Ciglitazone—A Human Pparγ Agonist—Disrupts Dorsoventral Patterning in Zebrafish
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insulin Aspart Sanofi, If It Is Coloured Or It Has Solid Pieces in It
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions. 1. NAME OF THE MEDICINAL PRODUCT Insulin aspart Sanofi 100 units/ml solution for injection in vial Insulin aspart Sanofi 100 units/ml solution for injection in cartridge Insulin aspart Sanofi 100 units/ml solution for injection in pre-filled pen 2. QUALITATIVE AND QUANTITATIVE COMPOSITION One ml solution contains 100 units insulin aspart* (equivalent to 3.5 mg). Insulin aspart Sanofi 100 units/ml solution for injection in vial Each vial contains 10 ml equivalent to 1,000 units insulin aspart. Insulin aspart Sanofi 100 units/ml solution for injection in cartridge Each cartridge contains 3 ml equivalent to 300 units insulin aspart. Insulin aspart Sanofi 100 units/ml solution for injection in pre-filled pen Each pre-filled pen contains 3 ml equivalent to 300 units insulin aspart. Each pre-filled pen delivers 1-80 units in steps of 1 unit. *produced in Escherichia coli by recombinant DNA technology. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Solution for injection (injection). Clear, colourless, aqueous solution. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Insulin aspart Sanofi is indicated for the treatment of diabetes mellitus in adults, adolescents and children aged 1 year and above. 4.2 Posology and method of administration Posology The potency of insulin analogues, including insulin aspart, is expressed in units, whereas the potency of human insulin is expressed in international units. -
Stimulatory Action of Telmisartan, an Antagonist of Angiotensin II Receptor, on Voltage-Gated Na+ Current: Experimental and Theoretical Studies
Chinese Journal of Physiology 61(1): 1-13, 2018 1 DOI: 10.4077/CJP.2018.BAG516 Stimulatory Action of Telmisartan, an Antagonist of Angiotensin II Receptor, on Voltage-Gated Na+ Current: Experimental and Theoretical Studies Tzu-Tung Chang, Chia-Jung Yang, Yu-Chi Lee, and Sheng-Nan Wu Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan, Republic of China Abstract Telmisartan (Tel) is recognized as a non-peptide blocker of AT1R. Whether this agent has any direct effects on ion currents remains unexplored. In whole-cell current recordings, addition of Tel + increased the peak amplitude of voltage-gated Na (NaV) current (INa) accompanied by the increased time constant of INa inactivation in differentiated NSC-34 motor neuron-like cells. Tel-stimulated INa in these cells is unlinked to either blockade of AT1R or activation of peroxisome proliferator-activated receptor gamma (PPAR-γ). In order to explore how this compound affects the amplitude and kinetics of INa in neurons, a Hodgkin-Huxley-based (HH-based) model designed to mimic effect of Tel on the functional activities of neurons was computationally created in this study. In this framework, the parameter for h inactivation gating variable, which was changed in a stepwise fashion, was implemented + + to predict changes in membrane potentials (V) as a function of maximal Na (GNa), K conductance (GK), or both. As inactivation time course of INa was increased, the bifurcation point of V versus GNa became lower, and the range between subcritical and supercritical values at the bifurcation of V versus GK correspondingly became larger. -
REVIEW Peroxisome Proliferator-Activated Receptors In
