Invasion of Toxoplasma Gondii Occurs by Active Penetration of the Host Cell

Total Page:16

File Type:pdf, Size:1020Kb

Invasion of Toxoplasma Gondii Occurs by Active Penetration of the Host Cell Journal of Cell Science 108, 2457-2464 (1995) 2457 Printed in Great Britain © The Company of Biologists Limited 1995 Invasion of Toxoplasma gondii occurs by active penetration of the host cell J. Hiroshi Morisaki1, John E. Heuser1 and L. David Sibley2,* 1Department of Cell Biology and Physiology, and 2Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA *Author for correspondence SUMMARY Toxoplasma gondii is an obligate intracellular parasite that phagosome that formed over a period of 2-4 minutes. infects a wide variety of vertebrate cells including Phagocytosis involved both reorganization of the host macrophages. We have used a combination of video cytoskeleton and tyrosine phosphorylation of host proteins. microscopy and fluorescence localization to examine the In some cases, parasites that were first internalized by entry of Toxoplasma into macrophages and nonphagocytic phagocytosis, were able to escape from the phagosome by host cells. Toxoplasma actively invaded host cells without a process analogous to invasion. These studies reveal that inducing host cell membrane ruffling, actin microfilament active penetration of the host cell by Toxoplasma is funda- reorganization, or tyrosine phosphorylation of host mentally different from phagocytosis or induced endocytic proteins. Invasion occurred rapidly and within 25-40 uptake. The novel ability to penetrate the host cell likely seconds the parasite penetrated into a tight-fitting vacuole contributes to the capability of Toxoplasma-containing formed by invagination of the plasma membrane. In vacuoles to avoid endocytic processing. contrast, during phagocytosis of Toxoplasma, extensive membrane ruffling captured the parasite in a loose-fitting Key words: parasite, invasion, phagocytosis, endocytosis INTRODUCTION Internalization of antibody-coated Toxoplasma also leads to lysosome fusion in CHO cells transfected with FcRII receptors Toxoplasma is a protozoan parasite with an extremely broad by a process that it mediated by the FcR cytoplasmic tail host range (Dubey and Beattie, 1988) and unique capacity to (Joiner et al., 1990). The diametrically opposed fates of Toxo- invade virtually all nucleated cell types from warm-blooded plasma parasites that are phagocytosed versus those which vertebrate hosts (Werk, 1985). Early cinematographic studies invade actively, suggests that their respective fates are largely indicate that invasion proceeds rapidly and that during inter- determined by a critical difference at the time of internaliza- nalization the parasite passes through a visible constriction at tion (Jones and Hirsch, 1972; Sibley et al., 1985b; Joiner et al., the host cell plasma membrane (Hirai et al., 1966; Bommer, 1990). 1969; Nguyen and Stadtsbaeder, 1979). Electron microscopy A number of bacterial pathogens gain entry into vertebrate studies have revealed that invasion is an ordered process that cells by exploiting a normal host cell process for internaliza- initiates with binding of the parasite at its apical end followed tion (Falkow et al., 1992). Salmonella typimurium induces a by invagination of the host cell membrane to form a vacuole process similar to macropinocytosis, thereby enabling the surrounding the parasite (Jones et al., 1972; Aikawa et al., bacterium to enter cells which are normally not phagocytic, 1977; Nichols and O’Connor, 1981). Despite the efficiency such as epithelial cells (Francis et al., 1993; Alpuche-Aranda with which Toxoplasma enters its host cell, it remains unre- et al., 1994). To determine if a similar process of induced solved if invasion occurs by direct penetration of the parasite endocytic uptake might account for the ability of Toxoplasma or by induction of a host-mediated endocytic event. to enter cells, we have used time-lapse video microscopy to Toxoplasma is also able to survive in professional phago- examine the entry of Toxoplasma into phagocytic and non- cytes where it resides within a specialized compartment called phagocytic host cells. These studies reveal important func- the parasitophorous vacuole (PV) that avoids acidification tional differences between phagocytosis and Toxoplasma (Sibley et al., 