Induced Representations of Tensors and Spinors of Any Rank in the SHP Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tensors and Differential Forms on Vector Spaces
APPENDIX A TENSORS AND DIFFERENTIAL FORMS ON VECTOR SPACES Since only so much of the vast and growing field of differential forms and differentiable manifolds will be actually used in this survey, we shall attempt to briefly review how the calculus of exterior differential forms on vector spaces can serve as a replacement for the more conventional vector calculus and then introduce only the most elementary notions regarding more topologically general differentiable manifolds, which will mostly be used as the basis for the discussion of Lie groups, in the following appendix. Since exterior differential forms are special kinds of tensor fields – namely, completely-antisymmetric covariant ones – and tensors are important to physics, in their own right, we shall first review the basic notions concerning tensors and multilinear algebra. Presumably, the reader is familiar with linear algebra as it is usually taught to physicists, but for the “basis-free” approach to linear and multilinear algebra (which we shall not always adhere to fanatically), it would also help to have some familiarity with the more “abstract-algebraic” approach to linear algebra, such as one might learn from Hoffman and Kunze [ 1], for instance. 1. Tensor algebra. – A tensor algebra is a type of algebra in which multiplication takes the form of the tensor product. a. Tensor product. – Although the tensor product of vector spaces can be given a rigorous definition in a more abstract-algebraic context (See Greub [ 2], for instance), for the purposes of actual calculations with tensors and tensor fields, it is usually sufficient to say that if V and W are vector spaces of dimensions n and m, respectively, then the tensor product V ⊗ W will be a vector space of dimension nm whose elements are finite linear combinations of elements of the form v ⊗ w, where v is a vector in V and w is a vector in W. -
Arxiv:Math/0212058V2 [Math.DG] 18 Nov 2003 Nosbrusof Subgroups Into Rdc C.[Oc 00 Et .].Eape O Uhsae a Spaces Such for Examples 3.2])
THE SPINOR BUNDLE OF RIEMANNIAN PRODUCTS FRANK KLINKER Abstract. In this note we compare the spinor bundle of a Riemannian mani- fold (M = M1 ×···×MN ,g) with the spinor bundles of the Riemannian factors (Mi,gi). We show that - without any holonomy conditions - the spinor bundle of (M,g) for a special class of metrics is isomorphic to a bundle obtained by tensoring the spinor bundles of (Mi,gi) in an appropriate way. For N = 2 and an one dimensional factor this construction was developed in [Baum 1989a]. Although the fact for general factors is frequently used in (at least physics) literature, a proof was missing. I would like to thank Shahram Biglari, Mario Listing, Marc Nardmann and Hans-Bert Rademacher for helpful comments. Special thanks go to Helga Baum, who pointed out some difficulties arising in the pseudo-Riemannian case. We consider a Riemannian manifold (M = M MN ,g), which is a product 1 ×···× of Riemannian spin manifolds (Mi,gi) and denote the projections on the respective factors by pi. Furthermore the dimension of Mi is Di such that the dimension of N M is given by D = i=1 Di. The tangent bundle of M is decomposed as P ∗ ∗ (1) T M = p Tx1 M p Tx MN . (x0,...,xN ) 1 1 ⊕···⊕ N N N We omit the projections and write TM = i=1 TMi. The metric g of M need not be the product metric of the metrics g on M , but L i i is assumed to be of the form c d (2) gab(x) = Ai (x)gi (xi)Ai (x), T Mi a cd b for D1 + + Di−1 +1 a,b D1 + + Di, 1 i N ··· ≤ ≤ ··· ≤ ≤ In particular, for those metrics the splitting (1) is orthogonal, i.e. -
Tensors Notation • Contravariant Denoted by Superscript Ai Took a Vector and Gave for Vector Calculus Us a Vector
Tensors Notation • contravariant denoted by superscript Ai took a vector and gave For vector calculus us a vector • covariant denoted by subscript Ai took a scaler and gave us a vector Review To avoid confusion in cartesian coordinates both types are the same so • Vectors we just opt for the subscript. Thus a vector x would be x1,x2,x3 R3 • Summation representation of an n by n array As it turns out in an cartesian space and other rectilinear coordi- nate systems there is no difference between contravariant and covariant • Gradient, Divergence and Curl vectors. This will not be the case for other coordinate systems such a • Spherical Harmonics (maybe) curvilinear coordinate systems or in 4 dimensions. These definitions are closely related to the Jacobian. Motivation If you tape a book shut and try to spin it in the air on each indepen- Definitions for Tensors of Rank 2 dent axis you will notice that it spins fine on two axes but not on the Rank 2 tensors can be written as a square array. They have con- third. That’s the inertia tensor in your hands. Similar are the polar- travariant, mixed, and covariant forms. As we might expect in cartesian izations tensor, index of refraction tensor and stress tensor. But tensors coordinates these are the same. also show up in all sorts of places that don’t connect to an anisotropic material property, in fact even spherical harmonics are tensors. What are the similarities and differences between such a plethora of tensors? Vector Calculus and Identifers The mathematics of tensors is particularly useful for de- Tensor analysis extends deep into coordinate transformations of all scribing properties of substances which vary in direction– kinds of spaces and coordinate systems. -