199 REVIEW Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition P Froment, F Gizard1, D Defever2, B Staels1, J Dupont3 and P Monget3 INSERM U.418, UMR Communications Cellulaire et Différenciation, Hôpital Debrousse, 29 rue Soeur Bouvier, 69322 Lyon, France 1INSERM U.545, Institut Pasteur de Lille et Faculté de Pharmacie Université de Lille 2, 1 rue du Pr Calmette, 59019 Lille, France 2LMCB, Department of Molecular Biomedical Research, V.I.B., Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium 3Physiologie de la reproduction et des comportements, UMR 6175 INRA-CNRS-Université F. Rabelais de Tours-Haras Nationaux, 37380 Nouzilly, France (Requests for offprints should be addressed to P Froment; [email protected]) Abstract Peroxisome proliferator-activated receptors (PPAR, granulosa cell proliferation and steroidogenesis in vitro. All PPAR/ and PPAR) are a family of nuclear receptors these recent data raise new questions about the biologic that are activated by binding of natural ligands, such as actions of PPARs in reproduction and their use in polyunsaturated fatty acids or by synthetic ligands. Syn- therapeutic treatments of fertility troubles such as PCOS thetic molecules of the glitazone family, which bind to or endometriosis. In this review, we first describe the roles PPAR, are currently used to treat type II diabetes and of PPARs in different compartments of the reproductive also to attenuate the secondary clinical symptoms fre- axis (from male and female gametogenesis to parturition), quently associated with insulin resistance, including poly- with a focus on PPAR. Secondly, we discuss the possible cystic ovary syndrome (PCOS). PPARs are expressed molecular mechanisms underlying the effect of glitazones in different compartments of the reproductive system on PCOS. -
Comparative Transcriptional Network Modeling of Three PPAR-A/C Co-Agonists Reveals Distinct Metabolic Gene Signatures in Primary Human Hepatocytes
Comparative Transcriptional Network Modeling of Three PPAR-a/c Co-Agonists Reveals Distinct Metabolic Gene Signatures in Primary Human Hepatocytes Rene´e Deehan1, Pia Maerz-Weiss2, Natalie L. Catlett1, Guido Steiner2, Ben Wong1, Matthew B. Wright2*, Gil Blander1¤a, Keith O. Elliston1¤b, William Ladd1, Maria Bobadilla2, Jacques Mizrahi2, Carolina Haefliger2, Alan Edgar{2 1 Selventa, Cambridge, Massachusetts, United States of America, 2 F. Hoffmann-La Roche AG, Basel, Switzerland Abstract Aims: To compare the molecular and biologic signatures of a balanced dual peroxisome proliferator-activated receptor (PPAR)-a/c agonist, aleglitazar, with tesaglitazar (a dual PPAR-a/c agonist) or a combination of pioglitazone (Pio; PPAR-c agonist) and fenofibrate (Feno; PPAR-a agonist) in human hepatocytes. Methods and Results: Gene expression microarray profiles were obtained from primary human hepatocytes treated with EC50-aligned low, medium and high concentrations of the three treatments. A systems biology approach, Causal Network Modeling, was used to model the data to infer upstream molecular mechanisms that may explain the observed changes in gene expression. Aleglitazar, tesaglitazar and Pio/Feno each induced unique transcriptional signatures, despite comparable core PPAR signaling. Although all treatments inferred qualitatively similar PPAR-a signaling, aleglitazar was inferred to have greater effects on high- and low-density lipoprotein cholesterol levels than tesaglitazar and Pio/Feno, due to a greater number of gene expression changes in pathways related to high-density and low-density lipoprotein metabolism. Distinct transcriptional and biologic signatures were also inferred for stress responses, which appeared to be less affected by aleglitazar than the comparators. In particular, Pio/Feno was inferred to increase NFE2L2 activity, a key component of the stress response pathway, while aleglitazar had no significant effect. -
Lobeglitazone
