Blood Pressure Measurement

Total Page:16

File Type:pdf, Size:1020Kb

Blood Pressure Measurement Blood Pressure Measurement PhDr. Mária Sováriová Soósová, PhD. Training for Students 1. – 15. September 2019 UPJŠ, Košice, Slovakia Blood Pressure Blood pressure may be defined as the force of blood inside the blood vessels against the vessel walls. (Marieb and Hoehn, 2010 according to Dougherty, L., Lister, S., 2015) Blood pressure Systolic BP – is the peek pressure of the left ventricule contracting and blood entering the aorta, causing it to strech and there for in parts reflects the function of the left ventricule. Diastolic BP – is when the aortic valve closes, blod flows from the aorta into the smaller vessels and the aorta recoils back. This is when the aortic pressure is at its lowest and tends to reflect the resistance of the blood vessels. (Marieb and Hoehn, 2010 according to Dougherty, L., Lister, S., 2015) Factors influencing BP Age Gender Race Anxiety, fear, pain, emotional stress Medications Hemorrhage Increased intracranial pressure Hormones Diural rhythm Obesity Eating habits Exercise Smoking .......... Aerage and upper limits of blood pressure according to age in mmHg Age Average normal BP Upper limits of normal BP mm Hg mm Hg 1 year 95/65 undetermined 6 – 9 yrs. 100(105)/65 119/79 10 – 13 yrs. 110/65 124/84 14 – 17 yrs. 120/ (75)80 134/83 18 + yrs. 120/80 139/89 Classification of Hypertension ESC/ESH classification of office blood pressurea and definitions of hypertension gradeb (Williams, Mancia, Spiering, et al. 2018, p. 3030) Category Systolic (mmHg) Diastolic (mmHg) Optimal <120 and <80 Normal 120–129 and/or 80–84 High normal - prehypertension 130–139 and/or 85–89 Grade 1 hypertension 140–159 and/or 90–99 Grade 2 hypertension 160–179 and/or 100–109 Grade 3 hypertension ≥180 and/or ≥110 Isolated systolic hypertensionb ≥140 and <90 Methods of BP measuring Invasive - direct: direct in an artery continuous monitoring Noninvasive – indirect: Auscultation – Korotkoff sounds. Palpation – systolic BP Automatic BP by auscultation Equipment Sphygmomanometer – aneroid, mercury or alcohol column Pressure cuff appropriate in size Stethoscope Alcohol swab Pen, sheet or electronic health record Factors influencing BP measurement outcomes Environment (noise, talking, temperature, light) Patient´s position Siting on exam. table, crossed legs, unsupported arm, forearm under or above heart, constrictive clothing, Patient´s condition hard physical activity, exercise (2 – 3 h. rest before meas.), smoking, caffeine (30 min), alcohol, distended urinary bladder, stress, disease, ... Cuff size, cuff applied too loosely or too tight, midline of bladder not on brachial a., cuff wrapped over clothing, slow or inconsistent cuff inflation, fast cuff deflation, integrity of cuff, ... Stethoscope bell placed under cuff or near tubing, stethoscope applied too firmly Device accuracy, maintaining and calibrating equipment Factors Affecting Accuracy of Blood Pressure Measurements Factor Magnitutde of systolic/diastolic blood pressure discrepancy SBP/DBP (mmHg) Talking or active listening 10/10 Distended bladder 15/10 Cuff over clothing 5-50/unknown Smoking within 30 minutes of measurement 6-20/unknown Back unsupported 6-10/unknown Arm unsupported, sitting 1-7/5-11 Arm unsupported, standing 6-8/unknown Cuff size Arm Circumference (cm) Cuff Size (cm) 7 Up to 10 4 × 8 newborn 7 >10 to 1 5 6 × 12 infant 7 15 to 22 9 × 18 child 4 22 to 26 12 × 22 small adult 4 27 to 34 16 × 30 adult (standard) 4 35 to 44 16 × 36 large adult 4 45 to 52 16 × 42 adult thigh Contraindactions Peripherally Inserted Central Catheters in upper arm Dialysis shunt or fistula Lymphedema Injury Inflammation ... Blood Pressure Measurement Procedure Patient Preparation 1. Ask if the patient avoided caffeinated beverages and smoking for at least 30 minutes before the examination. 2. Have the patient sit calmly for five minutes with back supported and feet flat on the floor. 3. Patient’s upper arm should be bare. Avoid a tourniquet effect if rolling up sleeve. 4. Support the patient’s arm on a firm surface at heart level, slightly flexed at the elbow. 