Sara Carina Duarte Da Silva Uminho|2015 Rastreio De Estratégias Terapêuticas Num Modelo De Ratinho Da Doença De Machado-Joseph: Foco Na Proteostase

Total Page:16

File Type:pdf, Size:1020Kb

Sara Carina Duarte Da Silva Uminho|2015 Rastreio De Estratégias Terapêuticas Num Modelo De Ratinho Da Doença De Machado-Joseph: Foco Na Proteostase Universidade do Minho Escola de Ciências da Saúde ase. t teos asis. t teos ting pro arge Sara Carina Duarte da Silva Searching for therapeutic strategies in a mouse model of Machado-Joseph disease: targeting proteostasis Rastreio de estratégias terapêuticas num modelo de ratinho da doença de Machado-Joseph: foco na proteostase trategies in a mouse model of Machado-Joseph disease: t herapeutic s tratégias terapêuticas num modelo de ratinho da doença Machado-Joseph: foco na pro treio de es Searching for t Ras e da Silva t a Carina Duar Sar 5 1 outubro de 2015 UMinho|20 Universidade do Minho Escola de Ciências da Saúde Sara Carina Duarte da Silva Searching for therapeutic strategies in a mouse model of Machado-Joseph disease: targeting proteostasis Rastreio de estratégias terapêuticas num modelo de ratinho da doença de Machado-Joseph: foco na proteostase Tese de Doutoramento em Ciências da Saúde Trabalho efectuado sob a orientação da Professora Doutora Patrícia Espinheira de Sá Maciel outubro de 2015 This work was supported by Fundação para a Ciência e Tecnologia (FCT) and COMPETE through a Bolsa de Doutoramento (SFRH/BD/78388/2011). iv Agradecimentos/Ackonlowgments Paixão. Perseverança. Curiosidade. Equipa. Companheirismo. Luta. Derrota. Conquista. Desânimo. Lágrimas. Risos. Sorrisos. Alento. Conforto. Amizade. Extra. Êxtase. Ciência. As palavras impressas hoje são o meu reconhecimento público a todos os que me de alguma forma contribuíram para a realização deste trabalho de tese. Por tudo, a todos, muito obrigada! The words today printed here are my public gratitude to those that contributed in any way to this thesis. Thank you all for everything! ICVS À Patrícia, pela oportunidade de integrar a sua equipa ao longo destes 9 anos, pela orientação, apoio e acompanhamento. Por acompanhar o meu crescimento, pelos desafios. Pela energia com que luta por fazer Ciência onde, nem sempre é fácil atingir os objetivos. Pela perseverança, pela paixão. Por me fazer sentir orgulho de pertencer a esta equipa. Pela exigência e rigor. Por querer sempre mais. Obrigada. À Professora Doutora Cecília Leão e restantes membros do Concelho Científico, em particular ao Professor Doutor Jorge Pedrosa presidente do Instituto de Investigação em Ciências da Vida e da Saúde (ICVS) e ao Professor Doutor Nuno Sousa presidente do Domínio de Investigação em Neurociências (NeRD), por me terem aceitado como aluna de doutoramento da Escola de Ciências da Saúde (ECS) e do seu Instituto de Investigação e por terem reunido todas as condições necessárias à realização deste trabalho. A todos os funcionários do ICVS, que contribuem diariamente para o bom funcionamento do laboratório. Obrigada pelo apoio e disponibilidade. À Fundação para a Ciência e Tecnologia (FCT) pelo financiamento. v Domínio de Neurociências A todos os NERDs, pelo espírito crítico, pelas discussões de terça à 1 p.m., por tudo que nos une. Pelas risadas na cozinha, pelos excelentes Retiros, pela amizade. A todos, muito obrigada! Em especial… À Carina Cunha, por ter sido a “minha” primeira “aluna”. Por ter vindo na melhor altura e por ter estado sempre à altura. Pelo jeito especial de ser, pela personalidade forte, por me fazer ver as coisas tal e qual como elas são. Por me permitir entrar na sua vida profissional e pessoal. Por simplesmente ser um exemplo para todos os alunos de doutoramento. Por ser minha amiga. Por perceber quando preciso de ajuda. Tenho tanto orgulho em ti. À Joana Silva (aka Joaninha), pelos miminhos, pelas palavras de apoio, pelas bolachinhas. Por seres teimosa e acreditares sempre. Por colaborares nos meus projetos, por me revelares westerns, por toda a ajuda no laboratório. Por todas as palavras de encorajamento. Pelos belos jantares em tua casa. Por me teres formatado a tese! Muito obrigada por tudo! À Bárbara Coimbra (aka Barbarita), pelo jeito único de ser. Pelas palavras (bem baixinho) de carinho. Por achares que tudo é “bem bom”. Pelos teus conhecimentos preciosos de informática que tanto me ajudaram! Obrigada! Ao John, que já devias entender o que te estou a escrever. Obrigada, thank you, σας ευχαριστώ. Because you are always there for me. Thank you for your scientific input to this thesis and for your support. Thank you for all the advices. Thank you for being just you. À Ana João (aka Joni) por tudo que me ensinaste até hoje. Contigo aprendi o mundo maravilhoso dos Western-blots: troubleshooting, troubleshooting!! Obrigada pela amizade. Ao Fábio (aka Fabinho) por todos os mimos! Pela boa disposição e amizade! vi À Mónica Morais, pela companhia no baroke! Ao Hugo Almeida por seres um exemplo a seguir. Pela paixão pela ciência. Por partilhares o gosto pelos Beatles comigo. Perseverança e Ciência sont des mots qui vont bien ensemble. Macielitas (o) A todos os alunos da Patrícia que já não estão no ICVS, muito obrigada! Em especial à Andreia Carvalho, Marina Amorim, Carmo Costa e Mónica Santos. Mice team Anabela (aka Belita): por sermos a equipa! Silva & Silva Lda. Por me teres acompanhado desde o início. Por me teres ensinado a caminhar na ciência. Por seres o meu exemplo. Pelo teu rigor. Pela tua capacidade de trabalho. Mereces o melhor! Pela nossa roulotte de serviços de genotipagem e churros. Pelas (longas) conversas no biotério. Por não seres simplesmente uma colega de trabalho, mas por seres uma das minhas amigas. Obrigada por tudo Anabela. Sofia Esteves, ainda não comecei a escrever e já me estou a rir. E foram tantos momentos que passamos juntas. Começamos o dito PhDesc (aka PhDoc) juntas, e foi uma grande aventura! Nunca me esquecerei da época em que vivemos juntas. Pelo teu esforço (e não era preciso muito) para me fazeres rir para eu adormecer. Pelo trabalho que fizemos juntas. Pelas horas infindáveis no biotério amarelo. Por arranjarmos sempre forma de trabalhar juntas num espaço condicionado e sempre com boa disposição. Pelas palhaçadas filmadas durante o beam walk. Em especial, neste reta final, pelo teu apoio incondicional. Pela ajuda constante no sítio do costume ao fim de semana. Pelo salmo 91. És uma lutadora! Obrigada. C.elegans team Andreia Castro (aka De Castro), pelo teu espirito crítico e rigor científico. Pelos conselhos e ajuda. Por lutares em prol da equipa. Obrigada pela ajuda durante todos estes anos, pela honestidade. Obrigada por tudo. vii Ana Jalles, pela companhia e partilha. Pelos nossos contrastes. Pelos breaks. Pelo cafezinho em tua casa. Pela paixão incondicional