2013 International Conference on Diabetes and Metabolism Lobeglitazone, A Novel PPAR-γ agonist with balanced efficacy and safety Kim, Sin Gon. MD, PhD. Professor, Division of Endocrinology and Metabolism Department of Internal Medicine, Korea University College of Medicine. Disclosure of Financial Relationships This symposium is sponsored by Chong Kun Dang Pharmaceutical Corp. I have received lecture and consultation fees from Chong Kun Dang. Pros & Cons of PPAR-γ agonist Pros Cons • Good glucose lowering • Adverse effects • Durability (ADOPT) (edema, weight gain, • Insulin sensitizing CHF, fracture or rare effects (especially in MS, macular edema etc) NAFLD, PCOS etc) • Possible safety issues • Prevention of new- (risk of MI? – Rosi or onset diabetes (DREAM, bladder cancer? - Pio) ACT-NOW) • LessSo, hypoglycemiathere is a need to develop PPAR-γ • Few GI troubles agonist• Outcome with data balanced efficacy and safety (PROactive) Insulin Sensitizers : Several Issues Rosi, Peak sale ($3.3 billion) DREAM Dr. Nissen Dr. Nissen ADOPT META analysis BARI-2D (5,8) Rosi, lipid profiles RECORD 1994 1997 1999 2000 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Tro out d/t FDA, All diabetes hepatotoxicity drug CV safety Rosi (5) FDA, Black box Rosi, Rosi , CV safety warning - REMS in USA = no evidence - Europe out Pio (7) PIO, bladder cancer CKD 501 Lobeglitazone 2000.6-2004.6 2004.11-2007.1 2007.3-2008.10 2009.11-2011.04 Discovery& Preclinical study Phase I Phase II Phase III Developmental Strategy Efficacy • PPAR activity Discovery & Preclinical study • In vitro & vivo efficacy • Potent efficacy 2000.06 - 2004.06 Phase I 2004.11 - 2007.01 • In vitro screening • Repeated dose toxicity • Metabolites • Geno toxicity • Phase II CYP 450 • Reproductive toxicity 2007.03 - 2008.10 • DDI • Carcinogenic toxicity ADME Phase III Safety 2009.11 - 2011.04 CV Safety / (Bladder) Cancer / Liver Toxicity / Bone loss Lobeglitazone (Duvie) 1. -
Title: Combination of Pparg Agonist Pioglitazone and Trabectedin Induce Adipocyte Differentiation to Overcome Trabectedin Resistance in Myxoid Liposarcomas
Author Manuscript Published OnlineFirst on September 3, 2019; DOI: 10.1158/1078-0432.CCR-19-0976 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Title: Combination of PPARg agonist pioglitazone and trabectedin induce adipocyte differentiation to overcome trabectedin resistance in myxoid liposarcomas Roberta Frapolli1, Ezia Bello1, Marianna Ponzo1, Ilaria Craparotta2, Laura Mannarino2, Sara Ballabio2, Sergio Marchini2, Laura Carrassa3, Paolo Ubezio4, Luca Porcu5, Silvia Brich6, Roberta Sanfilippo7, Paolo Giovanni Casali7, Alessandro Gronchi8, Silvana Pilotti6, and Maurizio D’Incalci9*. 1 Unit of Preclinical Experimental Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy. 2 Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy. 3Unit of DNA repair, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy. 4 Unit of Biophysics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy. 5 Unit of Methodological Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy. 6Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy. 7 Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy. 8 Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy. 9 Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy. Running title: Pioglitazone - trabectedin in myxoid liposarcomas. Keywords: Myxoid liposarcoma, trabectedin resistance, PPAR agonist, and patient-derived xenograft. Additional information: Financial support: This work was supported by the Italian Association for Cancer Research grant to M.D. -
PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
OSENI Safely and Effectively
HIGHLIGHTS OF PRESCRIBING INFORMATION -----------------------WARNINGS AND PRECAUTIONS---------------------- These highlights do not include all the information needed to use Congestive heart failure: Fluid retention may occur and can OSENI safely and effectively. See full prescribing information for exacerbate or lead to congestive heart failure. Combination use OSENI. with insulin and use in congestive heart failure NYHA Class I and OSENI (alogliptin and pioglitazone) tablets II may increase risk. Monitor patients for signs and symptoms. Initial U.S. Approval: 2013 (5.1) Acute pancreatitis: There have been postmarketing reports of WARNING: CONGESTIVE HEART FAILURE acute pancreatitis. If pancreatitis is suspected, promptly See full prescribing information for complete boxed warning discontinue OSENI. (5.2) Thiazolidinediones, including pioglitazone, cause