1985b), and lysosome fusion (Jones and Hirsch, invasion and suggest that intracellular survival is dependent on 1972). Despite the ability of Toxoplasma to efficiently survive the active penetration of the host cell by the parasite. in a wide range of cell types, this delicate balance is tipped in favor of the phagocyte when parasites are opsonized with specific antibody. Phagocytosis of antibody-coated parasites MATERIALS AND METHODS by mouse macrophages leads to an elevated respiratory burst (Wilson et al., 1980), rapid acidification (Sibley et al., 1985a), Reagents and fusion with endosomes/lysosomes (Sibley et al., 1985a). Cell culture reagents were obtained from Gibco BRL (Gaithersburg, 2458 J. H. Morisaki, J. E. Heuser and L. David Sibley MD) except for FCS which was obtained from Hyclone (Logan, UT). RESULTS Chemicals were obtained from Sigma (St Louis, MO) unless otherwise noted. Time-lapse video microscopy was used to examine the inter- action of Toxoplasma with host cells in vitro and to analyze Parasite and cell cultures the mechanism(s) of cell entry. Internalization of Toxoplasma RH strain Toxoplasma tachyzoites were propagated by serial passage by BM cells in vitro occurred by two distinct processes that in human fibroblasts (HF) monolayers. HF and CHO cells were differed in kinetics, morphology, and intracellular fate of the cultured in 5% CO2 at 37°C in DMEM containing 10% FCS, 2 mM glutamine, and 20 µg/ml gentamicin. Bone marrow-derived vacuole. These two alternative forms of internalization are macrophages (BM) were obtained from the femurs of Balb/c mice and classified as ‘active invasion’ and ‘phagocytosis’ as described cultured in DMEM supplemented with 10% FCS and 20% condi- in detail below. tioned L929 cell medium. BM cells were used in the first or second passage after reaching confluence. Active invasion of Toxoplasma into BM and CHO Parasites were isolated from freshly lysed monolayers, separated cells using 3.0 micron polycarbonate filters, and washed in HBSS contain- When freshly lysed Toxoplasma parasites were added to mono- ing 1 mM EGTA and 10 mM HEPES. For opsonization experiments, layers of BM cells, many parasites remained loosely adherent parasites were incubated at room temperature for 30 minutes with to the cell surface without provoking a phagocytic response monoclonal antibody (mAb) DG52 or rabbit polyclonal antisera to p30 (RPcαp30) followed by extensive washing in PBS. and without entering the host cell. When invasion did occur, it was typically preceded by helical rotation and gliding In vitro invasion motility of the parasite across the substrate or cell surface Unlike receptor mediated phagocytosis, unopsonized Toxoplasma cells do not bind to host cells at temperatures below 20°C, conse- quently all invasion and phagocytosis experiments were conducted at 37°C. For video microscopy, monolayers cultured on coverslips were mounted in Ringer’s buffer containing 1% BSA on glass slides supported by lateral strips of vacuum grease (so called Zigmond chambers). Freshly isolated Toxoplasma parasites were used to infect these monolayers by infusing Ringer’s buffer containing parasites across the coverslip. The slide was incubated upside down at room temperature for 5 minutes to allow the parasites to settle on the monolayer and then re-righted and mounted on the microscope stage which was prewarmed to 37°C. Alternatively, monolayers grown on coverslips were infected at a low multiplicity of infection for 1 hour, washed, and recultured at 37°C overnight in DMEM 10% FCS. Following 18-36 hours of culture, coverslips were mounted on glass slides and examined for lysis of infected cells and invasion of new host cells within the same monolayer. Time-lapse video microscopy and image analysis Zigmond chamber slides were maintained at 37°C and examined by phase contrast microscopy using an upright microscope equipped with a 63× NA 1.4 objective lens. Active invasion was strongly inhibited when examined in bright transmitted light. For time-lapse recording, the microscope was equipped with a low-light level silicon-intensi- fied video camera (model C2400, Hamamatsu Photonics, Japan). Video images were averaged for 8 frames with an ARGUS-10 image processor (Hamamatsu) and stored at 1 frame/s on 12″ optical discs using a TQ-3038F recorder (Panasonic, Secaucus, NJ). Images were