Heritability: the Link Between Development and the Microevolution of Molar Tooth Form

Total Page:16

File Type:pdf, Size:1020Kb

Heritability: the Link Between Development and the Microevolution of Molar Tooth Form HISTORICAL BIOLOGY, 2017 https://doi.org/10.1080/08912963.2017.1337760 Heritability: the link between development and the microevolution of molar tooth form P. David Pollya and Orin B. Mockb aDepartment of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN, USA; bDepartment of Anatomy, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA ABSTRACT ARTICLE HISTORY The developmental gene expression, morphogenesis, and population variation in mammalian molar Received 29 May 2017 teeth has become increasingly well understood, providing a model system for synthesizing evolution Accepted 30 May 2017 and developmental genetics. In this study, we estimated additive genetic covariances in molar shape (G) KEYWORDS using parent-offspring regression in Cryptotis parva, the Least Shrew. We found that crown shape had an 2 Molars; evolution and overall h value of 0.34 (±0.08), with higher heritabilities in molar cusps than notches. We compared the development; heritability; genetic covariances to phenotypic (P) and environmental (E) covariances, and to the covariances in crown soricidae; geometric features expected from the enamel knot developmental cascade (D). We found that G and D were not morphometrics strongly correlated and that major axes of G (evolutionary lines of least resistance) are better predictors of evolutionary divergences in soricines than is D. We conclude that the enamel knot cascade does impose constraints on the evolution of molar shape, but that it is so permissive that the divergences among soricines (whose last common ancestor lived about 14 million years ago) do not fully explore its confines. Over tens of millions of years, G will be a better predictor of the major axes of evolution in molar shape than D. Introduction adult molar crown and its many cusps, ridges, and basins. A Building on foundations laid by Butler (1941), (1956), (1995), dynamic system of interactions folds the inner enamel epithelium studies of mammalian molar teeth have begun to bridge the of the tooth germ and expands its mesenchymal base (Butler gap between evolutionary developmental biology and quanti- 1956). Epithelial signaling centers called enamel knots influence tative genetics (Jernvall & Jung 2000; Tucker & Sharpe 2004; the growth of individual cusps, the formation of other knots, and Polly 2005, 2015; Kavanagh et al. 2007; Gómez-Robles & Polly cell proliferation in the epithelium and mesenchyme (Jernvall 2012; Jernvall & Thesleff 2012; Gomes Rodrigues et al. 2013; et al. 1994, 1998; Jernvall & Thesleff2000, 2012). This system Jheon et al. 2013; Harjunmaa et al. 2014; Ungar & Hlusko is shared, in its broad aspects, by species with different tooth 2016). Interest in the connections between developmental gene morphologies. Species differences in gene expression patterns are expression and quantitative models of variation, selection, and associated with their differences in molar form (Keränen et al. evolution have brought attention to genotype-phenotype maps 1998; Jernvall et al. 2000). Even though the experimental work that involve complex developmental interactions and how these from which the enamel knot cascade model was developed was processes constrain variation and influence the course of long- based on mice, histological observation (Butler 1956; Marshall & term evolution (Weiss 1993; Weiss & Fullerton 2000; Rice 2002, Butler 1966; Berkovitz 1967), empirical observations on patterns 2011; Wolf 2002; Klingenberg 2010; Salazar-Ciudad & Jernvall of variability in cusps positions (Polly 1998, 2005; Jernvall 2000), 2010; Goswami et al. 2014; Hlusko et al. 2016). In this paper, we and computer-assisted modeling of these developmental param- measure the genetic, phenotypic, and developmental covariance eters (Salazar-Ciudad & Jernvall 2002, 2010; Salazar-Ciudad structure in the tribosphenic lower molars of the Least shrew et al. 2003; Salazar-Ciudad & Marín-Riera 2013; Marin Riera (Cryptotis parva) and assess how these three population-level et al. 2015) all suggest that the enamel knot cascade model is components of variance are related to long-term