HPC User Guide

Total Page:16

File Type:pdf, Size:1020Kb

HPC User Guide Supercomputing Wales HPC User Guide Version 2.0 March 2020 Supercomputing Wales User Guide Version 2.0 1 HPC User Guide Version 2.0 Table of Contents Glossary of terms used in this document ............................................................................................... 5 1 An Introduction to the User Guide ............................................................................................... 10 2 About SCW Systems ...................................................................................................................... 12 2.1 Cardiff HPC System - About Hawk......................................................................................... 12 2.1.1 System Specification: .................................................................................................... 12 2.1.2 Partitions: ...................................................................................................................... 12 2.2 Swansea HPC System - About Sunbird .................................................................................. 13 2.2.1 System Specification: .................................................................................................... 13 2.2.2 Partitions: ...................................................................................................................... 13 2.3 Cardiff Data Analytics Platform - About Sparrow (Coming soon) ......................................... 14 3 Registration & Access .................................................................................................................... 15 3.1 Gaining Access for Users & Projects ..................................................................................... 15 3.1.1 Applying for a user account .......................................................................................... 15 3.1.2 Accessing the systems ................................................................................................... 16 3.1.3 Applying for a new project ............................................................................................ 16 3.1.4 Joining an existing project ............................................................................................. 16 3.2 Terms & Conditions ............................................................................................................... 16 3.3 Accessing the Systems from the Internet ............................................................................. 17 3.3.1 Let’s Go! ........................................................................................................................ 17 3.3.2 SSH Address Details....................................................................................................... 17 3.3.3 Logging in from Windows ............................................................................................. 17 3.3.4 Logging in to the Cardiff System ................................................................................... 18 3.3.5 Logging in to the Swansea System (Sunbird) ................................................................ 18 3.3.6 Logging in from Linux/Mac ........................................................................................... 19 3.3.7 Entering your Password ................................................................................................ 19 4 Using the Systems ......................................................................................................................... 21 4.1 Command Line Interface & Software Access ........................................................................ 21 4.1.1 Modules ........................................................................................................................ 21 4.1.2 Can I Pre-Load Modules in .myenv? .............................................................................. 22 4.1.3 Customising Bash .......................................................................................................... 22 4.1.4 Can I use a Different Shell? ........................................................................................... 22 4.1.5 Changing your Password ............................................................................................... 22 4.2 Running Jobs with Slurm ....................................................................................................... 22 4.2.1 Submitting a Job ............................................................................................................ 22 4.2.2 Monitoring Jobs ............................................................................................................ 23 4.2.3 Killing a Job .................................................................................................................... 25 4.2.4 Completed Jobs ............................................................................................................. 25 4.2.5 Specifying which project is running the job .................................................................. 26 4.2.6 Example Jobs ................................................................................................................. 26 4.3 Slurm Job Directives, Variables & Partitions ......................................................................... 27 4.3.1 Job Runtime Environment in Slurm .............................................................................. 27 4.3.2 #SBATCH Directives ....................................................................................................... 27 4.3.3 Environment Variables .................................................................................................. 28 4.3.4 System Queues and Partitions in Slurm ........................................................................ 28 Supercomputing Wales User Guide Version 2.0 2 HPC User Guide Version 2.0 4.4 Using GPUs ............................................................................................................................ 29 4.4.1 GPU Usage ..................................................................................................................... 29 4.4.2 CUDA Versions & Hardware Differences ...................................................................... 29 4.4.3 GPU Compute Modes.................................................................................................... 29 4.5 Using the AMD EPYC Systems ............................................................................................... 30 4.5.1 What are the AMD EPYC nodes?................................................................................... 30 4.5.2 Using the AMD EPYC nodes .......................................................................................... 30 4.5.3 Optimisation Options in the Compiler .......................................................................... 31 4.5.4 Use of the Intel Math Kernel Library (MKL) .................................................................. 31 4.5.5 OpenMP ........................................................................................................................ 31 4.5.6 Finding the Incompatibles ............................................................................................. 31 4.6 Data Storage .......................................................................................................................... 32 4.6.1 Types of Storage ............................................................................................................ 32 4.6.2 Checking Storage Quotas .............................................................................................. 32 4.6.3 Shared Areas ................................................................................................................. 33 4.7 Conduct & Best Practice........................................................................................................ 33 5 Advanced Use................................................................................................................................ 35 5.1 MPI and/or OpenMP Jobs ..................................................................................................... 35 5.1.1 MPI ................................................................................................................................ 35 5.1.2 OpenMP ........................................................................................................................ 35 5.1.3 MPI + OpenMP .............................................................................................................. 35 5.2 Batch Submission of Serial Tasks .......................................................................................... 35 5.2.1 Shell process control ..................................................................................................... 36 5.2.2 GNU Parallel and Slurm’s srun command ..................................................................... 36 5.2.3 Multi-Threaded Tasks ................................................................................................... 38 5.3 Job Arrays .............................................................................................................................. 38 5.3.1 Submission .................................................................................................................... 38 5.3.2 Monitoring ...................................................................................................................