5. Both you and the patient should refrain from talking while BP is measured. Blood Pressure Measurement Procedure Positioning Recommended “Ideal” Cuff Sizes for Newborns, Sphygmomanometer and Infants, Children, and Adults4,7 Cuff Use appropriate cuff size. Arm Cuff Size (cm) Circumference The inflatable part should (cm) be long enough to encircle 7 at least 80% of the arm and Up to 10 4 × 8 newborn 7 wide enough to encircle >10 to 1 5 6 × 12 infant 40% of the arm at 7 midpoint. 15 to 22 9 × 18 child 4 When in doubt, select the 22 to 26 12 × 22 small adult 4 larger size. 27 to 34 16 × 30 adult (standard) 4 35 to 44 16 × 36 large adult 4 45 to 52 16 × 42 adult thigh 2. Wrap the cuff snugly around bare upper arm. The lower edge should be centered two finger widths above the bend of the elbow, and the midline of the bladder should be over the brachial artery pulsation. 3. The aneroid dial or mercury column should be clearly visible and facing you. 4. Using light pressure, position stethoscope with bell side down over brachial artery and not touching the cuff. Estimate systolic pressure Palpate radial artery. Inflate the cuff slowly to the point where the pulse disappears. This is the systolic pressure. Rapidly inflate the cuff to 30 mmHg above the estimated systolic pressure. Deflate cuff at a steady rate of 2 to 3 mmHg/sec. Blood Pressure Reading Note the systolic pressure — the first of 2 or more consecutive faint tapping beats (Korotkoff sound phase 1). Note diastolic pressure—the last muffled, rhythmic sound (Korotkoff sound phase 5). The absence of a tapping sound after the initial sound is known as an auscultatory gap. If this occurs, elevate subject’s arm overhead for 30 seconds then bring arm to usual supported position to re-measure. Listen for another 10 to 20 mmHg beyond the last sound heard, then quickly deflate cuff to zero. Recheck and Record If record system allows, record this BP, rounding up to the nearest 2 mmHg. Wait 1 minute and recheck BP. If record system allows, record this BP. Average the BP readings and record the average; however, if the first two readings differ by more than 5 mmHg, then take a third measurement and average the three. Record blood pressure classification and recommendations for follow-up of patients at various stages of hypertension. Communicate to patient verbally and in writing the BP goal for their treatment, their specific BP numbers, and when they should be monitored next. Do not dismiss or minimize to the patient the significance of a borderline reading. If appropriate, discuss medical treatment and lifestyle approaches to preventing and treating high BP. For First Examination Obtain 2 readings in each arm, waiting at least 1 minute between readings. If the readings consistently differ, the arm with the higher pressure should be used for this and subsequent examinations. For Subsequent Examinations Refer to the patient’s chart to determine which arm had the higher reading on the first examination. Obtain 2-nd BP readings in that arm, waiting at least 1 minute between readings. If the readings differ by less than or equal to 5 mmHg, then the readings should be averaged and recorded. If the readings differ by more than 5 mmHg, then at least one additional reading should be taken and all the readings should be averaged and recorded. For All Measurements Round up to the nearest 2 mm Hg. Record the average as soon as practical. If the charts or electronic health records allow, record the individual measurements and the averages. Also record patient’s cuff size, and the position (e.g., standing, seated, supine) and which arm was used. Most Common Sources of Error in Blood Pressure Measurement Technique Cuff size and application Arm position Differences in arm size Rest period prior to measurement Inflation/deflation method Concentration of the measurer Lack of repeated measures Time between repeated measures Lack of calibration/maintenance of measurement devices Body position Muscle tension Quality of stethoscope Level of training of measurer Forearm measurement of blood pressure – circumstance of forearm > 50 cm, auscultation of Korotkoff sounds over the radial artery or using a Doppler also can be done. Cardiac dysrhythmias – to take the average of more than one measurement, Pregnancy – Blood pressure tends to decrease early in gestation and frequently is 10 mm Hg below pre-pregnancy levels. The mean blood pressure in the second trimester is 105/60 mm Hg. The decline in blood pressure is due to peripheral vasodilatation the causes of which are not clearly understood For patients with