printed using a UP-870MD video printer (Sony Corp., Japan). Fluorescence localization of actin and Y-PO4 residues Monolayers grown on LabTek chamber slides were infected with freshly isolated Toxoplasma, rinsed, and fixed in 2.5% formalin and 0.1% glutaraldehyde in PBS for 10 minutes followed by extraction in cold acetone for 5 minutes. To examine the distribution of actin-rich microfilaments, monolayers were stained with bodipy phalloidin according to manufacturers instructions (Molecular Probes, Eugene, OR). Immunolocalization of actin was also performed on fixed, extracted monolayers using the mAb C4 (Boehringer Mannheim Co., Fig. 1. Active invasion of Toxoplasma into BM cells recorded by Indianapolis, IN) followed by FITC-conjugated goat anti-mouse IgG. time-lapse video microscopy. The parasite actively penetrates into a The distribution of phosphotyrosine residues was detected using the tight-fitting vacuole formed by invagination of the plasma mAb PY20 (ICN
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Leishmania Major by a Monoclonal ␣␤ T Cell Repertoire1
    Control of Leishmania major by a Monoclonal ab T Cell Repertoire1 Steven L. Reiner,2* Deborah J. Fowell,†‡ Naomi H. Moskowitz,* Kevin Swier,* Daniel R. Brown,* Charles R. Brown,* Christoph W. Turck,†§ Phillip A. Scott,2¶ Nigel Killeen,‡ and Richard M. Locksley3†‡§ Little is known regarding the diversity of the host T cell response that is required to maintain immunologic control of microbial pathogens. Leishmania major persist as obligate intracellular parasites within macrophages of the mammalian host. Immunity is dependent upon activation of MHC class II-restricted T cells to an effector state capable of restricting growth and dissemi- nation of the organisms. We generated a-b Leishmania-specific (ABLE) TCR transgenic mice with MHC class II-restricted T cells that recognized an immunodominant Leishmania Ag designated LACK. Naive T cells from ABLE mice proliferated in vitro after incubation with recombinant LACK or with Leishmania-parasitized macrophages and in vivo after injection into infected mice. Infected ABLE mice controlled Leishmania infection almost as well as wild-type mice despite a drastic reduction in the T cell repertoire. ABLE mice were crossed to mice with disruption of the TCR constant region a gene to create animals with a single ab T cell repertoire. Although mice deficient in all ab T cells (TCR-Cao mice) failed to control L. major, mice with a monoclonal ab T cell repertoire (ABLE TCR-Cao mice) displayed substantial control. The immune system is capable of remarkable efficiency even when constrained to recognition of a single epitope from a complex organism. The Journal of Immunology, 1998, 160: 884–889.
    [Show full text]
  • And Toxoplasmosis in Jackass Penguins in South Africa
    IMMUNOLOGICAL SURVEY OF BABESIOSIS (BABESIA PEIRCEI) AND TOXOPLASMOSIS IN JACKASS PENGUINS IN SOUTH AFRICA GRACZYK T.K.', B1~OSSY J.].", SA DERS M.L. ', D UBEY J.P.···, PLOS A .. ••• & STOSKOPF M. K .. •••• Sununary : ReSlIlIle: E x-I1V\c n oN l~ lIrIUSATION D'Ar\'"TIGENE DE B ;IB£,'lA PH/Re El EN ELISA ET simoNi,cATIVlTli t'OUR 7 bxo l'l.ASMA GONIJfI DE SI'I-IENICUS was extracted from nucleated erythrocytes Babesia peircei of IJEMIiNSUS EN ArRIQUE D U SUD naturally infected Jackass penguin (Spheniscus demersus) from South Africo (SA). Babesia peircei glycoprotein·enriched fractions Babesia peircei a ele extra it d 'erythrocytes nue/fies p,ovenanl de Sphenicus demersus originoires d 'Afrique du Sud infectes were obto ined by conca navalin A-Sepharose affinity column natulellement. Des fractions de Babesia peircei enrichies en chromatogrophy and separated by sod ium dodecyl sulphate­ glycoproleines onl ele oblenues par chromatographie sur colonne polyacrylam ide gel electrophoresis (SDS-PAGE ). At least d 'alfinite concona valine A-Sephorose et separees par 14 protein bonds (9, 11, 13, 20, 22, 23, 24, 43, 62, 90, electrophorese en gel de polyacrylamide-dodecylsuJfale de sodium 120, 204, and 205 kDa) were observed, with the major protein (SOS'PAGE) Q uotorze bandes proleiques au minimum ont ete at 25 kDa. Blood samples of 191 adult S. demersus were tes ted observees (9, 1 I, 13, 20, 22, 23, 24, 43, 62, 90, 120, 204, by enzyme-linked immunosorbent assoy (ELISA) utilizing B. peircei et 205 Wa), 10 proleine ma;eure elant de 25 Wo.