or Hypersensitivity: There have been postmarketing reports of exacerbate congestive heart failure in some patients. (5.1) serious hypersensitivity reactions in patients treated with alogliptin After initiation of OSENI and after dose increases, monitor such as anaphylaxis, angioedema and severe cutaneous adverse patients carefully for signs and symptoms of heart failure reactions. In such cases, promptly discontinue OSENI, assess for (e.g., excessive, rapid weight gain, dyspnea, and/or other potential causes, institute appropriate monitoring and edema). If heart failure develops, it should be managed treatment, and initiate alternative treatment for diabetes. (5.3) according to current standards of care and Hepatic effects: Postmarketing reports of hepatic failure, discontinuation or dose reduction of pioglitazone in OSENI sometimes fatal. Causality cannot be excluded. If liver injury is must be considered. detected, promptly interrupt OSENI and assess patient for OSENI is not recommended in patients with symptomatic probable cause, then treat cause if possible, to resolution or heart failure. -
Pharmaceuticals Appendix
)&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ADAPALENE 106685-40-9 ABANOQUIL 90402-40-7 ADAPROLOL 101479-70-3 ABECARNIL 111841-85-1 ADEMETIONINE 17176-17-9 ABLUKAST 96566-25-5 ADENOSINE PHOSPHATE 61-19-8 ABUNIDAZOLE 91017-58-2 ADIBENDAN 100510-33-6 ACADESINE 2627-69-2 ADICILLIN 525-94-0 ACAMPROSATE 77337-76-9 ADIMOLOL 78459-19-5 ACAPRAZINE 55485-20-6 ADINAZOLAM 37115-32-5 ACARBOSE 56180-94-0 ADIPHENINE 64-95-9 ACEBROCHOL 514-50-1 ADIPIODONE 606-17-7 ACEBURIC ACID 26976-72-7 ADITEREN 56066-19-4 ACEBUTOLOL 37517-30-9 ADITOPRIME 56066-63-8 ACECAINIDE 32795-44-1 ADOSOPINE 88124-26-9 ACECARBROMAL 77-66-7 ADOZELESIN 110314-48-2 ACECLIDINE 827-61-2 ADRAFINIL 63547-13-7 ACECLOFENAC 89796-99-6 ADRENALONE 99-45-6 ACEDAPSONE 77-46-3 AFALANINE 2901-75-9 ACEDIASULFONE SODIUM 127-60-6 AFLOQUALONE 56287-74-2 ACEDOBEN 556-08-1 AFUROLOL 65776-67-2 ACEFLURANOL 80595-73-9 AGANODINE 86696-87-9 ACEFURTIAMINE 10072-48-7 AKLOMIDE 3011-89-0 ACEFYLLINE CLOFIBROL 70788-27-1 -
Muraglitazar Bristol-Myers Squibb/Merck Daniella Barlocco
Muraglitazar Bristol-Myers Squibb/Merck Daniella Barlocco Address Originator Bristol-Myers Squibb Co University of Milan . Istituto di Chimica Farmaceutica e Tossicologica Viale Abruzzi 42 Licensee Merck & Co Inc 20131 Milano . Italy Status Pre-registration Email: [email protected] . Indications Metabolic disorder, Non-insulin-dependent Current Opinion in Investigational Drugs 2005 6(4): diabetes © The Thomson Corporation ISSN 1472-4472 . Actions Antihyperlipidemic agent, Hypoglycemic agent, Bristol-Myers Squibb and Merck & Co are co-developing Insulin sensitizer, PPARα agonist, PPARγ agonist muraglitazar, a dual peroxisome proliferator-activated receptor-α/γ . agonist, for the potential treatment of type 2 diabetes and other Synonym BMS-298585 metabolic disorders. In November 2004, approval was anticipated as early as mid-2005. Registry No: 331741-94-7 Introduction [579218], [579221], [579457], [579459]. PPARγ is expressed in Type 2 diabetes is a complex metabolic disorder that is adipose tissue, lower intestine and cells involved in characterized by hyperglycemia, insulin resistance and immunity. Activation of PPARγ regulates glucose and lipid defects in insulin secretion. The disease is associated with homeostasis, and triggers insulin sensitization [579216], older age, obesity, a family history of diabetes and physical [579218], [579458], [579461]. PPARδ is expressed inactivity. The prevalence of type 2 diabetes is increasing ubiquitously and has been found to be effective in rapidly, and the World Health Organization warns that, controlling dyslipidemia and cardiovascular diseases unless appropriate action is taken, the number of sufferers [579216]. PPARα agonists are used as potent hypolipidemic will double to over 350 million individuals by the year compounds, increasing plasma high-density lipoprotein 2030. Worryingly, it is estimated that only half of sufferers (HDL)-cholesterol and reducing free fatty acids, are diagnosed with the condition [www.who.int]. -