sounds not audible per auscultation (e.g., those with weak Korotkoff sounds), a Doppler probe can be used over the brachial artery to determine the patient's systolic pressure. Assessing BP in both arms For the initial assessment, measure BP on both arms, especially if the patient has heart cardiac disease or if the reading in the first arm is abnormal. Normally, a difference of 5 to 10 mm Hg exists between the arms. In subsequent assessments, the BP should measured in the arm with the higher BP. Pressure differences higher than 10 mm Hg indicate conditions such as aortic stenosis or an arterial occlusion in the arm with the lower pressure. Alternative sites/methods BP in the lower extremities prone position is the best when it is not possible – supine position with slightly elevated knee membrane of statoscope place on posterior popliteal artery Systolic BP in the lower extremities is usually higher by 10 to 40 mm Hg than in the brachial artery, Diastolic BP is essentially the same.
Recommended publications
  • General Physical Examination Skills for Ahps
    General Physical Examination Techniques for the Rheumatology Clinic This manual has been developed as an overview of the general examination of the rheumatology patient. Certain details have been specifically omitted because they have no relevance when examining a stable out patient in the rheumatology clinic. Vital Signs 1. Heart rate 2. Blood pressure 3. Weight 1. Heart Rate There are two things you want to document when assessing heart rate: The actual rate and the rhythm. Rate: count pulse for at least 15 – 30 seconds (e.g., if you count the rate for 15 seconds, multiply this result by 4 to determine heart rate). The radial pulse is most commonly used to assess the heart rate. With the pads of your index and middle fingers, compress the radial artery until a pulsation is detected. Normal 60-100 bpm Bradycardia <60 bpm Tachycardia >100 bpm 2. Heart Rhythm The rhythm should be regular. A regularly irregular rhythm is one where the pulse is irregular but there is a pattern to the irregularity. For example every third beat is dropped. An irregularly irregular rhythm is one where the pulse is irregular and there is no pattern to the irregularity. The classic example of this is atrial fibrillation. 3. Blood Pressure Blood pressure should be measured in both arms, and should include an assessment of orthostatic change How to measure the Brachial Artery Blood Pressure: • Patient should be relaxed, in a supine or sitting position, with the arms positioned correctly(at, not above, the level of the heart) • Remember that measurements should be taken bilaterally • Choice of appropriate cuff size for the patient is important to accuracy of measured blood pressure.
    [Show full text]
  • High Blood Pressure
    KNOW THE FACTS ABOUT High Blood Pressure What is high blood pressure? What are the signs and symptoms? Blood pressure is the force of blood High blood pressure usually has no against your artery walls as it circulates warning signs or symptoms, so many through your body. Blood pressure people don’t realize they have it. That’s normally rises and falls throughout the why it’s important to visit your doctor day, but it can cause health problems if regularly. Be sure to talk with your it stays high for a long time. High blood doctor about having your blood pressure pressure can lead to heart disease and checked. stroke—leading causes of death in the United States.1 How is high blood pressure diagnosed? Your doctor measures your blood Are you at risk? pressure by wrapping an inflatable cuff One in three American adults has high with a pressure gauge around your blood pressure—that’s an estimated arm to squeeze the blood vessels. Then 67 million people.2 Anyone, including he or she listens to your pulse with a children, can develop it. stethoscope while releasing air from the cuff. The gauge measures the pressure in Several factors that are beyond your the blood vessels when the heart beats control can increase your risk for high (systolic) and when it rests (diastolic). blood pressure. These include your age, sex, and race or ethnicity. But you can work to reduce your risk by How is it treated? eating a healthy diet, maintaining a If you have high blood pressure, your healthy weight, not smoking, and being doctor may prescribe medication to treat physically active.