phylogenetic generalizable to explain the phenotypic changes observed during divergence in molar shape. morphogenesis and evolution. These same models have empha- Mammalian teeth are a notable example of a system in which sized that development and evolution are not determined by gene the synthesis of molecular development, morphogenesis, adult expression alone, but that the changing three-dimensional topog- morphology, and evolution is well underway. We now under- raphy of the tooth bud creates morphodynamic feedback systems stand how gene products interact in the context of growing epi- that regulate developmental interactions. The cascade of interac- thelial and mesenchymal tissues to create the topography of the tions between enamel knots are expected to induce a predictable CONTACT P. David Polly [email protected] © 2017 Informa UK Limited, trading as Taylor & Francis Group P. D. POLLY AND O. B. MOCK 2 morphological differences in other shrew species to see whether phylogenetic divergences in morphology were related to genetic variances and, by extension, to developmental interactions. Materials and methods Molar shape data were collected from alcohol-preserved individuals of the Least Shrew, C. parva. These animals were from a long-term breeding colony at the Kirksville College of (A) Osteopathic Medicine (KCOM, Kirksville, Missouri, USA) that has been maintained for more than 40 years (Mock 1982). The original stocks were trapped in central Missouri in the mid 1960s buccal 3 and early 1970s. The animals included in this study were products mesial 7 of up to 30 generations of breeding, including some inbreeding. 2 No selection was applied, but indirect selective effects on molar 6 4 width have been documented in Peromyscus when wild animals were bred in laboratory conditions (Leamy & Bader 1970). The 8 1 5 colony was not maintained with the intention of studying her- 9 itability, and our selection of offspring-parent pairs was limited by the number of carcasses that had been preserved and by the amount of wear on their teeth. In most cases only individuals (B) 05 mm with unworn teeth were used, but to increase the sample size a few individuals with moderately worn teeth were included when landmarks could be reliably identified. A total of 63 single off- Figure 1. A. Schematic diagram of developmental interactions superimposed spring- single parent pairs were available for this study. on a fully mineralized tooth in functional view (as in Figure 1(B)). Enamel knots (circles) are cellular signaling centers associated with each developing cusp. The Molar shape was measured with geometric morphometrics primary knot (1) influences the position of subsequent knots (2–5) by producing (Bookstein 1991; Dryden & Mardia 1998; Zelditch et al. 2012) of diffusable molecules that inhibit knot formation in the immediate vicinity (thick nine two-dimensional Cartesian-coordinate landmarks to rep- black lines). Downstream knots have a similar effect on their own periphery. Each knot stimulates down-growth in epithelia between it and adjacent knots, resent the occlusal surface of the lower first molar (Figure 1). thus influencing the height and shape of cusps and the position of cingulae and Teeth were oriented in ‘functional view’ parallel to the angle of notches on the adult crown (thin black arrows). The knots also stimulate growth mandibular movement during phase one occlusion, an orienta- in the underlying mesenchyme, which further influences the spacing between knots (large grey arrows). Mesiodistal and buccolingual growth rates are partly tion achieved by aligning shear facets parallel to the line of sight independent. Change in any of these factors can alter placement of all the cusps. (Butler 1961). This position is the most replicable orientation B. Lower right first molar of Cryptotis parva in functional view showing the for a tribosphenic tooth, and it minimizes the effect of wear on nine landmarks used to represent crown shape. In order, they are the paraconid, preprotocristid notch, protoconid, postprotocristid notch, metaconid, cristid the apparent shape of the crown. To further minimize orienta- obliqua notch, hypoconid, entoconid, and talonid notch. The landmarks represent tion error, each specimen was photographed and landmarked those adult crown features that