Recommended publications
  • 07 Vectorization for Intel C++ & Fortran Compiler .Pdf
    Vectorization for Intel® C++ & Fortran Compiler Presenter: Georg Zitzlsberger Date: 10-07-2015 1 Agenda • Introduction to SIMD for Intel® Architecture • Compiler & Vectorization • Validating Vectorization Success • Reasons for Vectorization Fails • Intel® Cilk™ Plus • Summary 2 Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Vectorization • Single Instruction Multiple Data (SIMD): . Processing vector with a single operation . Provides data level parallelism (DLP) . Because of DLP more efficient than scalar processing • Vector: . Consists of more than one element . Elements are of same scalar data types (e.g. floats, integers, …) • Vector length (VL): Elements of the vector A B AAi i BBi i A B Ai i Bi i Scalar Vector Processing + Processing + C CCi i C Ci i VL 3 Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Evolution of SIMD for Intel Processors Present & Future: Goal: Intel® MIC Architecture, 8x peak FLOPs (FMA) over 4 generations! Intel® AVX-512: • 512 bit Vectors • 2x FP/Load/FMA 4th Generation Intel® Core™ Processors Intel® AVX2 (256 bit): • 2x FMA peak Performance/Core • Gather Instructions 2nd Generation 3rd Generation Intel® Core™ Processors Intel® Core™ Processors Intel® AVX (256 bit): • Half-float support • 2x FP Throughput • Random Numbers • 2x Load Throughput Since 1999: Now & 2010 2012 2013 128 bit Vectors Future Time 4 Optimization Notice
    [Show full text]
  • Effective Virtual CPU Configuration with QEMU and Libvirt
    Effective Virtual CPU Configuration with QEMU and libvirt Kashyap Chamarthy <[email protected]> Open Source Summit Edinburgh, 2018 1 / 38 Timeline of recent CPU flaws, 2018 (a) Jan 03 • Spectre v1: Bounds Check Bypass Jan 03 • Spectre v2: Branch Target Injection Jan 03 • Meltdown: Rogue Data Cache Load May 21 • Spectre-NG: Speculative Store Bypass Jun 21 • TLBleed: Side-channel attack over shared TLBs 2 / 38 Timeline of recent CPU flaws, 2018 (b) Jun 29 • NetSpectre: Side-channel attack over local network Jul 10 • Spectre-NG: Bounds Check Bypass Store Aug 14 • L1TF: "L1 Terminal Fault" ... • ? 3 / 38 Related talks in the ‘References’ section Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications What this talk is not about 4 / 38 Related talks in the ‘References’ section What this talk is not about Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications 4 / 38 What this talk is not about Out of scope: Internals of various side-channel attacks How to exploit Meltdown & Spectre variants Details of performance implications Related talks in the ‘References’ section 4 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) libvirtd QMP QMP QEMU QEMU VM1 VM2 Custom Disk1 Disk2 Appliance ioctl() KVM-based virtualization components Linux with KVM 5 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) libvirtd QMP QMP Custom Appliance KVM-based virtualization components QEMU QEMU VM1 VM2 Disk1 Disk2 ioctl() Linux with KVM 5 / 38 OpenStack, et al. libguestfs Virt Driver (guestfish) Custom Appliance KVM-based virtualization components libvirtd QMP QMP QEMU QEMU VM1 VM2 Disk1 Disk2 ioctl() Linux with KVM 5 / 38 libguestfs (guestfish) Custom Appliance KVM-based virtualization components OpenStack, et al.