    [Show full text]
  • Essentials of Bedside Cardiology CONTEMPORARY CARDIOLOGY
    Essentials of Bedside Cardiology CONTEMPORARY CARDIOLOGY CHRISTOPHER P. CANNON, MD SERIES EDITOR Aging, Heart Disease and Its Management: Facts and Controversies, edited by Niloo M. Edwards, MD, Mathew S. Maurer, MD, and Rachel B. Wellner, MD, 2003 Peripheral Arterial Disease: Diagnosis and Treatment, edited by Jay D. Coffman, MD, and Robert T. Eberhardt, MD, 2003 Essentials ofBedside Cardiology: With a Complete Course in Heart Sounds and Munnurs on CD, Second Edition, by Jules Constant, MD, 2003 Primary Angioplasty in Acute Myocardial Infarction, edited by James E. Tcheng, MD,2002 Cardiogenic Shock: Diagnosis and Treatment, edited by David Hasdai, MD, Peter B. Berger, MD, Alexander Battler, MD, and David R. Holmes, Jr., MD, 2002 Management of Cardiac Arrhythmias, edited by Leonard I. Ganz, MD, 2002 Diabetes and Cardiovascular Disease, edited by Michael T. Johnstone and Aristidis Veves, MD, DSC, 2001 Blood Pressure Monitoring in Cardiovascular Medicine and Therapeutics, edited by William B. White, MD, 2001 Vascular Disease and Injury: Preclinical Research, edited by Daniell. Simon, MD, and Campbell Rogers, MD 2001 Preventive Cardiology: Strategies for the Prevention and Treatment of Coronary Artery Disease, edited by JoAnne Micale Foody, MD, 2001 Nitric Oxide and the Cardiovascular System, edited by Joseph Loscalzo, MD, phD and Joseph A. Vita, MD, 2000 Annotated Atlas of Electrocardiography: A Guide to Confident Interpretation, by Thomas M. Blake, MD, 1999 Platelet Glycoprotein lIb/IlIa Inhibitors in Cardiovascular Disease, edited by A. Michael Lincoff, MD, and Eric J. Topol, MD, 1999 Minimally Invasive Cardiac Surgery, edited by Mehmet C. Oz, MD and Daniel J. Goldstein, MD, 1999 Management ofAcute Coronary Syndromes, edited by Christopher P.
    [Show full text]
  • Blood Pressure (BP) Measurements in Adults
    Page 5 Blood Pressure (BP) Measurements in Adults Ramesh Khanna, MD Karl D. Nolph, MD Chair in Nephrology Professor of Medicine Director, Division of Nephrology University of Missouri-Columbia Uncontrolled high blood pressure is present in every 3rd person in the American community and is attributed to be a major risk factor for progression of chronic kidney disease, coronary artery disease, and stroke. Therefore, blood pressure recording is the most common measurements at home and by healthcare professionals in all of clinical medicine. It might come as a surprise that majority of recordings are done in a less than ideal circumstances and consequently performed inaccurately. BP measurements using mercury sphygmomanometer by a trained health care professional is the gold standard for clinical assessment of blood pressures. The appearance of the 1st Korotkoff sound signals the systolic blood pressure and the disappearance of the 5th sound denotes the diastolic blood pressure. The hypertension experts believe and have increasing evidence to suggest that this method frequently either over diagnose hypertension or fail to recognize masked hypertension (blood pressure that is normal in the physician’s office setting but high at other times including at home). The four commonly recognized reasons for this are: Avoidable inaccuracies in the methods, The inherent variability of blood pressure; and The tendency for blood pressure to increase in the presence of a health care professional (the so-called white coat effect). Failure to standardize blood pressure measurement dos and don’ts. It is believed and also to some extent evidence based that the health care providers including physicians often do not follow established guidelines for blood pressure measurement.