are directly associated with developmental factors. five times and the replicates averaged (Polly 2001, 2003, 2007). By confining our analysis to two-dimensions we risk ignoring important components of the spatial patterning of the develop- pattern of covariance between cusps and notches (Figure 1(A)). mental cascade (see discussion below), but by focusing purely on The cascade predicts which parts of the tooth crown will be more the horizontal position of cusps we avoid conflating the effects variable, which will be gained and lost, and what the patterns of of tooth wear, which modifies the apical height of cusps, with variability in molar crown shape will be (Jernvall 1995, 2000; developmental or genetic variation. Polly 1998, 2005; Salazar-Ciudad & Jernvall 2010). Shape variables were derived from the landmarks for further While we know how patterns of phenotypic shape variation analysis. The individual molar shapes were rescaled and superim- in mammalian molar crowns are associated with developmental posed using generalized least-squares Procrustes fit (Gower1975 ; processes, we neither
Recommended publications
  • View Professor Schmitt's CV
    CHRISTOPHER A. SCHMITT Department of Anthropology Office: +1 617 353-5026 Boston University Email: [email protected] 232 Bay State Road Web: www.evopropinquitous.net Boston, MA 02215 USA Twitter: @fuzzyatelin EDUCATION 2010 Ph.D. New York University – Biological Anthropology 2006 M.A. New York University – Biological Anthropology 2003 B.S. University of Wisconsin, Madison – English Literature & Zoology PROFESSIONAL APPOINTMENTS 2015 – pres. Assistant Professor, Department of Anthropology, Boston University 2016 – pres. Joint Programmatic Appointment, Department of Biology, BU 2015 – pres. Affiliated Faculty, Women’s, Gender & Sexuality Studies Program, BU 2014 – 2015 Postdoctoral Scholar, Human Evolution Research Center, UC Berkeley 2013 – 2014 Lecturer, Department of Anthropology, University of Southern California 2010 – 2013 Postdoctoral Research Fellow, UCLA Center for Neurobehavioral Genetics PEER-REVIEWED PUBLICATIONS (indicates undergraduate*, graduate**, and postdoctoral*** trainees) 28. Schmitt CA, Bergey CM, Jasinska AJ, Ramensky V, Burt F, Svardal H, Jorgensen MJJ, Freimer NB, Grobler JP, Truner TR. 2020. ACE2 and TMPRSS2 receptor variation in savanna monkeys (Chlorocebus spp.): Potential risk for zoonotic/anthroponotic transmission of SARS-CoV-2 and a potential model for functional studies. PLoS ONE 15(6): e0235106. 27. Brasil MF, Monson TA, Schmitt CA, Hlusko LJ. 2020. A genotype:phenotype approach to testing taxonomic hypotheses in hominds. Naturwissenschaften 107:40. DOI: 10.1007/s00114-020-01696-9 26. Schmitt CA, Garrett EC. 2020. De-scent with modification: More evidence and caution needed to assess whether the loss of a pheromone signaling protein permitted the evolution of same-sex sexual behavior in primates. Archives of Sexual Behavior. doi:10.1007/s10508-019-01583-z CV - Christopher A Schmitt 25.
    [Show full text]
  • The Micropaleontology Project, Inc
    The Micropaleontology Project, Inc. Remarks on the Species Concept in Paleontology Author(s): C. W. Drooger Reviewed work(s): Source: The Micropaleontologist, Vol. 8, No. 4 (Oct., 1954), pp. 23-26 Published by: The Micropaleontology Project, Inc. Stable URL: http://www.jstor.org/stable/1483957 . Accessed: 17/07/2012 05:06 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The Micropaleontology Project, Inc. is collaborating with JSTOR to digitize, preserve and extend access to The Micropaleontologist. http://www.jstor.org REMARKS ON THE'SPECIES CONCEPT IN PALEONTOLOGY C. W. DROOGER In the July issue of The Micropaleontologist, Esteban Boltovskoy raised the question of the species concept and related problems in the study of foramninifera. His article clearly shows the disadvantages of space limitations, as it deals with so many topics that the schematic treatment is sometimes in danger of being misunderstood. Nevertheless, Boltovskoy's article may be very usef'ul for those who ignore the neonto- logical species and subspecies concepts. Some very valuable warnings are given, although their background has to be necessarily very vague. At the risk of being equally terse, I would like to comment on some of the points raised by Boltovskoy.