    [Show full text]
  • Job Scheduling in Java Applications Job Schedulers Let Developers Focus on Their Applications and Not on Scheduling Details
    flux.ly File Orchestration Solutions for Banking and Finance Reading Time: 8 minutes Job Scheduling in Java Applications Job schedulers let developers focus on their applications and not on scheduling details. Reading Time: 8 minutes Scheduling tasks in J2EE applications is a common need. There is more to job scheduling than running backups at 3 o'clock in the morning. Customer relationship management (CRM) applications, for example, need to contact customers periodically during the sales cycle. File transfer applications need to transmit and receives files on a regular basis, except on holidays. Administrative applications need to send reminder emails to notify employees and customers about important events. All these enterprise applications can benefit from job scheduling. This article first explores the need for job scheduling in J2EE applications. Section 2 explains why job scheduling can add critical functionality to enterprise applications. In Section 3, related work is reviewed. Section 4 presents a set of requirements for job scheduling software in J2EE applications. Finally, Section 5 walks through the design of an enterprise application that uses job scheduling. The need for enterprise job scheduling Many enterprise applications can benefit from job scheduling. Sales and customer relationship software, for example, needs to contact customers over the course of months and years. For example: 1. Followups are sent 10 and 30 days after a potential customer first contacts the sales organization. 2. Reminder notices are sent to existing customers 60 and 20 days before the customer's support contract expires. 3. If the customer does not contact the technical support department for 90 days, a followup is sent asking if the customer needs any help with the product or service.
    [Show full text]
  • New Instruction Set Extensions
    New Instruction Set Extensions Instruction Set Innovation in Intels Processor Code Named Haswell [email protected] Agenda • Introduction - Overview of ISA Extensions • Haswell New Instructions • New Instructions Overview • Intel® AVX2 (256-bit Integer Vectors) • Gather • FMA: Fused Multiply-Add • Bit Manipulation Instructions • TSX/HLE/RTM • Tools Support for New Instruction Set Extensions • Summary/References Copyright© 2012, Intel Corporation. All rights reserved. Partially Intel Confidential Information. 2 *Other brands and names are the property of their respective owners. Instruction Set Architecture (ISA) Extensions 199x MMX, CMOV, Multiple new instruction sets added to the initial 32bit instruction PAUSE, set of the Intel® 386 processor XCHG, … 1999 Intel® SSE 70 new instructions for 128-bit single-precision FP support 2001 Intel® SSE2 144 new instructions adding 128-bit integer and double-precision FP support 2004 Intel® SSE3 13 new 128-bit DSP-oriented math instructions and thread synchronization instructions 2006 Intel SSSE3 16 new 128-bit instructions including fixed-point multiply and horizontal instructions 2007 Intel® SSE4.1 47 new instructions improving media, imaging and 3D workloads 2008 Intel® SSE4.2 7 new instructions improving text processing and CRC 2010 Intel® AES-NI 7 new instructions to speedup AES 2011 Intel® AVX 256-bit FP support, non-destructive (3-operand) 2012 Ivy Bridge NI RNG, 16 Bit FP 2013 Haswell NI AVX2, TSX, FMA, Gather, Bit NI A long history of ISA Extensions ! Copyright© 2012, Intel Corporation. All rights reserved. Partially Intel Confidential Information. 3 *Other brands and names are the property of their respective owners. Instruction Set Architecture (ISA) Extensions • Why new instructions? • Higher absolute performance • More energy efficient performance • New application domains • Customer requests • Fill gaps left from earlier extensions • For a historical overview see http://en.wikipedia.org/wiki/X86_instruction_listings Copyright© 2012, Intel Corporation.
