than 20 units exceeds one million tonnes, and permits continued rapid replacement of firewood and petroleum oil for residential heating. With the purpose of characterising emissions to air, chimney smoke was sampled, and specific compounds were assessed by gas chromatography and mass spectrometry. Benzene was the predominant aromatic compound in emissions from pellet burners. The smoke from stoves contained methoxyphenols with antioxidant properties and lower proportions of aromatic hydrocarbons. Observed differences in emissions from specific burning appliances are of interest with regard to both health hazards and regulation of emissions. -
The Potential Air Quality Impacts from Biomass Combustion
AIR QUALITY EXPERT GROUP The Potential Air Quality Impacts from Biomass Combustion Prepared for: Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland AIR QUALITY EXPERT GROUP The Potential Air Quality Impacts from Biomass Combustion Prepared for: Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland This is a report from the Air Quality Expert Group to the Department for Environment, Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland, on the potential air quality impacts from biomass combustion. The information contained within this report represents a review of the understanding and evidence available at the time of writing. © Crown copyright 2017 Front cover image credit: left – Jamie Hamel-Smith, middle – Katie Chase, right – Tom Rickhuss on Stocksnap.io. Used under Creative Commons. United Kingdom air quality information received from the automatic monitoring sites and forecasts may be accessed via the following media: Freephone Air Pollution Information 0800 556677 Service Internet http://uk-air.defra.gov.uk PB14465 Terms of reference The Air Quality Expert Group (AQEG) is an expert committee of the Department for Environment, Food and Rural Affairs (Defra) and considers current knowledge on air pollution and provides advice on such things as the levels, sources and characteristics of air pollutants in the UK. AQEG reports to Defra’s Chief Scientific Adviser, Defra Ministers, Scottish Ministers, the Welsh Government and the Department of the Environment in Northern Ireland (the Government and devolved administrations). -
Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’S Biorefineries
Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries Shane Carnohan, WSU Jacob J. Jacobson, INL Andrew Ford, WSU Allyson Beall, WSU Environmental Science Graduate Program, Washington State University Pullman, Washington 99164-4430 U.S.A. Phone: +1(509) 330-6486 Email: [email protected] May 28, 2014 Abstract Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner. 1. INTRODUCTION Organization of the Paper The paper begins by introducing federal biofuel policy targets initiated with the Energy Policy Act (EPAct) of 2005 and adjusted in 2007 with the Energy Independence and Security Act (EISA). -
Biomass Boilers for Space Heating
Energy Efficient Wood Heating Appliances for Home and Business Scott Sanford Sr. Outreach Specialist Rural Energy Program 1 Disclaimer • Products mentioned in this presentation do not reflect an endorsement of that product. • Likewise, a lack of acknowledge does not imply that a product is not recommended. • Photo Credit: Scott Sanford unless noted otherwise 2 Outline • What make an efficient appliance? • Types of wood fuels • Types of Wood Burning Appliances • Heat distribution • Smoke Emissions • Firebox Management • Case Study of two greenhouses 3 Biomass Fuels Credit: Ohio State University • A fuel derived from plant material • Wood (cord, chips, pellets) • Grains (corn, rye, wheat,…) • Cherry pits, sunflower hulls Credit: NREL • Prairie grass (switchgrass, miscanthus) • Crop fodder (corn stalks) • Straw (wheat, oat, barley) • Oils 4 Credit: NREL Credit: University of Illinois Types of Wood Fuels • Cord wood • Green mill residue • Hogged bark & sawdust • High moisture (>20%) • Store outside in piles • Dry mill residue • Low moisture (< 10%) • Sawdust, trimmings, wood from wood products companies • Wood Chips • Whole tree chips, round wood chips, clean chips • Typically high moisture (~50%) • Energy content varies with H20, density and ash 5 Direct Use - Wood • Cord wood / logs • Unit of measure – Cord • 4 ft x 4 ft x 8 ft stack of wood – 128 cu ft • Moisture – 50% as harvested • Air Dried - ~ 20% (1 – 2 years) • Energy content – varies with tree species • Average – 22,300,000 Btu / cord @ 20% moisture • Range – 14,700,000 to 30,700,000 Btu / cord • Different species vary in density (lbs / cord) • Basswood – 2100 lb / cord; Hickory 4160 lb / cord • All wood about 7000 Btu / lb. -
Chapter 19: Pelleting DDGS Diets for Poultry