    [Show full text]
  • Heritability in the Era of Molecular Genetics: Some Thoughts for Understanding Genetic Influences on Behavioural Traits
    European Journal of Personality, Eur. J. Pers. 25: 254–266 (2011) Published online (wileyonlinelibrary.com) DOI: 10.1002/per.836 Heritability in the Era of Molecular Genetics: Some Thoughts for Understanding Genetic Influences on Behavioural Traits WENDY JOHNSON1,2*, LARS PENKE1 and FRANK M. SPINATH3 1Centre for Cognitive Ageing and Cognitive Epidemiology and Department of Psychology, University of Edinburgh, Edinburgh, UK 2Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA 3Department of Psychology, Saarland University, Saarbruecken, Germany Abstract: Genetic influences on behavioural traits are ubiquitous. When behaviourism was the dominant paradigm in psychology, demonstrations of heritability of behavioural and psychological constructs provided important evidence of its limitations. Now that genetic influences on behavioural traits are generally accepted, we need to recognise the limitations of heritability as an indicator of both the aetiology and likelihood of discovering molecular genetic associations with behavioural traits. We review those limitations and conclude that quantitative genetics and genetically informative research designs are still critical to understanding the roles of gene‐environment interplay in developmental processes, though not necessarily in the ways commonly discussed. Copyright © 2011 John Wiley & Sons, Ltd. Key words: genetic influences; twin study; heritability Much is often made of new findings of the presence of environmental influences but emphasised that these genetic influences
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • High Heritability of Telomere Length, but Low Evolvability, and No Significant
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423128; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 High heritability of telomere length, but low evolvability, and no significant 2 heritability of telomere shortening in wild jackdaws 3 4 Christina Bauch1*, Jelle J. Boonekamp1,2, Peter Korsten3, Ellis Mulder1, Simon Verhulst1 5 6 Affiliations: 7 1 Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 8 9747AG Groningen, The Netherlands 9 2 present address: Institute of Biodiversity Animal Health & Comparative Medicine, College 10 of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United 11 Kingdom 12 3 Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, 13 Germany 14 15 16 * Correspondence to: 17 [email protected] 18 19 Running head: High heritability of telomere length bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423128; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 20 Abstract 21 Telomere length (TL) and shortening rate predict survival in many organisms. Evolutionary 22 dynamics of TL in response to survival selection depend on the presence of genetic variation 23 that selection can act upon. However, the amount of standing genetic variation is poorly known 24 for both TL and TL shortening rate, and has not been studied for both traits in combination in 25 a wild vertebrate.
    [Show full text]
  • Environment-Sensitive Epigenetics and the Heritability of Complex Diseases
    INVESTIGATION Environment-Sensitive Epigenetics and the Heritability of Complex Diseases Robert E. Furrow,*,1 Freddy B. Christiansen,† and Marcus W. Feldman* *Department of Biology, Stanford University, Stanford, California 94305, and †Department of Bioscience and Bioinformatics Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark ABSTRACT Genome-wide association studies have thus far failed to explain the observed heritability of complex human diseases. This is referred to as the “missing heritability” problem. However, these analyses have usually neglected to consider a role for epigenetic variation, which has been associated with many human diseases. We extend models of epigenetic inheritance to investigate whether environment-sensitive epigenetic modifications of DNA might explain observed patterns of familial aggregation. We find that variation in epigenetic state and environmental state can result in highly heritable phenotypes through a combination of epigenetic and environmental inheritance. These two inheritance processes together can produce familial covariances significantly higher than those predicted by models of purely epigenetic inheritance and similar to those expected from genetic effects. The results suggest that epigenetic variation, inherited both directly and through shared environmental effects, may make a key contribution to the missing heritability. HE challenges of identifying the common or rare genes a change in DNA sequence. Such modifications include Tthat contribute to the transmission of heritable human methylation of cytosine nucleotides at CpG sites and histone diseases and other complex phenotypes have been discussed protein modification. Such epigenetic modifications may be for some time (Moran 1973; Layzer 1974; Feldman and transmissible across generations or arise de novo each gen- Lewontin 1975; Kamin and Goldberger 2002).
    [Show full text]
  • The Importance of Heritability in Psychological Research: the Case of Attitudes
    Psychological Review Copyright 1993 by the American Psychological Association, Inc. 1993, Vol. 100, No. 1,129-142 0033-295X/93/S3.00 The Importance of Heritability in Psychological Research: The Case of Attitudes Abraham Tesser It is argued that differences in response heritability may have important implications for the testing of general psychological theories, that is, responses that differ in heritability may function differ- ently. For example, attitudes higher in heritability are shown to be responded to more quickly, to be more resistant to change, and to be more consequential in the attitude similarity attraction relation- ship. The substantive results are interpreted in terms of attitude strength and niche building. More generally, the implications of heritability for the generality and typicality of treatment effects are also discussed. Although psychologists clearly recognize the impact of genet- heritabilities is both long and surprising. As noted earlier, the ics on behavior, their theories rarely reflect this knowledge. intellectual abilities domain has received the most press, and Most theories assume that behavior is relatively plastic and is the genetic contribution to that domain is well documented shaped almost entirely by situational parameters. The possibil- (e.g., Loehlin, Willerman, & Horn, 1988; Plomin & Rende, ity that a response may have a high heritability is often ignored. 1991). There is also evidence of genetic contributions to spe- I argue here that ignoring this possibility is consequential. The cific cognitive abilities, school achievement, creativity, reading vehicle used in this article is attitudes. This vehicle was chosen disability, and mental retardation (see Plomin, 1989, for a re- because it is a domain with which I have some familiarity; it is a view).