    [Show full text]
  • Operating Guide
    Operating Guide EPIA EN-Series Mini-ITX Mainboard January 18, 2012 Version 1.21 EPIA EN-Series Operating Guide Table of Contents Table of Contents ...................................................................................................................................................................................... i VIA EPIA EN-Series Overview.............................................................................................................................................................. 1 VIA EPIA EN-Series Layout .................................................................................................................................................................. 2 VIA EPIA EN-Series Specifications ...................................................................................................................................................... 3 VIA EPIA EN Processor SKUs .............................................................................................................................................................. 4 VIA CN700 Chipset Overview ............................................................................................................................................................... 5 VIA EPIA EN-Series I/O Back Panel Layout ...................................................................................................................................... 6 VIA EPIA EN-Series Layout Diagram & Mounting Holes ..............................................................................................................
    [Show full text]
  • Geek Guide > Beyond Cron
    GEEK GUIDE BEYOND CRON Table of Contents Ease of Use ..................................................................... 8 Multi-Server-Friendly .................................................... 10 Dependency Management ............................................ 13 Easy to Visualize ........................................................... 16 Delegation of Authority ................................................. 18 Management by Exception ........................................... 21 Flexible Scheduling ....................................................... 23 Revision Control ........................................................... 24 Conclusion .................................................................... 24 MIKE DIEHL has been using Linux since the days when Slackware came on 14 5.25” floppy disks and installed kernel version 0.83. He has built and managed several servers configured with either hardware or software RAID storage under Linux, and he has hands-on experience with both the VMware and KVM virtual machine architectures. Mike has written numerous articles for Linux Journal on a broad range of subjects, and he has a Bachelor’s degree in Mathematics with a minor in Computer Science. He lives in Blythewood, South Carolina, with his wife and four sons. 2 GEEK GUIDE BEYOND CRON GEEK GUIDES: Mission-critical information for the most technical people on the planet. Copyright Statement © 2015 Linux Journal. All rights reserved. This site/publication contains materials that have been created, developed or
    [Show full text]
  • SIMD Extensions
    SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel.
    [Show full text]
  • VSC HPC Tutorial for Vrije Universiteit Brussel Linux Users
    VLAAMS SUPERCOMPUTER Innovative Computing CENTRUM for A Smarter Flanders HPC Tutorial Last updated: September 29 2021 For Linux Users Authors: Franky Backeljauw5, Stefan Becuwe5, Geert Jan Bex3, Geert Borstlap5, Jasper Devreker2, Stijn De Weirdt2, Andy Georges2, Balázs Hajgató1,2, Kenneth Hoste2, Kurt Lust5, Samuel Moors1, Ward Poelmans1, Mag Selwa4, Álvaro Simón García2, Bert Tijskens5, Jens Timmerman2, Kenneth Waegeman2, Toon Willems2 Acknowledgement: VSCentrum.be 1Free University of Brussels 2Ghent University 3Hasselt University 4KU Leuven 5University of Antwerp 1 Audience: This HPC Tutorial is designed for researchers at the Vrije Universiteit Brussel and affiliated institutes who are in need of computational power (computer resources) and wish to explore and use the High Performance Computing (HPC) core facilities of the Flemish Supercomputing Centre (VSC) to execute their computationally intensive tasks. The audience may be completely unaware of the VUB-HPC concepts but must have some basic understanding of computers and computer programming. Contents: This Beginners Part of this tutorial gives answers to the typical questions that a new VUB- HPC user has. The aim is to learn how to make use of the HPC. Beginners Part Questions chapter title What is a VUB-HPC exactly? 1 Introduction to HPC Can it solve my computational needs? How to get an account? 2 Getting an HPC Account How do I connect to the VUB-HPC and 3 Connecting to the HPC infrastructure transfer my files and programs? How to start background jobs? 4 Running batch jobs How to start jobs with user interaction? 5 Running interactive jobs Where do the input and output go? 6 Running jobs with input/output data Where to collect my results? Can I speed up my program by explor- 7 Multi core jobs/Parallel Computing ing parallel programming techniques? Troubleshooting 8 Troubleshooting What are the rules and priorities of 9 HPC Policies jobs? FAQ 10 Frequently Asked Questions The Advanced Part focuses on in-depth issues.