    [Show full text]
  • Blood Pressure Year 1 Year 2 Core Clinical/Year 3+
    Blood Pressure Year 1 Year 2 Core Clinical/Year 3+ Do Do • Patient at rest for 5 minutes • Measure postural BP and pulse in patients with a • Arm at heart level history suggestive of volume depletion or • Correct size cuff- bladder encircles 80% of arm syncope • Center of cuff aligns with brachial artery -Measure BP and pulse in supine position • Cuff wrapped snugly on bare arm with lower -Slowly have patient rise and stand (lie them down edge 2-3 cm above antecubital fossa promptly if symptoms of lightheadedness occur) • Palpate radial artery, inflate cuff to 70 mmHg, -Measure BP and pulse after 1 minute of standing then increase in 10 mmHg increments to 30 mmHg above point where radial pulse disappears. Know Deflate slowly until pulse returns; this is the • Normally when a person stands fluid shifts to approximate systolic pressure. lower extremities causing a compensatory rise in • Auscultate the Korotkoff sounds pulse by up to 10 bpm with BP dropping slightly -place bell lightly in antecubital fossa • Positive postural vital signs are defined as -inflate BP to 20-30mmHg above SBP as determined symptoms of lightheadedness and/or a drop in by palpation SBP of 20 mmHg with standing -deflate cuff at rate 2mmHg/second while auscultating • Know variations in BP cuff sizes -first faint tapping (Phase I Korotkoff) = SBP; • A lack of rise in pulse in a patient with an Disappearance of sound (Phase V Korotkoff)=DBP orthostatic drop in pressure is a clue that the Know cause is neurologic or related or related to -Korotkoff sounds are lower pitch, better heard by bell medications (eg.
    [Show full text]
  • Does This Patient Have Aortic Regurgitation?
    THE RATIONAL CLINICAL EXAMINATION Does This Patient Have Aortic Regurgitation? Niteesh K. Choudhry, MD Objective To review evidence as to the precision and accuracy of clinical examina- Edward E. Etchells, MD, MSc tion for aortic regurgitation (AR). Methods We conducted a structured MEDLINE search of English-language articles CLINICAL SCENARIO (January 1966-July 1997), manually reviewed all reference lists of potentially relevant You are asked to see a 59-year-old articles, and contacted authors of relevant studies for additional information. Each study woman with liver cirrhosis who will be (n = 16) was independently reviewed by both authors and graded for methodological undergoing sclerotherapy for esopha- quality. geal varices. When she was examined by Results Most studies assessed cardiologists as examiners. Cardiologists’ precision for her primary care physician, she had a detecting diastolic murmurs was moderate using audiotapes (k = 0.51) and was good pulse pressure of 70 mm Hg. The pri- in the clinical setting (simple agreement, 94%). The most useful finding for ruling in mary care physician is concerned about AR is the presence of an early diastolic murmur (positive likelihood ratio [LR], 8.8- the possibility of aortic regurgitation 32.0 [95% confidence interval {CI}, 2.8-32 to 16-63] for detecting mild or greater AR (AR) and asks you whether endocardi- and 4.0-8.3 [95% CI, 2.5-6.9 to 6.2-11] for detecting moderate or greater AR) (2 tis prophylaxis is necessary for sclero- grade A studies). The most useful finding for ruling out AR is the absence of early di- astolic murmur (negative LR, 0.2-0.3 [95% CI, 0.1-0.3 to 0.2-0.4) for mild or greater therapy.