    [Show full text]
  • Glossary of Major Terms and Concepts
    Glossary of Major Terms and Concepts The following terms and concepts form the core of much of this book. Generally, they appear in boldface type in the text. The chapters in which they are more fully discussed are also given. Acceleration: Faster rate of developmenral evenrs (at any level: cell, organ, individual) in the descendanr; produces peramorphie traits when expressed in the adult pheno­ type. (Chapters 1 and 2) Allometric heterochrony: Change in a trair as a function of size (as opposed to a function of age in " true" heterochrony); it is useful as adescriptor and can be inrerpretive considering that body size is often a beuer metric of " inrrinsic" age than chronologi­ cal age. The same categories apply as in " true" heterochrony, only the adjective "allometric" is prefixed: e.g. , " allometric progenesis" is when the descendant ter­ minates growth at a smaller size (as opposed to age) than the ancestor. (Chapter 2) Allometry: The study of size and shape, usually using biometrie data; the change in size and shape observed. Basic kinds of allometric change include the following. Com­ plex allometry: occurs when the ratio of the specific growth rates of the traits compared are not constant, a log-log plot comparing the traits will not yield a straight line (i.e., " k" in the allometric formula is inconstanr). Isometry: occurs when there is no change in shape with size increase; that is, when the traits being compared on a log-log plot yield a straight line with a slope (k in the allometric formula) that is effectively equal to 1.
    [Show full text]
  • An Introduction to Quantitative Genetics I Heather a Lawson Advanced Genetics Spring2018 Outline
    An Introduction to Quantitative Genetics I Heather A Lawson Advanced Genetics Spring2018 Outline • What is Quantitative Genetics? • Genotypic Values and Genetic Effects • Heritability • Linkage Disequilibrium and Genome-Wide Association Quantitative Genetics • The theory of the statistical relationship between genotypic variation and phenotypic variation. 1. What is the cause of phenotypic variation in natural populations? 2. What is the genetic architecture and molecular basis of phenotypic variation in natural populations? • Genotype • The genetic constitution of an organism or cell; also refers to the specific set of alleles inherited at a locus • Phenotype • Any measureable characteristic of an individual, such as height, arm length, test score, hair color, disease status, migration of proteins or DNA in a gel, etc. Nature Versus Nurture • Is a phenotype the result of genes or the environment? • False dichotomy • If NATURE: my genes made me do it! • If NURTURE: my mother made me do it! • The features of an organisms are due to an interaction of the individual’s genotype and environment Genetic Architecture: “sum” of the genetic effects upon a phenotype, including additive,dominance and parent-of-origin effects of several genes, pleiotropy and epistasis Different genetic architectures Different effects on the phenotype Types of Traits • Monogenic traits (rare) • Discrete binary characters • Modified by genetic and environmental background • Polygenic traits (common) • Discrete (e.g. bristle number on flies) or continuous (human height)
    [Show full text]
  • PLANT SCIENCE Bulletin Summer 2013 Volume 59 Number 2
    PLANT SCIENCE Bulletin Summer 2013 Volume 59 Number 2 1st Place Triarch Botanical Images Student Travel Awards Ricardo Kriebel The New York Botanical Garden Flower of Miconia arboricola (Melastomataceae: Miconieae) in late anthesis In This Issue.............. Dr. Thomas Ranker and The BSA awards many for their PLANTS Recipients excel in others elected to serve the contributions.....p. 36 botany ......p. 15 BSA.....p. 35 From the Editor PLANT SCIENCE Every year this is one of my favorite issues of BULLETIN Plant Science Bulletin because we get to recognize Editorial Committee the accomplishments of some of our most worthy Volume 59 members. The Merit Awardees have been elected to the most select group of professional botanists in North America. Begun at the Fiftieth Anniversary Elizabeth Schussler (2013) meeting, 55 years ago, the Merit Award recognizes Department of Ecology & individuals for their outstanding contributions to the Evolutionary Biology mission of the Botanical Society. These are people University of Tennessee whose names we recognize from their publications, Knoxville, TN 37996-1610 presentations, and service to the society. They are [email protected] leaders at their own institutions, in the Botanical Society and in other scientific organizations. What I find more interesting, though, are the younger members being recognized for their Christopher Martine potential. These are graduate students beginning (2014) to make their mark in botanical research and being Department of Biology invested with the opportunity to help direct the Bucknell University evolution of the Society. They are also undergraduates Lewisburg, PA 17837 being recognized by their mentors for their initiative, [email protected] enthusiasm and drive to make discoveries and share their love of plants with others.
