National Estuary Program Booklet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Snohomish Estuary Wetland Integration Plan
Snohomish Estuary Wetland Integration Plan April 1997 City of Everett Environmental Protection Agency Puget Sound Water Quality Authority Washington State Department of Ecology Snohomish Estuary Wetlands Integration Plan April 1997 Prepared by: City of Everett Department of Planning and Community Development Paul Roberts, Director Project Team City of Everett Department of Planning and Community Development Stephen Stanley, Project Manager Roland Behee, Geographic Information System Analyst Becky Herbig, Wildlife Biologist Dave Koenig, Manager, Long Range Planning and Community Development Bob Landles, Manager, Land Use Planning Jan Meston, Plan Production Washington State Department of Ecology Tom Hruby, Wetland Ecologist Rick Huey, Environmental Scientist Joanne Polayes-Wien, Environmental Scientist Gail Colburn, Environmental Scientist Environmental Protection Agency, Region 10 Duane Karna, Fisheries Biologist Linda Storm, Environmental Protection Specialist Funded by EPA Grant Agreement No. G9400112 Between the Washington State Department of Ecology and the City of Everett EPA Grant Agreement No. 05/94/PSEPA Between Department of Ecology and Puget Sound Water Quality Authority Cover Photo: South Spencer Island - Joanne Polayes Wien Acknowledgments The development of the Snohomish Estuary Wetland Integration Plan would not have been possible without an unusual level of support and cooperation between resource agencies and local governments. Due to the foresight of many individuals, this process became a partnership in which jurisdictional politics were set aside so that true land use planning based on the ecosystem rather than political boundaries could take place. We are grateful to the Environmental Protection Agency (EPA), Department of Ecology (DOE) and Puget Sound Water Quality Authority for funding this planning effort, and to Linda Storm of the EPA and Lynn Beaton (formerly of DOE) for their guidance and encouragement during the grant application process and development of the Wetland Integration Plan. -
Elkhorn Slough Estuary
A RICH NATURAL RESOURCE YOU CAN HELP! Elkhorn Slough Estuary WATER QUALITY REPORT CARD Located on Monterey Bay, Elkhorn Slough and surround- There are several ways we can all help improve water 2015 ing wetlands comprise a network of estuarine habitats that quality in our communities: include salt and brackish marshes, mudflats, and tidal • Limit the use of fertilizers in your garden. channels. • Maintain septic systems to avoid leakages. • Dispose of pharmaceuticals properly, and prevent Estuarine wetlands harsh soaps and other contaminants from running are rare in California, into storm drains. and provide important • Buy produce from local farmers applying habitat for many spe- sustainable management practices. cies. Elkhorn Slough • Vote for the environment by supporting candidates provides special refuge and bills favoring clean water and habitat for a large number of restoration. sea otters, which rest, • Let your elected representatives and district forage and raise pups officials know you care about water quality in in the shallow waters, Elkhorn Slough and support efforts to reduce question: How is the water in Elkhorn Slough? and nap on the salt marshes. Migratory shorebirds by the polluted run-off and to restore wetlands. thousands stop here to rest and feed on tiny creatures in • Attend meetings of the Central Coast Regional answer: It could be a lot better… the mud. Leopard sharks by the hundreds come into the Water Quality Control Board to share your estuary to give birth. concerns and support for action. Elkhorn Slough estuary hosts diverse wetland habitats, wildlife and recreational activities. Such diversity depends Thousands of people come to Elkhorn Slough each year JOIN OUR EFFORT! to a great extent on the quality of the water. -
U.S. Environmental Protection Agency's National Estuary Program