    [Show full text]
  • A Review of Pericardial Diseases: Clinical, ECG and Hemodynamic Features and Management
    REVIEW SHAM IK AIKAT, MD SASAN GHAFFARI, MD Department of Cardiology, Cleveland Clinic Department of Cardiology, Cleveland Clinic A review of pericardial diseases: Clinical, ECG and hemodynamic features and management ABSTRACT ECAUSE PERICARDIAL DISEASES are com- mon and often misdiagnosed, physi- Pericardial diseases are common, have multiple causes, and cians need to he familiar with their presenta- are often misdiagnosed. Physicians need to recognize the tions and distinguishing features. characteristic and distinguishing features of the three most This article reviews the clinical features, important pericardial conditions: acute pericarditis, cardiac diagnosis, and management of acute pericardi- tamponade, and constrictive pericarditis. In these tis, cardiac tamponade, and constrictive peri- conditions, proper diagnosis and appropriate management carditis. can significantly reduce morbidity and mortality. • THE PERICARDIUM KEY POINTS The pericardium envelopes the heart, extend- ing on to the adventitia of the great vessels. It Acute pericarditis is an important part of the differential is 1 to 2 mm thick and consists of an outer and diagnosis of chest pain syndromes and needs to be an inner layer. The tough, fibrous outer layer is distinguished from acute myocardial infarction both called the parietal pericardium, and the serous clinically and electrocardiographically. inner layer is called the visceral pericardium. The parietal and visceral pericardium are sep- Suspect pericardial tamponade in any patient with acute arated by fluid: 15 to 50 mL of an ultrafiltrate dyspnea, especially in the presence of a pericardial rub, of plasma that acts as a lubricant.1-2 elevated jugular venous pressure, and hypotension. The pericardium limits excessive cardiac movement and acute cardiac distension.
    [Show full text]
  • What Is High Blood Pressure?
    ANSWERS Lifestyle + Risk Reduction by heart High Blood Pressure BLOOD PRESSURE SYSTOLIC mm Hg DIASTOLIC mm Hg What is CATEGORY (upper number) (lower number) High Blood NORMAL LESS THAN 120 and LESS THAN 80 ELEVATED 120-129 and LESS THAN 80 Pressure? HIGH BLOOD PRESSURE 130-139 or 80-89 (HYPERTENSION) Blood pressure is the force of blood STAGE 1 pushing against blood vessel walls. It’s measured in millimeters of HIGH BLOOD PRESSURE 140 OR HIGHER or 90 OR HIGHER mercury (mm Hg). (HYPERTENSION) STAGE 2 High blood pressure (HBP) means HYPERTENSIVE the pressure in your arteries is higher CRISIS HIGHER THAN 180 and/ HIGHER THAN 120 than it should be. Another name for (consult your doctor or immediately) high blood pressure is hypertension. Blood pressure is written as two numbers, such as 112/78 mm Hg. The top, or larger, number (called Am I at higher risk of developing HBP? systolic pressure) is the pressure when the heart There are risk factors that increase your chances of developing HBP. Some you can control, and some you can’t. beats. The bottom, or smaller, number (called diastolic pressure) is the pressure when the heart Those that can be controlled are: rests between beats. • Cigarette smoking and exposure to secondhand smoke • Diabetes Normal blood pressure is below 120/80 mm Hg. • Being obese or overweight If you’re an adult and your systolic pressure is 120 to • High cholesterol 129, and your diastolic pressure is less than 80, you have elevated blood pressure. High blood pressure • Unhealthy diet (high in sodium, low in potassium, and drinking too much alcohol) is a systolic pressure of 130 or higher,or a diastolic pressure of 80 or higher, that stays high over time.
    [Show full text]
  • Arteries to Arterioles
    • arteries to arterioles Important: The highest pressure of circulating blood is found in arteries, and gradu- ally drops as the blood flows through the arterioles, capillaries, venules, and veins (where it is the lowest). The greatest drop in blood pressure occurs at the transition from arteries to arterioles. Arterioles are one of the blood vessels of the smallest branch of the arterial circula- tion. Blood flowing from the heart is pumped by the left ventricle to the aorta (largest artery), which in turn branches into smaller arteries and finally into arterioles. The blood continues to flow through these arterioles into capillaries, venules, and finally veins, which return the blood to the heart. Arterioles have a very small diameter (<0.5 mm), a small lumen, and a relatively thick tunica media that is composed almost entirely of smooth muscle, with little elastic tissue. This smooth muscle constricts and dilates in response to neurochemical stimuli, which in turn changes the diameter of the arterioles. This causes profound and rapid changes in peripheral resistance. This change in diameter of the arteri- oles regulates the flow of blood into the capillaries. Note: By affecting peripheral resistance, arterioles directly affect arterial blood pressure. Primary function of each type of blood vessel: - Arteries - transport blood away from the heart, generally have blood that is rich in oxygen - Arterioles - control blood pressure - Capillaries - diffusion of nutrients/oxygen - Veins - carry blood back to the heart, generally have blood that is low in oxygen.