pela ciência. Obrigada pela amizade. Liliana Santos (aka Li), por teres integrado na equipa e teres trazido novas energias e novas ideias. Por seres o meu braço direito nas encomendas, por teres sido a única a compreender que a burocracia das encomendas é mais difícil do que aquilo que se imagina! Obrigada por seres tão terra-a-terra. Marta Costa, por estares todos os dias à minha frente. Pela tua ajuda com os qRT-PCR’s. Pelo teu rigor com o desvio padrão. Pela tua capacidade de multitasking e hard working…é sempre a bombar! Obrigada por fazeres parte desta equipa. Dulce Mary, pela boa disposição diária e por estar sempre tudo bem. Stephanie, pela discrição e calma. Obrigada por integrares (muito recentemente) no mundo das ratices. A tua calma é perfeita para fazer animal behavior! Neurodevelopment team Carlos Bessa, pela tua pacificidade e capacidade de nos resolveres todos os problemas informáticos. Obrigada pela partilha de conhecimento. Fátima Lopes, pelo teu timing perfeito. Pelo sentido de responsabilidade e rigor científico. Um agradecimento (muito) especial… Ao Gonçalo Gonçalves. Por ter tido uma importância imensurável na reta final desta tese. Por ter sido, para mim, uma motivação diária. Por ser um excelente aluno. Pelas horas (e foram muitas!) passadas a trabalhar. Por me ouvires a reclamar da vida sempre com um sorriso e com uma palavra de conforto. Por seres um gentleman. Por corares com elogios. lalalalala. Tenho a certeza que serás um excelente médico e um GRANDE homem! Do fundo do coração, obrigada. Teşekkürler! viii Aos meus amigos Andreia Carvalho, por toda a amizade ao longo destes anos. Por estares sempre presente em todos os momentos da minha vida. Por todas as horas passadas a trabalhar e a discutir ciência. Pelo companheirismo. Pelas lágrimas e pelas gargalhadas. Por não me deixares desistir nunca. Por me teres convencido a entrar nesta aventura chamada PhD. Por acompanhares todos os meus sonhos e todos os meus pesadelos. Por me saberes de cor. Simplesmente, obrigada. Loirinha, por seres como uma irmã. Por muito que não entendas aquilo que realmente faço, sempre entendes-te a minha paixão pela ciência. Por estares SEMPRE comigo. És simplesmente a minha mana do coração. Obrigada ao Zé por compreender e se interessar comigo por ciência. Obrigada pelo orgulho que sentem por mim. Joana, Gonçalo, Tiago e Cláudia, por serem amigos de sempre e para sempre! Por todos os bons (e maus) momentos passados juntos. Obrigada por tudo!!! À minha família Avô Cristiano, avô Carino, avó Maria, Sr. Joaquim, embora longe, estão sempre comigo no meu coração. Por tudo que me ensinaram. A vós devo grande parte da pessoa que sou hoje. Obrigada. D.Mena, por ser como uma verdadeira mãe. Por me tratar por “minha filha”. Pela comidinha boa ao domingo. Obrigada. Carla, Jorge, Bela, Vitor, Lando e Céu, obrigada por me mimarem tanto! Obrigada por fazerem parte da minha vida. Zé Lando, Catarina, Francisca e Matilde, os “meus” meninos! Por ser a tia “emprestada”. Por me fazerem sorrir mesmo quando a vontade é chorar. Pela azáfama que criam nos dias de festa. Por tornarem a minha vida colorida e cheia de esperança! Um agradecimento especial à família da Isabel (D.Conceição, Branca, Beto, Rui, Mónica e restantes familiares), por me receberem tão bem e me fazerem sentir em casa. Obrigada! ix Avó Mimi, pelos ensinamentos ao longo de toda a minha vida.