CHAPTER 19 Pelleting DDGS Diets for Poultry Introduction production rates and pellet durability index (PDI) compared with dry-conditioning (Skoch et al., 1981). After steam is ALTHOUGH DDGS IS AN ECONOMICAL ENERGY AND DIGESTIBLE applied to the mash inside the conditioner, the moist, hot NUTRIENT SOURCE in poultry diets, diet inclusion rates are mash ows into the pelleting chamber where it passes often limited to less than 10 percent of the diet because of through a metal die to form pellets. As the pellets exit the concerns of achieving desired pellet quality and pellet mill die, they enter a cooler to reduce their temperature from 80 throughput. As a result, the ability of feed manufacturers to 90°C down to 8°C above ambient temperature (Zimonja and poultry producers to capture greater economic value et al., 2007), along with reducing moisture from 15 to 17 from using higher dietary inclusion rates is diminished percent down to 10 to 12 percent using a stream of ambient because of the diet inclusion constraints imposed on DDGS air (Robinson, 1976). Fines collected in the cooler are to meet desired pellet quality and production efciencies in returned to the pellet chamber to be subsequently reformed commercial feed mills. into pellets. For some poultry feeding applications, the cool dry pellets pass through a crumbler to form crumbles Pelleting is the most common thermal processing method (broken pellets). used in manufacturing poultry feeds (Abdollahi et al., 2013), and provides the advantage of improved feed conversion resulting from reduced feed wastage and improved Factors Affecting Pellet Durability, Energy digestibility of energy and nutrients which has partially been Consumption and Production Rate attributed to the partial gelatinization of starch (Richert and DeRouchey, 2010; NRC, 2012). -
Confederated Tribes of the Umatilla Indian Reservation P.O
Revised CTUIR RENEWABLE ENERGY FEASIBILITY STUDY FINAL REPORT June 20, 2005 Rev.October 31, 2005 United States Government Department of Energy National Renewable Energy Laboratory DE-FC36-02GO-12106 Compiled under the direction of: Stuart G. Harris, Director Department of Science & Engineering Confederated Tribes of the Umatilla Indian Reservation P.O. Box 638 Pendleton, Oregon 97801 2 Table of Contents Page No. I. Acknowledgement 5 II. Summary 6 III. Introduction 12 III-1. CTUIR Energy Uses and Needs 14 III-1-1. Residential Population – UIR 14 III-1-2. Residential Energy Use – UIR 14 III-1-3. Commercial and Industrial Energy Use – UIR 15 III-1-4. Comparison of Energy Cost on UIR with National Average 16 III-1-5. Petroleum and Transportation Energy Usage 16 III-1-6. Electrical Power Needs – UIR 17 III-1-7. State of Oregon Energy Consumption Statistics 17 III-1-8 National Energy Outlook 17 III-2. Energy Infrastructure on Umatilla Indian Reservation 19 III-2-1. Electrical 20 III-2-2. Natural Gas 21 III-2-3. Biomass Fuels 21 III-2-4. Transportation Fuels 21 III-2-5. Other Energy Sources 21 III-3. Renewable Energy Economics 21 III-3-1. Financial Figures of Merit 21 III-3-2. Financial Structures 22 III-3-3. Calculating Levelized Cost of Energy (COE) 23 III-3-4. Financial Model and Results 25 IV. Renewable Energy Resources, Technologies and Economics – In-and-Near the UIR 27 IV-1 Biomass Resources 27 IV-1-1. Resource Availability 27 IV-1-1-1. Forest Residues 27 IV-1-1-2. -
History of Pelleting
History of pelleting BY DOM CASTALDO REVIEWED AND EDITED BY CHARLES STARK, CASSANDRA JONES, AND ADAM FAHRENHOLZ extrusion process greatly enhanced feed In the past 50 years, considerable changes have digestibility and improved handling, extruders were occurred in the structure of animal agriculture. No expensive and complicated to operate with early longer are agricultural animals produced to any 20th century technology. scale in “back yard” type production settings. Rather, animal production has evolved into a highly According to Pitsch, one of the first successful integrated volume-based business. This is pellet mills was a molding machine in which two particularly true for the swine and poultry industries counter-rotating rollers with pockets, formed and where essentially every phase of production is pressed mash into wafers (see Figure 1-1). The owned and/or controlled by a single entity. wafers had a much lower density than modern feed pellets, which provided no advantage to feed With the wholesale consolidation of the meat, milk, transportation. Also, the mash was not conditioned and egg production industries, feed manufacturing with heat and moisture; therefore, the “wafering” has become more industrialized. Though today, process did not greatly enhance nutrient utilization. there are fewer feed mills in operation, feed production has increased and continues to grow. Figure 1-1. Diagram of a mold type pellet mill. This general shift from on-farm or small- cooperative type feed processing operations to larger industrial-type feed manufacturing facilities has made processing technologies, such as pelleting, more economically feasible. As such, the pelleting process has become a standard feed processing technique. -
Factors Affecting Pellet Quality