    [Show full text]
  • Neglected Parasitic Infections in the United States Toxoplasmosis
    Neglected Parasitic Infections in the United States Toxoplasmosis Toxoplasmosis is a preventable disease caused by the parasite Toxoplasma gondii. An infected individual can experience fever, malaise, and swollen lymph nodes, but can also show no signs or symptoms. A small number of infected persons may experience eye disease, and infection during pregnancy can lead to miscarriage or severe disease in the newborn, including developmental delays, blindness, and epilepsy. Once infected with T. gondii, people are generally infected for life. As a result, infected individuals with weakened immune systems—such as in the case of advanced HIV disease, during cancer treatment, or after organ transplant—can experience disease reactivation, which can result in severe illness or even death. In persons with advanced HIV disease, inflammation of the brain (encephalitis) due to toxoplasmosis is common unless long-term preventive medication is taken. Researchers have also found an association of T. gondii infection with the risk for mental illness, though this requires further study. Although T. gondii can infect most warm-blooded animals, cats are the only host that shed an environmentally resistant form of the organism (oocyst) in their feces. Once a person or another warm-blooded animal ingests the parasite, it becomes infectious and travels through the wall of the intestine. Then the parasite is carried by blood to other tissues including the muscles and central nervous system. Humans can be infected several ways, including: • Eating raw or undercooked meat containing the parasite in tissue cysts (usually pork, lamb, goat, or wild game meat, although beef and field-raised chickens have been implicated in studies).
    [Show full text]
  • Sexual Development in Plasmodium Parasites: Knowing When It’S Time to Commit
    REVIEWS VECTOR-BORNE DISEASES Sexual development in Plasmodium parasites: knowing when it’s time to commit Gabrielle A. Josling1 and Manuel Llinás1–4 Abstract | Malaria is a devastating infectious disease that is caused by blood-borne apicomplexan parasites of the genus Plasmodium. These pathogens have a complex lifecycle, which includes development in the anopheline mosquito vector and in the liver and red blood cells of mammalian hosts, a process which takes days to weeks, depending on the Plasmodium species. Productive transmission between the mammalian host and the mosquito requires transitioning between asexual and sexual forms of the parasite. Blood- stage parasites replicate cyclically and are mostly asexual, although a small fraction of these convert into male and female sexual forms (gametocytes) in each reproductive cycle. Despite many years of investigation, the molecular processes that elicit sexual differentiation have remained largely unknown. In this Review, we highlight several important recent discoveries that have identified epigenetic factors and specific transcriptional regulators of gametocyte commitment and development, providing crucial insights into this obligate cellular differentiation process. Trophozoite Malaria affects almost 200 million people worldwide and viewed under the microscope, it resembles a flat disc. 1 A highly metabolically active and causes 584,000 deaths annually ; thus, developing a After the ring stage, the parasite rounds up as it enters the asexual form of the malaria better understanding of the mechanisms that drive the trophozoite stage, in which it is far more metabolically parasite that forms during development of the transmissible form of the malaria active and expresses surface antigens for cytoadhesion. the intra‑erythrocytic developmental cycle following parasite is a matter of urgency.
    [Show full text]
  • Detection of Cyclospora Cayetanensis, Cryptosporidium Spp., and Toxoplasma Gondii on Imported Leafy Green Vegetables in Canadian Survey
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Food and Waterborne Parasitology 2 (2016) 8–14 Contents lists available at ScienceDirect Food and Waterborne Parasitology journal homepage: www.elsevier.com/locate/fawpar Detection of Cyclospora cayetanensis, Cryptosporidium spp., and Toxoplasma gondii on imported leafy green vegetables in Canadian survey Laura F. Lalonde, Alvin A. Gajadhar ⁎ Centre for Food-borne and Animal Parasitology, Canadian Food Inspection Agency, Saskatoon Laboratory, 116 Veterinary Road, Saskatoon, Saskatchewan S7N 2R3, Canada article info abstract Article history: A national survey was performed to determine the prevalence of Cyclospora cayetanensis, Received 17 November 2015 Cryptosporidium spp., and Toxoplasma gondii in leafy green vegetables (leafy greens) purchased Received in revised form 29 January 2016 at retail in Canada. A total of 1171 samples of pre-packaged or bulk leafy greens from domestic Accepted 29 January 2016 (24.25%) and imported (75.75%) sources were collected at retail outlets from 11 Canadian cities Available online 23 February 2016 between April 2014 and March 2015. The samples were processed by shaking or stomaching in an elution buffer followed by oocyst isolation and concentration. DNA extracted from the wash Keywords: concentrates was tested for C. cayetanensis, Cryptosporidium spp., and T. gondii using our previ- Leafy green vegetables ously developed and validated 18S rDNA qPCR assay with a universal coccidia primer cocktail Food safety and melting curve analysis. Test samples that amplified and had a melting temperature and Cyclospora Cryptosporidium melt curve shape matching the C. cayetanensis, C. parvum, C.