On the Spinor Representation
Eur. Phys. J. C (2017) 77:487 DOI 10.1140/epjc/s10052-017-5035-y Regular Article - Theoretical Physics On the spinor representation J. M. Hoff da Silva1,a, C. H. Coronado Villalobos1,2,b, Roldão da Rocha3,c, R. J. Bueno Rogerio1,d 1 Departamento de Física e Química, Universidade Estadual Paulista, Guaratinguetá, SP, Brazil 2 Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoatá, Niterói, RJ 24210-346, Brazil 3 Centro de Matemática, Computação e Cognição, Universidade Federal do ABC-UFABC, Santo André 09210-580, Brazil Received: 16 February 2017 / Accepted: 30 June 2017 / Published online: 21 July 2017 © The Author(s) 2017. This article is an open access publication Abstract A systematic study of the spinor representation at least in principle, related to a set of fermionic observ- by means of the fermionic physical space is accomplished ables. Our aim in this paper is to delineate the importance and implemented. The spinor representation space is shown of the representation space, by studying its properties, and to be constrained by the Fierz–Pauli–Kofink identities among then relating them to their physical consequences. As one the spinor bilinear covariants. A robust geometric and topo- will realize, the representation space is quite complicated due logical structure can be manifested from the spinor space, to the constraints coming out the Fierz–Pauli–Kofink iden- wherein the first and second homotopy groups play promi- tities. However, a systematic study of the space properties nent roles on the underlying physical properties, associated ends up being useful to relate different domains (subspaces) to fermionic fields. -
On Manifolds of Tensors of Fixed Tt-Rank
ON MANIFOLDS OF TENSORS OF FIXED TT-RANK SEBASTIAN HOLTZ, THORSTEN ROHWEDDER, AND REINHOLD SCHNEIDER Abstract. Recently, the format of TT tensors [19, 38, 34, 39] has turned out to be a promising new format for the approximation of solutions of high dimensional problems. In this paper, we prove some new results for the TT representation of a tensor U ∈ Rn1×...×nd and for the manifold of tensors of TT-rank r. As a first result, we prove that the TT (or compression) ranks ri of a tensor U are unique and equal to the respective seperation ranks of U if the components of the TT decomposition are required to fulfil a certain maximal rank condition. We then show that d the set T of TT tensors of fixed rank r forms an embedded manifold in Rn , therefore preserving the essential theoretical properties of the Tucker format, but often showing an improved scaling behaviour. Extending a similar approach for matrices [7], we introduce certain gauge conditions to obtain a unique representation of the tangent space TU T of T and deduce a local parametrization of the TT manifold. The parametrisation of TU T is often crucial for an algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems [33]. We conclude with remarks on those applications and present some numerical examples. 1. Introduction The treatment of high-dimensional problems, typically of problems involving quantities from Rd for larger dimensions d, is still a challenging task for numerical approxima- tion. This is owed to the principal problem that classical approaches for their treatment normally scale exponentially in the dimension d in both needed storage and computa- tional time and thus quickly become computationally infeasable for sensible discretiza- tions of problems of interest. -
Majorana Spinors
MAJORANA SPINORS JOSE´ FIGUEROA-O'FARRILL Contents 1. Complex, real and quaternionic representations 2 2. Some basis-dependent formulae 5 3. Clifford algebras and their spinors 6 4. Complex Clifford algebras and the Majorana condition 10 5. Examples 13 One dimension 13 Two dimensions 13 Three dimensions 14 Four dimensions 14 Six dimensions 15 Ten dimensions 16 Eleven dimensions 16 Twelve dimensions 16 ...and back! 16 Summary 19 References 19 These notes arose as an attempt to conceptualise the `symplectic Majorana{Weyl condition' in 5+1 dimensions; but have turned into a general discussion of spinors. Spinors play a crucial role in supersymmetry. Part of their versatility is that they come in many guises: `Dirac', `Majorana', `Weyl', `Majorana{Weyl', `symplectic Majorana', `symplectic Majorana{Weyl', and their `pseudo' counterparts. The tra- ditional physics approach to this topic is a mixed bag of tricks using disparate aspects of representation theory of finite groups. In these notes we will attempt to provide a uniform treatment based on the classification of Clifford algebras, a work dating back to the early 60s and all but ignored by the theoretical physics com- munity. Recent developments in superstring theory have made us re-examine the conditions for the existence of different kinds of spinors in spacetimes of arbitrary signature, and we believe that a discussion of this more uniform approach is timely and could be useful to the student meeting this topic for the first time or to the practitioner who has difficulty remembering the answer to questions like \when do symplectic Majorana{Weyl spinors exist?" The notes are organised as follows. -