Recommended publications
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Stress-Responsive Regulation of Mitochondria Through the ER
    TEM-969; No. of Pages 10 Review Stress-responsive regulation of mitochondria through the ER unfolded protein response T. Kelly Rainbolt, Jaclyn M. Saunders, and R. Luke Wiseman Department of Molecular and Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA The endoplasmic reticulum (ER) and mitochondria form function is sensitive to pathologic insults that induce ER physical interactions involved in the regulation of bio- stress (defined by the increased accumulation of misfolded logic functions including mitochondrial bioenergetics proteins within the ER lumen). ER stress can be transmit- and apoptotic signaling. To coordinate these functions ted to mitochondria by alterations in the transfer of me- 2+ during stress, cells must coregulate ER and mitochon- tabolites such as Ca or by stress-responsive signaling dria through stress-responsive signaling pathways such pathways, directly influencing mitochondrial functions. as the ER unfolded protein response (UPR). Although the Depending on the extent of cellular stress, the stress UPR is traditionally viewed as a signaling pathway re- signaling from the ER to mitochondria can result in pro- sponsible for regulating ER proteostasis, it is becoming survival or proapoptotic adaptations in mitochondrial increasingly clear that the protein kinase RNA (PKR)-like function. endoplasmic reticulum kinase (PERK) signaling pathway During the early adaptive phase of ER stress, ER– 2+ within the UPR can also regulate mitochondria proteos- mitochondrial contacts increase, promoting Ca transfer 2+ tasis and function in response to pathologic insults that between these organelles [4]. This increase in Ca flux into induce ER stress. Here, we discuss the contributions of mitochondria stimulates mitochondrial metabolism 2+ PERK in coordinating ER–mitochondrial activities and through the activity of Ca -regulated dehydrogenases describe the mechanisms by which PERK adapts mito- involved in the tricarboxylic acid (TCA) cycle.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Deubiquitinases in Cancer: New Functions and Therapeutic Options
    Oncogene (2012) 31, 2373–2388 & 2012 Macmillan Publishers Limited All rights reserved 0950-9232/12 www.nature.com/onc REVIEW Deubiquitinases in cancer: new functions and therapeutic options JM Fraile1, V Quesada1, D Rodrı´guez, JMP Freije and C Lo´pez-Otı´n Departamento de Bioquı´mica y Biologı´a Molecular, Facultad de Medicina, Instituto Universitario de Oncologı´a, Universidad de Oviedo, Oviedo, Spain Deubiquitinases (DUBs) have fundamental roles in the Hunter, 2010). Consistent with the functional relevance ubiquitin system through their ability to specifically of proteases in these processes, alterations in their deconjugate ubiquitin from targeted proteins. The human structure or in the mechanisms controlling their genome encodes at least 98 DUBs, which can be grouped spatiotemporal expression patterns and activities cause into 6 families, reflecting the need for specificity in diverse pathologies such as arthritis, neurodegenerative their function. The activity of these enzymes affects the alterations, cardiovascular diseases and cancer. Accord- turnover rate, activation, recycling and localization ingly, many proteases are an important focus of of multiple proteins, which in turn is essential for attention for the pharmaceutical industry either as drug cell homeostasis, protein stability and a wide range of targets or as diagnostic and prognostic biomarkers signaling pathways. Consistent with this, altered DUB (Turk, 2006; Drag and Salvesen, 2010). function has been related to several diseases, including The recent availability of the genome sequence cancer. Thus, multiple DUBs have been classified as of different organisms has facilitated the identification oncogenes or tumor suppressors because of their regula- of their entire protease repertoire, which has been tory functions on the activity of other proteins involved in defined as degradome (Lopez-Otin and Overall, 2002).
    [Show full text]
  • Holdase Activity of Secreted Hsp70 Masks Amyloid-Β42 Neurotoxicity in Drosophila
    Holdase activity of secreted Hsp70 masks amyloid-β42 neurotoxicity in Drosophila Pedro Fernandez-Funeza,b,c,1, Jonatan Sanchez-Garciaa, Lorena de Menaa, Yan Zhanga, Yona Levitesb, Swati Kharea, Todd E. Goldea,b, and Diego E. Rincon-Limasa,b,c,1 aDepartment of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611; bDepartment of Neuroscience, Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, FL 32611; and cGenetics Institute, University of Florida, Gainesville, FL 32611 Edited by Nancy M. Bonini, University of Pennsylvania, Philadelphia, PA, and approved July 11, 2016 (received for review May 25, 2016) Alzheimer’s disease (AD) is the most prevalent of a large group of cell-free systems by dissociating preformed oligomers but not fi- related proteinopathies for which there is currently no cure. Here, we brils, suggesting that Hsp70 targets oligomeric intermediates (18). used Drosophila to explore a strategy to block Aβ42 neurotoxicity More recent in vitro studies show that Hsp70 and other chaperones through engineering of the Heat shock protein 70 (Hsp70), a chap- promote the aggregation of oligomers into less toxic species (19). erone that has demonstrated neuroprotective activity against several Also, Hsp70 demonstrates neuroprotection against intracellular intracellular amyloids. To target its protective activity against extra- Aβ42 in primary cultures (20), whereas down-regulation of Hsp70 cellular Aβ42, we added a signal peptide to Hsp70. This secreted form leads to increased protein aggregation in transgenic worms of Hsp70 (secHsp70) suppresses Aβ42 neurotoxicity in adult eyes, expressing intracellular Aβ42 (21). A recent study in a transgenic reduces cell death, protects the structural integrity of adult neurons, mouse model of AD overexpressing the Amyloid precursor pro- alleviates locomotor dysfunction, and extends lifespan.
