Sibylfs: Formal Specification and Oracle-Based Testing for POSIX and Real-World File Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IT1100 : Introduction to Operating Systems Chapter 15 What Is a Partition? What Is a Partition? Linux Partitions What Is Swap? M
IT1100 : Introduction to Operating Systems Chapter 15 What is a partition? A partition is just a logical division of your hard drive. This is done to put data in different locations for flexibility, scalability, ease of administration, and a variety of other reasons. One reason might be so you can install Linux and Windows side-by-side. What is a partition? Another reason is to encapsulate your data. Keeping your system files and user files separate can protect one or the otherfrom malware. Since file system corruption is local to a partition, you stand to lose only some of your data if an accident occurs. Upgrading and/or reformatting is easier when your personal files are stored on a separate partition. Limit data growth. Runaway processes or maniacal users can consume so much disk space that the operating system no longer has room on the hard drive for its bookkeeping operations. This will lead to disaster. By segregating space, you ensure that things other than the operating system die when allocated disk space is exhausted. Linux Partitions In Linux, a minimum of 1 partition is required for the / . Mounting is the action of connecting a filesystem/partition to a particular point in the / root filesystem. I.e. When a usb stick is inserted, it is assigned a particular mount point and is available to the filesytem tree. - In windows you might have an A:, or B:, or C:, all of which point to different filesystems. What is Swap? If RAM fills up, by running too many processes or a process with a memory leak, new processes will fail if your system doesn’t have a way to extend system memory. -
Technical Standard
Technical Standard X/Open Curses, Issue 7 The Open Group ©November 2009, The Open Group All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owners. Technical Standard X/Open Curses, Issue 7 ISBN: 1-931624-83-6 Document Number: C094 Published in the U.K. by The Open Group, November 2009. This standardhas been prepared by The Open Group Base Working Group. Feedback relating to the material contained within this standardmay be submitted by using the web site at http://austingroupbugs.net with the Project field set to "Xcurses Issue 7". ii Technical Standard 2009 Contents Chapter 1 Introduction........................................................................................... 1 1.1 This Document ........................................................................................ 1 1.1.1 Relationship to Previous Issues ......................................................... 1 1.1.2 Features Introduced in Issue 7 ........................................................... 2 1.1.3 Features Withdrawn in Issue 7........................................................... 2 1.1.4 Features Introduced in Issue 4 ........................................................... 2 1.2 Conformance............................................................................................ 3 1.2.1 Base Curses Conformance ................................................................. -
Study of File System Evolution
Study of File System Evolution Swaminathan Sundararaman, Sriram Subramanian Department of Computer Science University of Wisconsin {swami, srirams} @cs.wisc.edu Abstract File systems have traditionally been a major area of file systems are typically developed and maintained by research and development. This is evident from the several programmer across the globe. At any point in existence of over 50 file systems of varying popularity time, for a file system, there are three to six active in the current version of the Linux kernel. They developers, ten to fifteen patch contributors but a single represent a complex subsystem of the kernel, with each maintainer. These people communicate through file system employing different strategies for tackling individual file system mailing lists [14, 16, 18] various issues. Although there are many file systems in submitting proposals for new features, enhancements, Linux, there has been no prior work (to the best of our reporting bugs, submitting and reviewing patches for knowledge) on understanding how file systems evolve. known bugs. The problems with the open source We believe that such information would be useful to the development approach is that all communication is file system community allowing developers to learn buried in the mailing list archives and aren’t easily from previous experiences. accessible to others. As a result when new file systems are developed they do not leverage past experience and This paper looks at six file systems (Ext2, Ext3, Ext4, could end up re-inventing the wheel. To make things JFS, ReiserFS, and XFS) from a historical perspective worse, people could typically end up doing the same (between kernel versions 1.0 to 2.6) to get an insight on mistakes as done in other file systems. -
F2FS) Overview