    [Show full text]
  • Simbaby™ Specs
    SimBaby™ Specs Normal & Difficult Airway • Airway opening acquired by head tilt, chin lift and jaw trust • Oropharyngeal and nasopharyngeal airways • Bag-Valve-Mask ventilation • Orotracheal and nasotracheal intubation • Sellick Maneuver • LMA insertion • Endotracheal tube insertion • Fiberoptic intubation • Gastric tube insertion • Variable lung compliance • Variable airway resistance • Tongue edema • Laryngospasm • Pharyngeal swelling • Decreased lung compliance • Right mainstem intubation • Gastric distention Pulmonary System • Spontaneous breathing with variable rate, depth and regularity • Bilateral and unilateral chest rise and fall • CO2 exhalation • Normal and abnormal breath sounds – bilateral • Lung Sounds: Normal, course crackles, fine crackles, stridor, wheezes and rhonchi • Oxygen saturation • See-saw respiration • Retractions • Pneumothorax • Unilateral chest movement • Unilateral breath sounds • Unilateral needle thoracentesis mid-clavicular • Unilateral chest tube insertion Cardiovascular System • Extensive ECG library with rate from 20-360 • CPR compressions generate palpable pulses, blood pressure waveform, and generate artifacts on ECG • Heart Sounds:Normal, systolic murmur, holosystolic murmur, diastolic murmur, continuous murmur and gallop • Blood pressure (BP) measured manually by auscultation of Korotkoff sounds • Pulses: Unilateral radial and brachial pulse and bilateral femoral pulses synchronized with ECG • Pulse strength variable with BP • Display of cardiac rhythms via 3-lead ECG monitoring • 12-lead dynamic
    [Show full text]
  • The Accuracy of Alternatives to Mercury Sphygmomanometers OCTOBER 2009
    HEALTH CARE RESEARCH COLLABORATIVE The Accuracy of Alternatives to Mercury Sphygmomanometers OCTOBER 2009 A U T H O R : Susan Buchanan, MD, MPH Health Care Without Harm has initiated a research collaborative coordinated by faculty of the University of Illinois at Chicago School of Public Health, with support from the Pioneer Portfolio of the Robert Wood Johnson Foundation, aimed at stimulating collaborative research around health and safety improvements in health care. This collaborative is designed to increase the evidence base concerning the human health and environmental impacts of materials, products and practices within health care. In partnership with the Global Health and Safety Initiative (GHSI), the Research Collaborative is engaged in research directed at the intersection of environmental, patient, and worker safety issues related to building and operating health care institutions. This paper is the third in a series of papers in which the Collaborative provides research and analysis of factors influencing patient, worker and environmental safety and sustainability in the healthcare sector. The editors of this series are Peter Orris, MD, MPH and Susan Kaplan, JD. TABLE OF CONTENTS Executive Summary .......................................................................................................................................3 I. Introduction .........................................................................................................................................4 II. Methods ...............................................................................................................................................7
    [Show full text]
  • Who Technical Specifications for Automated Non-Invasive Blood Pressure Measuring Devices with Cuff
    WHO TECHNICAL SPECIFICATIONS FOR AUTOMATED NON-INVASIVE BLOOD PRESSURE MEASURING DEVICES WITH CUFF WHO MEDICAL DEVICE TECHNICAL SERIES fully automated cuff 01 WHO TECHNICAL SPECIFICATIONS FOR AUTOMATED NON-INVASIVE BLOOD PRESSURE MEASURING DEVICES WITH CUFF WHO MEDICAL DEVICE TECHNICAL SERIES WHO technical specifications for automated non-invasive blood pressure measuring devices with cuff ISBN 978-92-4-000265-4 (electronic version) ISBN 978-92-4-000266-1 (print version) © World Health Organization 2020 Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO technical specifications for automated non-invasive blood pressure measuring devices with cuff. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.
    [Show full text]