Factors affecting pellet quality BY KEITH C. BEHNKE, PHD REVIEWED AND EDITED BY ADAM FAHRENHOLZ, CHARLES STARK, AND CASSANDRA JONES assembly, and reviewing those figures will help the elleting has been, and continues to be, a popular P reader further understand the following discussions. processing technique in feed manufacturing. In basic terms, pelleting converts a finely-ground Depending upon the physical characteristics of blend of ingredients into dense, free-flowing the feed, a lesser or greater proportion of the work agglomerates (pellets). There are many reasons done by the pellet mill is used for compression. used to justify the process, but it may be appropriate For example, if the feed mix contains a high level to list just a few: of fibrous ingredients such as bagasse, bran or • Improved animal performance; ground alfalfa, the mill will expend a large • Decreased feed wastage; amount of energy simply compressing the mash to • Reduced selective feeding; the density of the subsequent pellet. Conversely, • Improved bulk density; for a relatively dense feed such as high grain and • Better material handling characteristics; soy meal, the mill will expend a lesser amount of • Destruction of deleterious organisms; and energy for compression and a greater amount for • Customer expectations. throughput. Pelleting operations are not without cost. It is a The “extrusion area” is the point at which the mash fairly expensive process in terms of both capital and has reached pellet density and begins to flow variable costs, but the expense is usually justified in through the die holes. There are many physical improved plant profit as well as animal forces that must be dealt with in the pelleting performance. -
CHAPTER 5 Biomass Pellet-Fired Boilers
CHAPTER 5 Biomass Pellet-Fired Boilers Jose Antonio Perez-Jimenez Department of Biomass, CTAER Andalucia Foundation, Scientific and Technology Park, Jaen, Spain. Abstract Wood fire has been used as a heat source for thousands of years. Nonetheless, the methods for burning wood have progressed to very automatic and controlled com- bustion systems. The pressure to develop systems that minimize air pollution and maximize heating efficiency has led to imaginative and innovative new designs. Provided that firewood is grown in a sustainable manner and used in efficient com- bustion systems with insignificant hydrocarbon emissions, firewood is a renewable energy source. Already today, it is a significant heating source in most of the world. Due to its potential of being CO2 neutral, an increased use of small-scale combus- tion can have a significant impact on reducing greenhouse gas emissions. The fuels in use are mainly wood logs, but the use of densified biomass in the form of pellets or briquettes is playing an important role, especially in the residential and public sectors. In this regard, it has to be noted that the use of traditional batch-fired sys- tems burning firewood has been augmented because of the introduction of systems designed to burn pelletized wood wastes, agricultural grains or woodchips. Due to the fact that intelligent design and sophisticated technology have resulted in several types of biomass heating systems, the aim of this chapter is to provide the reader with an overview of the domestic pellet boilers. Keywords: Biomass, pellet, boiler, efficiency, stoves, fireplace. 1 Domestic Pellet-Burning Appliances In spite of its long history, biomass is the most difficult of the commonly used heating fuels to burn clean and efficiently, especially at a small scale. -
Biomass Energy in Pennsylvania: Implications for Air Quality, Carbon Emissions, and Forests
RESEARCH REPORT Biomass Energy in Pennsylvania: Implications for Air Quality, Carbon Emissions, and Forests Prepared for: Prepared by: December 2012 The Heinz Partnership for Endowments Public Integrity Pittsburgh, PA by Mary S. Booth, PhD The Biomass Energy in Pennsylvania study was conducted by Mary S. Booth, PhD, of the Partnership for TABLE OF CONTENTS Policy Integrity. It was funded by the Heinz 4 Executive Summary Endowments. 4 Central findings 8 Recommendations 10 Chapter 1: Biomass Energy — The National Context 11 The emerging biomass power industry 11 Cumulative demand for “energy wood” nationally 14 Chapter 2: Carbon Emissions from Biomass Power 15 The Manomet Study 18 Chapter 3: Pollutant Emissions from Biomass Combustion 19 Particulate matter 20 Particulate matter emissions from small boilers 20 Use of pellets to reduce emissions and the carbon dilemma 22 Particulate matter controls for large boilers 22 Controls for other pollutants 24 Chapter 4: Biomass Combustion Impacts on Human Health 25 Special characteristics of biomass emissions 26 Diesel emissions from biomass harvesting and transport 27 Chapter 5: Policy Drivers for Biomass Power in Pennsylvania 28 Bioenergy in Pennsylvania’s Alternative Energy Portfolio Standard 29 Pennsylvania’s Climate Action Plan 30 Blue Ribbon Task Force on the low-use wood resource 31 Financial incentives for biomass and pellet facilities 31 Pennsylvania’s “Fuels for Schools and Beyond” program 32 Penn State University’s Biomass Energy Center 33 Chapter 6: Biomass Supply and Harvesting in Pennsylvania