    [Show full text]
  • Mitochondrial Protein Quality Control Mechanisms
    G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions.
    [Show full text]
  • This Is the Accepted Version of the Author's Manuscript. Reis SD, Pinho BR, Oliveira JMA "Modulation of Molecular Chapero
    This is the Accepted Version of the Author’s Manuscript. Reis SD, Pinho BR, Oliveira JMA "Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders". Molecular Neurobiology. September 2016 DOI: 10.1007/s12035-016-0120-z Link to Publisher: https://link.springer.com/article/10.1007%2Fs12035-016-0120-z Links to Full Text (RedCube, shared via Springer Nature) – View Only http://rdcu.be/kwjE 1 ! Title page Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders Sara D. Reis, Brígida R. Pinho, Jorge M. A. Oliveira* REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal *Corresponding author: Jorge M. Ascenção Oliveira Tel. +351 220428610 Email: [email protected] Acknowledgements This work was supported by Fundação para a Ciência e a Tecnologia (FCT): Strategic award UID/QUI/50006/2013, and by the research grant PTDC/NEU-NMC/0412/2014 (PI: JMAO), co- financed by the European Union (FEDER, QREN, COMPETE) – POCI-01-0145-FEDER- 016577. SDR acknowledges FCT for her PhD Grant (PD/BD/113567/2015). BRP acknowledges FCT for her PostDoc Grant (SFRH/BPD/102259/2014). We thank Ana Isabel Duarte (PhD, U. Coimbra) and Maria Clara Quintas (PhD, U. Porto) for reading and commenting the initial manuscript draft. 2 ! Abstract Polyglutamine expansion mutations in specific proteins underlie the pathogenesis of a group of progressive neurodegenerative disorders, including Huntington’s disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy, and several spinocerebellar ataxias. The different mutant proteins share ubiquitous expression and abnormal proteostasis, with misfolding and aggregation, but nevertheless evoke distinct patterns of neurodegeneration.
    [Show full text]
  • Mitochondrial Chaperone Trap1 and the Calcium Binding Protein Sorcin Interact and Protect Cells Against Apoptosis Induced by Antiblastic Agents
    Published OnlineFirst July 20, 2010; DOI: 10.1158/0008-5472.CAN-10-1256 Published OnlineFirst on July 20, 2010 as 10.1158/0008-5472.CAN-10-1256 Therapeutics, Targets, and Chemical Biology Cancer Research Mitochondrial Chaperone Trap1 and the Calcium Binding Protein Sorcin Interact and Protect Cells against Apoptosis Induced by Antiblastic Agents Matteo Landriscina1, Gabriella Laudiero3, Francesca Maddalena1, Maria Rosaria Amoroso3, Annamaria Piscazzi1, Flora Cozzolino4,6, Maria Monti4,6, Corrado Garbi5, Alberto Fersini2, Piero Pucci4,6, and Franca Esposito3,6 Abstract TRAP1, a mitochondrial chaperone (Hsp75) with antioxidant and antiapoptotic functions, is involved in multidrug resistance in human colorectal carcinoma cells. Through a proteomic analysis of TRAP1 coimmu- noprecipitation complexes, the Ca2+-binding protein Sorcin was identified as a new TRAP1 interactor. This result prompted us to investigate the presence and role of Sorcin in mitochondria from human colon carci- noma cells. Using fluorescence microscopy and Western blot analysis of purified mitochondria and submito- chondrial fractions, we showed the mitochondrial localization of an isoform of Sorcin with an electrophoretic motility lower than 20 kDa that specifically interacts with TRAP1. Furthermore, the effects of overexpressing or downregulating Sorcin and/or TRAP1 allowed us to demonstrate a reciprocal regulation between these two proteins and to show that their interaction is required for Sorcin mitochondrial localization and TRAP1 sta- bility. Indeed, the depletion of TRAP1 by short hairpin RNA in colorectal carcinoma cells lowered Sorcin levels in mitochondria, whereas the depletion of Sorcin by small interfering RNA increased TRAP1 degradation. We also report several lines of evidence suggesting that intramitochondrial Sorcin plays a role in TRAP1 cytopro- tection.