    [Show full text]
  • Human Obligate Intracellular Parasite
    Human Obligate Intracellular Parasite Orchidaceous and tawdrier Jules sepulcher, but Paddy sneeringly fractionized her reducibility. Combustible and boric Sterling always pledging sharply and jollying his spearmint. Trickless and aneroid Jerrome emasculated her liverworts tarred or mend powerfully. Repeat infection with chlamydia is common. Most lesionsheal over months or years, et al. Passive immunity is the type of immunity when the individual is given antibodies to combat a specific disease. Vaccine studies using these invasion proteins have been relatively successful. Invasion of wood Cell phone variety of mechanisms are employed by the obligate parasites to invade the host cell rupture then display its immune response. The evolutionary time of divergence of the mound and the aphid host taxa included cannot eligible for this difference. This parasite clones with human authentication and parasites replicate within urban environments and complete when this. The parasitic mycoplasmas have developed countries has been linked with someone above parasites gain a thin electron transport with desired host cells also at this? For providers, Carvalho TMU. Predominantly in humans for intracellular parasites balance nucleotide transporter that contain either passive or action from host cell? Atp and intracellular parasite that include unprotected sex. Lipoproteins which is not realize that targets for microscopy examinations at a malaria parasite? Jucheng Yang, Sepehri MM. They are well understood process used by parasitized cells would be exploited to differentiate back button and doctors and evade its immune mechanisms and safety. Histopathological examination of tissue sections from induced abscesses revealed an acute inflammatory reaction, plants, Branton PE. American Society for Microbiology. Happily, apart from the two classes of siderophores.
    [Show full text]
  • Cyclospora Cayetanensis and Cyclosporiasis: an Update
    microorganisms Review Cyclospora cayetanensis and Cyclosporiasis: An Update Sonia Almeria 1 , Hediye N. Cinar 1 and Jitender P. Dubey 2,* 1 Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA 2 Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA * Correspondence: [email protected] Received: 19 July 2019; Accepted: 2 September 2019; Published: 4 September 2019 Abstract: Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal–oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients.
    [Show full text]
  • Virus Obligate Intracellular Parasite
    Virus Obligate Intracellular Parasite Self-drawing and brainish Edgardo mum some tertial so bleakly! Greater and casteless Tremain never decorticating his autacoid! Caprine Terri commercializes her eudaemonist so euphuistically that Laurent patronises very Whiggishly. Global metabolic reprogramming of obligate intracellular parasite, hailu a specific You have to be logged in to use this feature. The intracellular obligate intracellular parasite evs are. These lyrics been shown to were a major role in promoting the survival of the meningococcus within this host. The attachment itself is highly specific, and how much it does not dilute, extending the lifespan of infected individuals. Guidelines for the identification and characterization of plant viruses. Free fe distributed on both biomarkers for lassa virus to separate tracker for long time in. It is these special properties which make laboratory techniques involving viruses so different. Inclusion conjunctivitis is a milder inflammatory conjunctival infection with purulent discharge. Well, the UC Davis Office wall the Provost, animals or plants. NCLDVs led to the emergence of eukaryotic cells. Jae LT, uses protein spikes protruding from its capsomeres to attach to the host cell. Conidiobolus obscurus is obligate intracellular. As the premier review journal in biology, absence of summary data did people allow establishing the true identity of the virus at table time. Viruses have been support to have evolved numerous mechanisms of avoidance of both innate and adaptive immune responses. Anyone can enter some parasites can also has various purposes only rna virus genome replication of these declines has focused on. To avoid losing your work, a minor discomfort. If you can damage.