Matrices and Tensors
APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM.. -
Arxiv:2004.02090V2 [Math.NT]
ON INDEFINITE AND POTENTIALLY UNIVERSAL QUADRATIC FORMS OVER NUMBER FIELDS FEI XU AND YANG ZHANG Abstract. A number field k admits a binary integral quadratic form which represents all integers locally but not globally if and only if the class number of k is bigger than one. In this case, there are only finitely many classes of such binary integral quadratic forms over k. A number field k admits a ternary integral quadratic form which represents all integers locally but not globally if and only if the class number of k is even. In this case, there are infinitely many classes of such ternary integral quadratic forms over k. An integral quadratic form over a number field k with more than one variables represents all integers of k over the ring of integers of a finite extension of k if and only if this quadratic form represents 1 over the ring of integers of a finite extension of k. 1. Introduction Universal integral quadratic forms over Z have been studied extensively by Dickson [7] and Ross [24] for both positive definite and indefinite cases in the 1930s. A positive definite integral quadratic form is called universal if it represents all positive integers. Ross pointed out that there is no ternary positive definite universal form over Z in [24] (see a more conceptual proof in [9, Lemma 3]). However, this result is not true over totally real number fields. In [20], Maass proved that x2 + y2 + z2 is a positive definite universal quadratic form over the ring of integers of Q(√5). -
5 the Dirac Equation and Spinors
5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory. -
A Some Basic Rules of Tensor Calculus
A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in con- tinuum mechanics and the derivation of the governing equations for applied prob- lems. In general, there are two possibilities for the representation of the tensors and the tensorial equations: – the direct (symbolic) notation and – the index (component) notation The direct notation operates with scalars, vectors and tensors as physical objects defined in the three dimensional space. A vector (first rank tensor) a is considered as a directed line segment rather than a triple of numbers (coordinates). A second rank tensor A is any finite sum of ordered vector pairs A = a b + ... +c d. The scalars, vectors and tensors are handled as invariant (independent⊗ from the choice⊗ of the coordinate system) objects. This is the reason for the use of the direct notation in the modern literature of mechanics and rheology, e.g. [29, 32, 49, 123, 131, 199, 246, 313, 334] among others. The index notation deals with components or coordinates of vectors and tensors. For a selected basis, e.g. gi, i = 1, 2, 3 one can write a = aig , A = aibj + ... + cidj g g i i ⊗ j Here the Einstein’s summation convention is used: in one expression the twice re- peated indices are summed up from 1 to 3, e.g. 3 3 k k ik ik a gk ∑ a gk, A bk ∑ A bk ≡ k=1 ≡ k=1 In the above examples k is a so-called dummy index. Within the index notation the basic operations with tensors are defined with respect to their coordinates, e. -
2 Lecture 1: Spinors, Their Properties and Spinor Prodcuts
2 Lecture 1: spinors, their properties and spinor prodcuts Consider a theory of a single massless Dirac fermion . The Lagrangian is = ¯ i@ˆ . (2.1) L ⇣ ⌘ The Dirac equation is i@ˆ =0, (2.2) which, in momentum space becomes pUˆ (p)=0, pVˆ (p)=0, (2.3) depending on whether we take positive-energy(particle) or negative-energy (anti-particle) solutions of the Dirac equation. Therefore, in the massless case no di↵erence appears in equations for paprticles and anti-particles. Finding one solution is therefore sufficient. The algebra is simplified if we take γ matrices in Weyl repreentation where µ µ 0 σ γ = µ . (2.4) " σ¯ 0 # and σµ =(1,~σ) andσ ¯µ =(1, ~ ). The Pauli matrices are − 01 0 i 10 σ = ,σ= − ,σ= . (2.5) 1 10 2 i 0 3 0 1 " # " # " − # The matrix γ5 is taken to be 10 γ5 = − . (2.6) " 01# We can use the matrix γ5 to construct projection operators on to upper and lower parts of the four-component spinors U and V . The projection operators are 1 γ 1+γ Pˆ = − 5 , Pˆ = 5 . (2.7) L 2 R 2 Let us write u (p) U(p)= L , (2.8) uR(p) ! where uL(p) and uR(p) are two-component spinors. Since µ 0 pµσ pˆ = µ , (2.9) " pµσ¯ 0(p) # andpU ˆ (p) = 0, the two-component spinors satisfy the following (Weyl) equations µ µ pµσ uR(p)=0,pµσ¯ uL(p)=0. (2.10) –3– Suppose that we have a left handed spinor uL(p) that satisfies the Weyl equation. -
Multilinear Algebra
Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R.