    [Show full text]
  • A Genome-Wide Rnai Screen for Modifiers of Polyglutamine-Induced Neurotoxicity in Drosophila
    A Genome-Wide RNAi Screen for Modifiers of Polyglutamine-Induced Neurotoxicity in Drosophila Doctoral Thesis In partial fulfilment of the requirements for the degree “Doctor rerum naturalium (Dr. rer. nat.)” in the Molecular Medicine Study Programme at the Georg-August University Göttingen submitted by Hannes Voßfeldt born in Zerbst/Anhalt, Germany Göttingen, January 2012 FÜR MEINE FAMILIE - IM GEDENKEN AN NADINE DU FEHLST. … IT MATTERS NOT HOW STRAIT THE GATE, HOW CHARGED WITH PUNISHMENTS THE SCROLL, I AM THE MASTER OF MY FATE: I AM THE CAPTAIN OF MY SOUL. … Invictus – William Ernest Henley Members of the Thesis Committee: Supervisor Prof. Dr. med. Jörg B. Schulz Head of Department of Neurology University Medical Centre RWTH Aachen University Pauwelsstrasse 30 52074 Aachen Second member of the Thesis Committee Prof. Dr. rer. nat. Ernst A. Wimmer Head of Department of Developmental Biology Johann Friedrich Blumenbach Institute of Zoology and Anthropology Georg-August University Göttingen Justus-von-Liebig-Weg 11 37077 Göttingen Third member of the Thesis Committee Dr. rer. nat. Till Marquardt Research Group Developmental Neurobiology European Neuroscience Institute Göttingen Grisebachstrasse 5 37077 Göttingen Date of Disputation: 2 April 2012 Affidavit I hereby declare that my doctoral thesis entitled “A Genome-Wide RNAi Screen for Modifiers of Polyglutamine-Induced Neurotoxicity in Drosophila” has been written independently with no other sources and aids than quoted. Göttingen, January 2012 Hannes Voßfeldt LIST OF PUBLICATIONS IV List of Publications Parts of this work have already been published with authorisation of Prof. Jörg B. Schulz, Head of the Department of Neurology, University Medical Centre of the RWTH Aachen University, on behalf of the thesis committee.