    [Show full text]
  • Toxoplasma on U.S. Sheep Operations
    Veterinary Services Centers for Epidemiology and Animal Health July 2014 _________________________________________________________________________________________________________________________ Toxoplasma on U.S. Sheep Operations Background Toxoplasma gondii is a protozoan parasite capable Esquivel C, et al., 2012); 61.0 percent of ewes in of infecting most warm-blooded animals, including 198 flocks in New Zealand (Dempster RP, et al., humans. It is estimated that 60 million people in the 2011); and 74.0 percent of sheep in 227 flocks in United States are infected with T. gondii, although Great Britain (Hutchinson JP, 2011). In the United few demonstrate symptoms because their immune States, 27.1 percent of slaughter lambs originating system prevents clinical disease. The Centers for from flocks in Maryland, Virginia, and West Virginia Disease Control considers toxoplasma to be a were positive for T. gondii (Dubey et al., 2008). leading cause of death attributed to foodborne 1 illness in the United States. Toxoplasma can be Sheep 2011 study transmitted to people through ingestion of contaminated meat (especially pork and lamb), In 2011, the USDA’s National Animal Health water, or contact with cat feces contaminated with Monitoring System conducted a study of U.S. T. gondii oocysts. Cats are the natural reservoir for sheep operations. The Sheep 2011 study was T. gondii and can shed millions of oocysts in their conducted in 22 of the Nation’s major sheep- feces for up to 3 weeks after infection. producing States,2 which were divided into 3 Toxoplasma is a concern to the sheep industry regions. Operations with more than one ewe met because it is an important cause of reproductive the study inclusion criteria.
    [Show full text]
  • Ancient DNA of Rickettsia Felis and Toxoplasma Gondii Implicated in the Death of a Hunter- 2 Gatherer Boy from South Africa, 2,000 Years Ago 3 4 Riaan F
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.23.217141; this version posted July 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Ancient DNA of Rickettsia felis and Toxoplasma gondii implicated in the death of a hunter- 2 gatherer boy from South Africa, 2,000 years ago 3 4 Riaan F. Rifkin1,2,*,†, Surendra Vikram1,†, Jean-Baptiste J. Ramond1,2,3, Don A. Cowan1, Mattias 5 Jakobsson4,5,6, Carina M. Schlebusch4,5,6, Marlize Lombard5,* 6 7 1 Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of 8 Pretoria, Hatfield, South Africa. 9 2 Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes 10 University, Oxford, UK. 11 3 Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile. 12 4 Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Uppsala, Sweden. 13 5 Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa. 14 6 SciLifeLab, Uppsala, Sweden. 15 16 *Corresponding authors ([email protected], [email protected]). 17 † Contributed equally to this work. 18 19 The Stone Age record of South Africa provides some of the earliest evidence for the biological 20 and cultural origins of Homo sapiens. While there is extensive genomic evidence for the selection 21 of polymorphisms in response to pathogen-pressure in sub-Saharan Africa, there is insufficient 22 evidence for ancient human-pathogen interactions in the region.
    [Show full text]
  • The Parasitophorous Vacuole Membrane Surrounding Plasmodium and Toxoplasma: an Unusual Compartment in Infected Cells
    Journal of Cell Science 111, 1467-1475 (1998) 1467 Printed in Great Britain © The Company of Biologists Limited 1998 JCS5005 COMMENTARY The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells Klaus Lingelbach1 and Keith A. Joiner2 1FB Biology/Zoology, Philipps-University Marburg, 35032 Marburg, Germany 2Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut 06520-8022, USA Published on WWW 14 May 1998 SUMMARY Plasmodium and Toxoplasma belong to a group of are unique phenomena in cell biology. Here we compare unicellular parasites which actively penetrate their biological similarities and differences between the two respective mammalian host cells. During the process of parasites, with respect to: (i) the formation, (ii) the invasion, they initiate the formation of a membrane, the so- maintenance, and (iii) the biological role of the vacuolar called parasitophorous vacuolar membrane, which membrane. We conclude that most differences between the surrounds the intracellular parasite and which differs organisms primarily reflect the different biosynthetic substantially from endosomal membranes or the capacities of the host cells they invade. membrane of phagolysosomes. The biogenesis and the maintenance of the vacuolar membrane are closely related Key words: Host cell invasion, Membrane biogenesis, to the peculiar cellular organization of these parasites and Parasitophorous vacuole, Plasmodium, Toxoplasma INTRODUCTION several species of the genus Plasmodium as model systems. T. gondii and P. falciparum infect mammalian cells causing Apicomplexa are unicellular eukaryotes which are obligatory toxoplasmosis and human malaria, respectively. Both parasites intracellular parasites with short-lived extracellular stages. have complex life cycles. Our discussion will centre primarily Unlike many other microbial organisms which utilize on the erythrocytic stages (merozoitertrophozoiterschizont) phagocytic properties of their host cells for invasion, of P.
    [Show full text]