U.S. Environmental Protection Agency’s National Estuary Program Story Map Text-only File 1) Introduction Welcome to the National Estuary Program story map. Since 1987, the EPA National Estuary Program (NEP) has made a unique and lasting contribution to protecting and restoring our nation's estuaries, delivering environmental and public health benefits to the American people. This story map describes the 28 National Estuary Programs, the issues they face, and how place-based partnerships coordinate local actions. To use this tool, click through the four tabs at the top and scroll around to learn about our National Estuary Programs. Want to learn more about a specific NEP? 1. Click on the "Get to Know the NEPs" tab. 2. Click on the map or scroll through the list to find the NEP you are interested in. 3. Click the link in the NEP description to explore a story map created just for that NEP. Program Overview Our 28 NEPs are located along the Atlantic, Gulf, and Pacific coasts and in Puerto Rico. The NEPs employ a watershed approach, extensive public participation, and collaborative science-based problem- solving to address watershed challenges. To address these challenges, the NEPs develop and implement long-term plans (called Comprehensive Conservation and Management Plans (link opens in new tab)) to coordinate local actions. The NEPs and their partners have protected and restored approximately 2 million acres of habitat. On average, NEPs leverage $19 for every $1 provided by the EPA, demonstrating the value of federal government support for locally-driven efforts. View the NEPmap. What is an estuary? An estuary is a partially-enclosed, coastal water body where freshwater from rivers and streams mixes with salt water from the ocean. -
Delaware Bay Estuary Project Supporting the Conservation and Restoration Of
U.S. Fish & Wildlife Service – Coastal Program Delaware Bay Estuary Project Supporting the conservation and restoration of the salt marshes of Delaware Bay People have altered the expansive salt marshes of Delaware Bay for centuries to farm salt hay, try to control mosquitoes, create channels for boats, to increase developable land, and other reasons all resulting in restricted tidal flow, disrupted sediment balances, or increasing erosion. Sea level rise and coastal storms threaten to further negatively impact the integrity of these salt marshes. As we alter or lose the marshes we lose the valuable habitats and ecological services they provide. tidal creek - Katherine Whittemore Addressing the all-important sediment balance of salt marshes is critical for preserving their resilience. A healthy resilient marsh may be able to keep pace with erosion and sea level rise through sediment accretion and growth Downe Twsp, NJ - Brian Marsh of vegetation. However, the delicate sediment balance of salt marshes is DBEP works to support efforts to learn more about the techniques often disrupted by barriers to tidal influence and altered drainage onto and to conserve and restore salt marshes and support the populations of fish and wildlife that rely on them. We support new and off the marsh resulting in sediment ongoing coastal resiliency initiatives and coastal planning as they starved systems, excessive mudflats, or pertain to habitat restoration and conservation. We are interested increased erosion. in finding effective tools and mechanisms for conserving and restoring salt marsh integrity on a meaningful scale and support efforts that bring partners together to approach this challenge. -
Promoting Water Reuse Through Partnership Programs: National Estuary Program and Urban Waters Partnerships Delivering on EPA’S Water Reuse Action Plan
Promoting Water Reuse through Partnership Programs: National Estuary Program and Urban Waters Partnerships Delivering on EPA’s Water Reuse Action Plan April 2021 EPA -840-R-21-002 i Acknowledgements This document was developed by EPA employee Tara Flint and ORISE Research Participant Daniela Rossi, through their work with the EPA Office of Wetlands, Oceans and Watersheds, and Eric Ruder and Daniel Kaufman of Industrial Economics. Daniela Rossi’s role did not include establishing Agency policy, and all final decision-making was made by the Agency. The information presented here would not have been possible without contributions from EPA’s Office of Water staff on both the Urban Waters and National Estuary Program teams, Regional Offices, and external partners from the partnership programs. Disclaimer The findings reported herein are made available for informational purposes only and do not represent the Environmental Protection Agency’s position on the topics covered. This report does not, nor is it intended to, affect the behavior of non-agency