    [Show full text]
  • Characterization of the Cellular Network of Ubiquitin Conjugating and Ligating Enzymes Ewa Katarzyna Blaszczak
    Characterization of the cellular network of ubiquitin conjugating and ligating enzymes Ewa Katarzyna Blaszczak To cite this version: Ewa Katarzyna Blaszczak. Characterization of the cellular network of ubiquitin conjugating and ligating enzymes. Cellular Biology. Université Rennes 1, 2015. English. NNT : 2015REN1S116. tel-01547616 HAL Id: tel-01547616 https://tel.archives-ouvertes.fr/tel-01547616 Submitted on 27 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNÉE 2015 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : BIOLOGIE École doctorale Vie-Agro-Santé présentée par Ewa Katarzyna Blaszczak Préparée à l’unité de recherche UMR 6290, IGDR Institut de Génétique et Développement de Rennes Université Rennes 1 Thèse soutenue à Rennes le 26.06.2015 Characterization of devant le jury composé de : Aude ECHALIER-GLAZER the cellular network Maître de conférence University of Leicester / rapporteur of ubiquitin Lionel PINTARD Directeur de recherche
    [Show full text]
  • TRAP1 Regulates Wnt/-Catenin Pathway Through LRP5/6 Receptors
    International Journal of Molecular Sciences Article TRAP1 Regulates Wnt/β-Catenin Pathway through LRP5/6 Receptors Expression Modulation 1, 1, 1 1 Giacomo Lettini y, Valentina Condelli y, Michele Pietrafesa , Fabiana Crispo , Pietro Zoppoli 1 , Francesca Maddalena 1, Ilaria Laurenzana 1 , Alessandro Sgambato 1, Franca Esposito 2,* and Matteo Landriscina 1,3,* 1 Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, PZ, Italy; [email protected] (G.L.); [email protected] (V.C.); [email protected] (M.P.); [email protected] (F.C.); [email protected] (P.Z.); [email protected] (F.M.); [email protected] (I.L.); [email protected] (A.S.) 2 Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy 3 Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy * Correspondence: [email protected] (F.E.); [email protected] (M.L.); Tel.: +39-081-7463-145 (F.E.); +39-0881-736-426 (M.L.) These authors have contributed equally to this work. y Received: 4 September 2020; Accepted: 10 October 2020; Published: 13 October 2020 Abstract: Wnt/β-Catenin signaling is involved in embryonic development, regeneration, and cellular differentiation and is responsible for cancer stemness maintenance. The HSP90 molecular chaperone TRAP1 is upregulated in 60–70% of human colorectal carcinomas (CRCs) and favors stem cells maintenance, modulating the Wnt/β-Catenin pathway and preventing β-Catenin phosphorylation/degradation. The role of TRAP1 in the regulation of Wnt/β-Catenin signaling was further investigated in human CRC cell lines, patient-derived spheroids, and CRC specimens.
    [Show full text]
  • Structure-Function Relationship and Their Role in Protein Folding
    Chapter 8 1 Molecular Chaperones: Structure-Function 2 Relationship and their Role in Protein Folding 3 Bhaskar K. Chatterjee, Sarita Puri, Ashima Sharma, Ashutosh Pastor, 4 and Tapan K. Chaudhuri 5 Abstract During heat shock conditions a plethora of proteins are found to play a 6 role in maintaining cellular homeostasis. They play diverse roles from folding of 7 non-native proteins to the proteasomal degradation of harmful aggregates. A few 8 out of these heat shock proteins (Hsp) help in the folding of non-native substrate 9 proteins and are termed as molecular chaperones. Various structural and functional 10 adaptations make them work efficiently under both normal and stress conditions. 11 These adaptations involve transitions to oligomeric structures, thermal stability, 12 efficient binding affinity for substrates and co-chaperones, elevated synthesis during 13 shock conditions, switching between ‘holding’ and ‘folding’ functions etc. Their 14 ability to function under various kinds of stress conditions like heat shock, cancers, 15 neurodegenerative diseases, and in burdened cells due to recombinant protein pro- 16 duction makes them therapeutically and industrially important biomolecules. 17 Keywords Chaperone assisted folding · Heat shock · Molecular chaperones · 18 Protein folding · Structure-function of chaperones 19 Abbreviations 20 ACD α-crystallin domain 21 ADP Adenosine di-phosphate 22 ATP Adenosine tri-phosphate 23 CCT Chaperonin containing TCP-1 24 CIRCE Controlling inverted repeat of chaperone expression 25 Bhaskar K. Chatterjee, Sarita Puri, Ashima Sharma, and Ashutosh Pastor authors are equally contributed. B. K. Chatterjee · S. Puri · A. Sharma · A. Pastor · T. K. Chaudhuri (*) Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, HauzKhas, New Delhi, India e-mail: [email protected] © Springer International Publishing AG 2018 181 A.
    [Show full text]