Structural Basis for the Enhanced Anti-Diabetic Efficacy Of
www.nature.com/scientificreports OPEN Structural Basis for the Enhanced Anti-Diabetic Efcacy of Lobeglitazone on PPARγ Received: 9 October 2017 Jun Young Jang 1, Hwan Bae2, Yong Jae Lee3, Young Il Choi3, Hyun-Jung Kim4, Accepted: 4 December 2017 Seung Bum Park 2, Se Won Suh2, Sang Wan Kim 5 & Byung Woo Han 1 Published: xx xx xxxx Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily. It functions as a ligand-activated transcription factor and plays important roles in the regulation of adipocyte diferentiation, insulin resistance, and infammation. Here, we report the crystal structures of PPARγ in complex with lobeglitazone, a novel PPARγ agonist, and with rosiglitazone for comparison. The thiazolidinedione (TZD) moiety of lobeglitazone occupies the canonical ligand-binding pocket near the activation function-2 (AF-2) helix (i.e., helix H12) in ligand-binding domain as the TZD moiety of rosiglitazone does. However, the elongated p-methoxyphenol moiety of lobeglitazone interacts with the hydrophobic pocket near the alternate binding site of PPARγ. The extended interaction of lobeglitazone with the hydrophobic pocket enhances its binding afnity and could afect the cyclin- dependent kinase 5 (Cdk5)-mediated phosphorylation of PPARγ at Ser245 (in PPARγ1 numbering; Ser273 in PPARγ2 numbering). Lobeglitazone inhibited the phosphorylation of PPARγ at Ser245 in a dose-dependent manner and exhibited a better inhibitory efect on Ser245 phosphorylation than rosiglitazone did. Our study provides new structural insights into the PPARγ regulation by TZD drugs and could be useful for the discovery of new PPARγ ligands as an anti-diabetic drug, minimizing known side efects. -
Thiazolidinedione Drugs Down-Regulate CXCR4 Expression on Human Colorectal Cancer Cells in a Peroxisome Proliferator Activated Receptor Á-Dependent Manner
1215-1222 26/3/07 18:16 Page 1215 INTERNATIONAL JOURNAL OF ONCOLOGY 30: 1215-1222, 2007 Thiazolidinedione drugs down-regulate CXCR4 expression on human colorectal cancer cells in a peroxisome proliferator activated receptor Á-dependent manner CYNTHIA LEE RICHARD and JONATHAN BLAY Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada Received October 26, 2006; Accepted December 4, 2006 Abstract. Peroxisome proliferator activated receptor (PPAR) Introduction Á is a nuclear receptor involved primarily in lipid and glucose metabolism. PPARÁ is also expressed in several cancer types, Peroxisome proliferator activated receptors (PPARs) are and has been suggested to play a role in tumor progression. nuclear hormone receptors that are involved primarily in PPARÁ agonists have been shown to reduce the growth of lipid and glucose metabolism (1). Upon ligand activation, colorectal carcinoma cells in culture and in xenograft models. these receptors interact with the retinoid X receptor (RXR) Furthermore, the PPARÁ agonist thiazolidinedione has been and bind to peroxisome proliferator response elements (PPREs), shown to reduce metastasis in a murine model of rectal cancer. leading to transcriptional regulation of target genes. Members Since the chemokine receptor CXCR4 has emerged as an of the thiazolidinedione class of antidiabetic drugs act as important player in tumorigenesis, particularly in the process ligands for PPARÁ (2), as does endogenously produced 15- 12,14 of metastasis, we sought to determine if PPARÁ agonists deoxy-¢ -prostaglandin J2 (15dPGJ2) (3). might act in part by reducing CXCR4 expression. We found In addition to regulation of glucose metabolism, PPARÁ that rosiglitazone, a thiazolidinedione PPARÁ agonist used appears also to be involved in tumorigenesis, although its primarily in the treatment of type 2 diabetes, significantly exact role has yet to be elucidated (4).