parties. To the extent this report contains summaries and discussions of EPA’s statutory authorities and regulations, the report itself does not constitute an EPA statue or regulation and does not substitute for such authorities. Cover Photo Credits (clockwise from top right): Private raingarden planted as part of Homeowner Rewards Program to incentivize green infrastructure (Peconic Estuary Partnership); Rainwater catchment project near Pennington Creek, CA installed in partnership with Morro Bay NEP (Morro Bay NEP); Installed and blooming bioswale in downtown New Haven, CT (Long Island Sound Office); Riverhead Sewage Treatment Plant renovated which supplies reclaimed water for irrigation (Peconic Estuary Partnership) i Table of Contents Acknowledgements ....................................................................................................................................... -
Estuarine Wetlands
ESTUARINE WETLANDS • An estuary occurs where a river meets the sea. • Wetlands connected with this environment are known as estuarine wetlands. • The water has a mix of the saltwater tides coming in from the ocean and the freshwater from the river. • They include tidal marshes, salt marshes, mangrove swamps, river deltas and mudflats. • They are very important for birds, fish, crabs, mammals, insects. • They provide important nursery grounds, breeding habitat and a productive food supply. • They provide nursery habitat for many species of fish that are critical to Australia’s commercial and recreational fishing industries. • They provide summer habitat for migratory wading birds as they travel between the northern and southern hemispheres. Estuarine wetlands in Australia Did you know? Kakadu National Park, Northern Territory: Jabiru build large, two-metre wide • Kakadu has four large river systems, the platform nests high in trees. The East, West and South Alligator rivers nests are made up of sticks, branches and the Wildman river. Most of Kakadu’s and lined with rushes, water-plants wetlands are a freshwater system, but there and mud. are many estuarine wetlands around the mouths of these rivers and other seasonal creeks. Moreton Bay, Queensland: • Kakadu is famous for the large numbers of birds present in its wetlands in the dry • Moreton Bay has significant mangrove season. habitat. • Many wetlands in Kakadu have a large • The estuary supports fish, birds and other population of saltwater crocodiles. wildlife for feeding and breeding. • Seagrasses in Moreton Bay provide food and habitat for dugong, turtles, fish and crustaceans. www.environment.gov.au/wetlands Plants and animals • Saltwater crocodiles live in estuarine and • Dugongs, which are also known as sea freshwater wetlands of northern Australia. -
Estuary Bird Cards
TEACHER MASTER Estuary Bird Cards Great Blue Heron Osprey Willet Roseate Spoonbill Great Egret Glossy Ibis Marsh Wren Tern Brown Pelican Whooping Crane Sandpiper Avocet Woodstork Snowy Egret Black Skimmer Crested Comorant Activity 9: Bountiful Birds 10 TEACHER MASTER Estuary Habitats Salt marsh Mangrove swamp Mudflats Lagoon low tide Seagrass beds Activity 9: Bountiful Birds 11 STUDENT MASTER Great Birds of the Estuaries Estuaries actually contain a number of different habitats, each better or worse suited for different species of birds, as well as other estuary animals and plants. Here are five of the main estuary habitats: 1. A lagoon is an area of shallow, open water, separated from the open ocean by some sort of barrier, such as a barrier island. The water in a lagoon can either be as salty as the ocean or brackish. 2. A salt marsh has non-tree plants (grasses, shrubs, etc.) whose roots grow in soil acted upon by tides, but the plants are mostly never submerged. 3. The woody trees that grow in a mangrove swamp grow in soil affected by tides. Mangrove trees only grow in estuaries that never freeze. 4. Seagrass beds are always submerged underwater. Seagrass is photosynthetic, so it grows in water that is shallow and clear enough for the grass to get sunlight. Seagrass is anchored to the muddy or sandy bottom. 5. Mudflats are sometimes also called tidal flats. They are broad, flat areas of extremely fine sediment (mud) that become exposed at low tide. There are other estuary habitats. A beach or rocky shore can be part of the estuary. -
The Economics of Dead Zones: Causes, Impacts, Policy Challenges, and a Model of the Gulf of Mexico Hypoxic Zone S