    [Show full text]
  • A Festschrift for Jeremy B.C. Jackson and His Integration of Paleobiology, Ecology, Evolution, and Conservation Biology
    Evol Ecol (2012) 26:227-232 DOI 10.1007/sl0682-012-9556-4 ORIGINAL PAPER A festschrift for Jeremy B.C. Jackson and his integration of paleobiology, ecology, evolution, and conservation biology John M. Pandolfl • Ann F. Budd Received: 24 January 2012/Accepted: 27 January 2012/Published online: 10 February 2012 © Springer Science+Business Media B.V. 2012 Abstract This collection of papers is dedicated to the career and achievements of Dr. Jeremy B.C. Jackson, and is written by a sample of his students, post-docs, and colleagues over his career. Jackson is an influential leader in cross-disciplinary research integrating ecology and paleontology. His contributions are broad in scope, and range in topic from the ecological and evolutionary consequences of the formation of the Central American Isthmus to the long-term impacts of human activities on the oceans. Two areas of particular interest have been the evolutionary ecology of coral reef organisms and the tempo and mode of speciation in the sea. Papers in the collection examine: colonial marine animals (Buss and Rice, Lidgard et al.), marrying genes and fossils (Budd et al., Marko and Hart, Palumbi et al., Jagadeeshan and O'Dea), the geography, tempo, and mode of evolution (Bromfield and Pandolfl, Norris and Hull, Vermeij, Erwin and Tweedt), and marine eco- system health (Sandin and Sala). Keywords Colonial animals • Ecology • Evolution • Taxonomic turnover • Conservation biology • Panama paleontology project • Historical ecology • Paleobiology Introduction This collection of papers is dedicated to the career and achievements of Dr. Jeremy B.C. Jackson. The papers are written by a sample of his students, post-docs, and colleagues over J.
    [Show full text]
  • Vp = Vg + Ve SNP, Duplication, Allele Frequencies Deletion, Etc
    Evolution by Natural Selection average phenotype changes environment Allele frequencies unfavorable for blue change Evolution w/o Selection average phenotype changes Drift rare alleles lost stochastic events Allele frequencies change Migration new alleles (genes) (gene flow) present gene flow from neigh- Allele frequencies bor population (species) change new alleles (genes) Mutation present Vp = Vg + Ve SNP, duplication, Allele frequencies deletion, etc. change Selection w/o Evolution selection between generations Development NO new alleles Plasticity Allele frequencies environment are unchanged unfavorable rounded phenotypes • Some phenotypic variants are favored by selection, they survive and reproduce better • But there is no genetic basis to this variation, the individuals with greater fitness have good luck rather than good genes GOAL: understand the genetic underpinnings of Behavior Singe gene vs. quantitative trait. Genes that are necessary for: Genes that Contribute to: Single Gene Quantitative or many genes Historic figure Mendel Galton identify dominant & recessive identify single genes define Genomic Architecture define mechanisms Immediate goals (#, location, interaction, specificity, linkage) quantify variation in a population describe change in gene frequency Sever disruptions Raw Materials used Lab induced (white coat) Subtle variation Naturally occurring (rubber boot) Tools us ed Bottom Up Forward Top D ow n ( = F or w ar d) Phenotype >>> Gene Observational mutagenesis/screening Comparative Genomics transgenesis Association
    [Show full text]