    [Show full text]
  • IBM Workload Automation: Overview Setting Job Recovery
    IBM Workload Automation IBM Overview Version 9.3 SPE (Revised July 2018) IBM Workload Automation IBM Overview Version 9.3 SPE (Revised July 2018) Note Before using this information and the product it supports, read the information in “Notices” on page 83. This edition applies to version 9, release 3, modification level 0 of IBM Workload Scheduler (program number 5698-WSH) and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright IBM Corporation 1999, 2016. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. © Copyright HCL Technologies Limited 2016, 2018. Contents Figures .............. vii | Hybrid Workload Automation ...... xxiv | Checking prerequisites before running a silent About this publication ........ ix | installation ............. xxiv | Automatically initializing IBM Workload What is new in this release ......... ix | Scheduler instances .......... xxv Who should read this publication ....... ix | Defining and managing IBM Workload Accessibility .............. ix | Scheduler role-based security ....... xxv Technical training ............ ix | Reply to a message for an IBM i job from Support information ............ x | Dynamic Workload Console ....... xxv How to read syntax diagrams ........ x | Automatic reply to waiting messages for an | IBM i job ............. xxvi Summary of enhancements ..... xiii | IBM Workload Scheduler Plug-in for Apache | IBM Workload Scheduler version 9.3 enhancements xiii | Oozie............... xxvi | IBM Workload Scheduler Plug-in for IBM | Running a script when a job completes ... xxvi | WebSphere MQ ............ xiv IBM Workload Scheduler for z/OS version 9.3 | IBM Workload Scheduler Plug-in for RESTful enhancements ............. xxvi | Web services............. xiv | Configuring a backup controller for disaster | IBM Workload Scheduler Plug-in for SAP | recovery ............
    [Show full text]
  • Arxiv:1809.03668V2 [Cs.LG] 20 Jan 2019 17, 20, 21]
    Comparing Computing Platforms for Deep Learning on a Humanoid Robot Alexander Biddulph∗, Trent Houliston, Alexandre Mendes, and Stephan K. Chalup School of Electrical Engineering and Computing The University of Newcastle, Callaghan, NSW, 2308, Australia. [email protected] Abstract. The goal of this study is to test two different computing plat- forms with respect to their suitability for running deep networks as part of a humanoid robot software system. One of the platforms is the CPU- centered Intel R NUC7i7BNH and the other is a NVIDIA R Jetson TX2 system that puts more emphasis on GPU processing. The experiments addressed a number of benchmarking tasks including pedestrian detec- tion using deep neural networks. Some of the results were unexpected but demonstrate that platforms exhibit both advantages and disadvantages when taking computational performance and electrical power require- ments of such a system into account. Keywords: deep learning, robot vision, gpu computing, low powered devices 1 Introduction Deep learning comes with challenges with respect to computational resources and training data requirements [6, 13]. Some of the breakthroughs in deep neu- ral networks (DNNs) only became possible through the availability of massive computing systems or through careful co-design of software and hardware. For example, the AlexNet system presented in [15] was implemented efficiently util- ising two NVIDIA R GTX580 GPUs for training. Machine learning on robots has been a growing area over the past years [4, arXiv:1809.03668v2 [cs.LG] 20 Jan 2019 17, 20, 21]. It has become increasingly desirable to employ DNNs in low powered devices, among them humanoid robot systems, specifically for complex tasks such as object detection, walk learning, and behaviour learning.