58 The Economics of Dead Zones: Causes, Impacts, Policy Challenges, and a Model of the Gulf of Mexico Hypoxic Zone S. S. Rabotyagov*, C. L. Klingy, P. W. Gassmanz, N. N. Rabalais§ ô and R. E. Turner Downloaded from Introduction The BP Deepwater Horizon oil spill in the Gulf of Mexico in 2010 increased public awareness and http://reep.oxfordjournals.org/ concern about long-term damage to ecosystems, and casual readers of the news headlines may have concluded that the spill and its aftermath represented the most significant and enduring environmental threat to the region. However, the region faces other equally challenging threats including the large seasonal hypoxic, or “dead,” zone that occurs annually off the coast of Louisiana and Texas. Even more concerning is the fact that such dead zones have been appearing worldwide at proliferating rates (Conley et al. 2011; Diaz and Rosenberg 2008). Nutrient over- enrichment is the main cause of these dead zones, and nutrient-fed hypoxia is now widely at Iowa State University on January 27, 2014 considered an important threat to the health of aquatic ecosystems (Doney 2010). The rather alarming term dead zone is surprisingly appropriate: hypoxic regions exhibit oxygen levels that are too low to support many aquatic organisms including commercially desirable species. While some dead zones are naturally occurring, their number, size, and *School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA; e-mail: [email protected] yCenter for Agricultural and Rural Development, -
Responses of Tidal Freshwater and Brackish Marsh Macrophytes to Pulses of Saline Water Simulating Sea Level Rise and Reduced Discharge
Wetlands (2018) 38:885–891 https://doi.org/10.1007/s13157-018-1037-2 ORIGINAL RESEARCH Responses of Tidal Freshwater and Brackish Marsh Macrophytes to Pulses of Saline Water Simulating Sea Level Rise and Reduced Discharge Fan Li1 & Steven C. Pennings1 Received: 7 June 2017 /Accepted: 16 April 2018 /Published online: 25 April 2018 # Society of Wetland Scientists 2018 Abstract Coastal low-salinity marshes are increasingly experiencing periodic to extended periods of elevated salinities due to the com- bined effects of sea level rise and altered hydrological and climatic conditions. However, we lack the ability to predict detailed vegetation responses, especially for saline pulses that are more realistic in nature than permanent saline presses. In this study, we exposed common freshwater and brackish plants to different durations (1–31 days per month for 3 months) of saline water (salinity of 5). We found that Zizaniopsis miliacea was more tolerant to salinity than the other two freshwater species, Polygonum hydropiperoides and Pontederia cordata. We also found that Zizaniopsis miliacea belowground and total biomass appeared to increase with salinity pulses up to 16 days in length, although this relationship was quite variable. Brackish plants, Spartina cynosuroides, Schoenoplectus americanus and Juncus roemerianus, were unaffected by the experimental treatments. Our ex- periment did not evaluate how competitive interactions would further affect responses to salinity but our results suggest the hypothesis that short pulses of saline water will increase the cover of Zizaniopsis miliacea and decrease the cover of Polygonum hydropiperoides and Pontederia cordata in tidal freshwater marshes, thereby reducing diversity without necessarily affecting total plant biomass. -
Fisheries Research 213 (2019) 219–225
Fisheries Research 213 (2019) 219–225 Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres Contrasting river migrations of Common Snook between two Florida rivers using acoustic telemetry T ⁎ R.E Bouceka, , A.A. Trotterb, D.A. Blewettc, J.L. Ritchb, R. Santosd, P.W. Stevensb, J.A. Massied, J. Rehaged a Bonefish and Tarpon Trust, Florida Keys Initiative Marathon Florida, 33050, United States b Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, 100 8th Ave. Southeast, St Petersburg, FL, 33701, United States c Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Charlotte Harbor Field Laboratory, 585 Prineville Street, Port Charlotte, FL, 33954, United States d Earth and Environmental Sciences, Florida International University, 11200 SW 8th street, AHC5 389, Miami, Florida, 33199, United States ARTICLE INFO ABSTRACT Handled by George A. Rose The widespread use of electronic tags allows us to ask new questions regarding how and why animal movements Keywords: vary across ecosystems. Common Snook (Centropomus undecimalis) is a tropical estuarine sportfish that have been Spawning migration well studied throughout the state of Florida, including multiple acoustic telemetry studies. Here, we ask; do the Common snook spawning behaviors of Common Snook vary across two Florida coastal rivers that differ considerably along a Everglades national park gradient of anthropogenic change? We tracked Common Snook migrations toward and away from spawning sites Caloosahatchee river using acoustic telemetry in the Shark River (U.S.), and compared those migrations with results from a previously Acoustic telemetry, published Common Snook tracking study in the Caloosahatchee River. -
Freshwater Harmful Algal Blooms: Causes, Challenges, and Policy Considerations
Freshwater Harmful Algal Blooms: Causes, Challenges, and Policy Considerations Updated July 8, 2020 Congressional Research Service https://crsreports.congress.gov R44871 SUMMARY R44871 Freshwater Harmful Algal Blooms: Causes, July 8, 2020 Challenges, and Policy Considerations Laura Gatz Scientific research indicates that in recent years, the frequency and geographic Analyst in Environmental distribution of harmful algal blooms (HABs) have been increasing nationally and Policy globally. Because the impacts of HABs can be severe and widespread—often with interstate implications—these issues have been a perennial interest for Congress. While algal communities are natural components of healthy aquatic ecosystems, under certain conditions (e.g., increased temperatures and nutrient concentrations), algae may grow excessively, or “bloom,” and produce toxins that can harm human health, animals, aquatic ecosystems, and the economy. In 2014, a cyanobacterial HAB in Lake Erie affected the drinking water for more than 500,000 people in Toledo, Ohio. In 2016, a massive HAB in Florida’s Lake Okeechobee negatively impacted tourism and aquatic life. HABs have been recorded in every state and have become a concern nationwide. Many types of algae can cause HABs in freshwater systems. The most frequent and severe blooms involve the proliferation of cyanobacteria. Some cyanobacteria species can produce toxins—cyanotoxins—that can cause mild to severe health effects in humans and kill aquatic life and other animals. HABs can also contribute to deteriorating water quality and ecosystem health. As masses of cyanobacteria or other algae die and decompose, they consume oxygen, sometimes forming “dead zones” where life cannot survive. These areas can kill fish and organisms, such as crabs and clams, and have detrimental economic effects. -
National Estuary Program Summary Work Plan
NATIONAL ESTUARY PROGRAM SUMMARY WORK PLAN FOR FEDERAL FISCAL YEAR 2019 FUNDING FOR COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN IMPLEMENTATION ACTIVITIES DURING THE PERIOD October 1, 2019-September 30, 2020 or beyond [FY2020] WITH PRIOR YEAR GOALS/ACCOMPLISHMENTS/HIGHLIGHTS FOR THE PERIOD October 1, 2018- September 30, 2019 [FY2019] August 2019 Prepared by: EPA Long Island Sound National Program Office in consultation with and on behalf of the Long Island Sound Study Funded Management Conference Partners Long Island Sound Study FY2019 Work Plan National Estuary Program TABLE OF CONTENTS A. General Information Reporting Requirements ................................................................................. 1 1. CCMP 2019 Goal Focus .................................................................................................................. 1 a. NEP Implementation Review ...................................................................................................... 2 2. FY2019 LISS Budget Breakdown .................................................................................................. 2 3. LISS Staff and Their Official Responsibilities ................................................................................ 2 4. Grant Awards ................................................................................................................................... 3 B. Proposed New and Ongoing (FY2019) Projects................................................................................. 4 1. Program Implementation