    [Show full text]
  • Amd Epyc 7351
    SPEC CPU2017 Floating Point Rate Result spec Copyright 2017-2019 Standard Performance Evaluation Corporation Sugon SPECrate2017_fp_base = 176 Sugon A620-G30 (AMD EPYC 7351) SPECrate2017_fp_peak = 177 CPU2017 License: 9046 Test Date: Dec-2017 Test Sponsor: Sugon Hardware Availability: Dec-2017 Tested by: Sugon Software Availability: Aug-2017 Copies 0 30.0 60.0 90.0 120 150 180 210 240 270 300 330 360 390 420 450 480 510 560 64 550 503.bwaves_r 32 552 165 507.cactuBSSN_r 64 163 130 508.namd_r 64 142 64 141 510.parest_r 32 146 168 511.povray_r 64 175 64 121 519.lbm_r 32 124 64 192 521.wrf_r 32 161 190 526.blender_r 64 188 164 527.cam4_r 64 162 248 538.imagick_r 64 250 205 544.nab_r 64 205 64 160 549.fotonik3d_r 32 163 64 96.7 554.roms_r 32 103 SPECrate2017_fp_base (176) SPECrate2017_fp_peak (177) Hardware Software CPU Name: AMD EPYC 7351 OS: Red Hat Enterprise Linux Server 7.4 Max MHz.: 2900 kernel 3.10.0-693.2.2 Nominal: 2400 Enabled: 32 cores, 2 chips, 2 threads/core Compiler: C/C++: Version 1.0.0 of AOCC Orderable: 1,2 chips Fortran: Version 4.8.2 of GCC Cache L1: 64 KB I + 32 KB D on chip per core Parallel: No L2: 512 KB I+D on chip per core Firmware: American Megatrends Inc. BIOS Version 0WYSZ018 released Aug-2017 L3: 64 MB I+D on chip per chip, 8 MB shared / 2 cores File System: ext4 Other: None System State: Run level 3 (Multi User) Memory: 512 GB (16 x 32 GB 2Rx4 PC4-2667V-R, running at Base Pointers: 64-bit 2400) Peak Pointers: 32/64-bit Storage: 1 x 3000 GB SATA, 7200 RPM Other: None Other: None Page 1 Standard Performance Evaluation
    [Show full text]
  • Intel® Architecture and Tools
    Klaus-Dieter Oertel Intel-SSG-Developer Products Division FZ Jülich, 22-05-2017 The “Free Lunch” is over, really Processor clock rate growth halted around 2005 Source: © 2014, James Reinders, Intel, used with permission Software must be parallelized to realize all the potential performance 4 Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Changing Hardware Impacts Software More cores More Threads Wider vectors Intel® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Future Intel® Xeon Intel® Xeon Phi™ Future Intel® Xeon® Processor Processor Processor Processor Xeon® Intel® Xeon® Phi™ x100 x200 Processor Xeon Phi™ Processor 5100 series 5500 series 5600 series E5-2600 v2 Processor Processor1 Coprocessor & Coprocessor (KNH) 64-bit series E5-2600 (KNC) (KNL) v3 series v4 series Up to Core(s) 1 2 4 6 12 18-22 TBD 61 72 TBD Up to Threads 2 2 8 12 24 36-44 TBD 244 288 TBD SIMD Width 128 128 128 128 256 256 512 512 512 TBD Intel® Intel® Intel® Intel® Intel® Intel® Intel® Intel® Vector ISA IMCI 512 TBD SSE3 SSE3 SSE4- 4.1 SSE 4.2 AVX AVX2 AVX-512 AVX-512 Optimization Notice Product specification for launched and shipped products available on ark.intel.com. 1. Not launched or in planning. Copyright © 2016, Intel Corporation. All rights reserved. 9 *Other names and brands may be claimed as the property of others. Changing Hardware Impacts Software More cores More Threads Wider vectors Intel® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Future Intel® Xeon Intel® Xeon Phi™ Future Intel® Xeon® Processor Processor Processor Processor Xeon® Intel® Xeon® Phi™ x100 x200 Processor Xeon Phi™ Processor 5100 series 5500 series 5600 series E5-2600 v2 Processor Processor1 Coprocessor & Coprocessor (KNH) 64-bit series E5-2600 (KNC) (KNL) v3 series v4 series Up to Core(s) 1 2 4 6 12 18-22 TBD 61 72 TBD Up to Threads 2 High2 performance8 12 24software36-44 mustTBD be 244both: 288 TBD SIMD Width 128 .
    [Show full text]