Flash Friendly File System (F2FS) Overview Leon Romanovsky [email protected] www.leon.nu November 17, 2012 Leon Romanovsky [email protected] F2FS Overview Disclaimer Everything in this lecture shall not, under any circumstances, hold any legal liability whatsoever. Any usage of the data and information in this document shall be solely on the responsibility of the user. This lecture is not given on behalf of any company or organization. Leon Romanovsky [email protected] F2FS Overview Introduction: Flash Memory Definition Flash memory is a non-volatile storage device that can be electrically erased and reprogrammed. Challenges block-level access wear leveling read disturb bad blocks management garbage collection different physics different interfaces Leon Romanovsky [email protected] F2FS Overview Introduction: Flash Memory Definition Flash memory is a non-volatile storage device that can be electrically erased and reprogrammed. Challenges block-level access wear leveling read disturb bad blocks management garbage collection different physics different interfaces Leon Romanovsky [email protected] F2FS Overview Introduction: General System Architecture Leon Romanovsky [email protected] F2FS Overview Introduction: File Systems Optimized for disk storage EXT2/3/4 BTRFS VFAT Optimized for flash, but not aware of FTL JFFS/JFFS2 YAFFS LogFS UbiFS NILFS Leon Romanovsky [email protected] F2FS Overview Background: LFS vs. Unix FS Leon Romanovsky [email protected] F2FS Overview Background: LFS Overview Leon Romanovsky [email protected] F2FS Overview Background: LFS Garbage Collection 1 A victim segment is selected through referencing segment usage table. 2 It loads parent index structures of all the data in the victim identified by segment summary blocks. -
File Formats
man pages section 4: File Formats Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 817–3945–10 September 2004 Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements. -
In Search of Optimal Data Placement for Eliminating Write Amplification in Log-Structured Storage
In Search of Optimal Data Placement for Eliminating Write Amplification in Log-Structured Storage Qiuping Wangy, Jinhong Liy, Patrick P. C. Leey, Guangliang Zhao∗, Chao Shi∗, Lilong Huang∗ yThe Chinese University of Hong Kong ∗Alibaba Group ABSTRACT invalidated by a live block; a.k.a. the death time [12]) to achieve Log-structured storage has been widely deployed in various do- the minimum possible WA. However, without obtaining the fu- mains of storage systems for high performance. However, its garbage ture knowledge of the BIT pattern, how to design an optimal data collection (GC) incurs severe write amplification (WA) due to the placement scheme with the minimum WA remains an unexplored frequent rewrites of live data. This motivates many research stud- issue. Existing temperature-based data placement schemes that ies, particularly on data placement strategies, that mitigate WA in group blocks by block temperatures (e.g., write/update frequencies) log-structured storage. We show how to design an optimal data [7, 16, 22, 27, 29, 35, 36] are arguably inaccurate to capture the BIT placement scheme that leads to the minimum WA with the fu- pattern and fail to group the blocks with similar BITs [12]. ture knowledge of block invalidation time (BIT) of each written To this end, we propose SepBIT, a novel data placement scheme block. Guided by this observation, we propose SepBIT, a novel data that aims to minimize the WA in log-structured storage. It infers placement algorithm that aims to minimize WA in log-structured the BITs of written blocks from the underlying storage workloads storage. -
ECE 598 – Advanced Operating Systems Lecture 19
ECE 598 { Advanced Operating Systems Lecture 19 Vince Weaver http://web.eece.maine.edu/~vweaver [email protected] 7 April 2016 Announcements • Homework #7 was due • Homework #8 will be posted 1 Why use FAT over ext2? • FAT simpler, easy to code • FAT supported on all major OSes • ext2 faster, more robust filename and permissions 2 btrfs • B-tree fs (similar to a binary tree, but with pages full of leaves) • overwrite filesystem (overwite on modify) vs CoW • Copy on write. When write to a file, old data not overwritten. Since old data not over-written, crash recovery better Eventually old data garbage collected • Data in extents 3 • Copy-on-write • Forest of trees: { sub-volumes { extent-allocation { checksum tree { chunk device { reloc • On-line defragmentation • On-line volume growth 4 • Built-in RAID • Transparent compression • Snapshots • Checksums on data and meta-data • De-duplication • Cloning { can make an exact snapshot of file, copy-on- write different than link, different inodles but same blocks 5 Embedded • Designed to be small, simple, read-only? • romfs { 32 byte header (magic, size, checksum,name) { Repeating files (pointer to next [0 if none]), info, size, checksum, file name, file data • cramfs 6 ZFS Advanced OS from Sun/Oracle. Similar in idea to btrfs indirect still, not extent based? 7 ReFS Resilient FS, Microsoft's answer to brtfs and zfs 8 Networked File Systems • Allow a centralized file server to export a filesystem to multiple clients. • Provide file level access, not just raw blocks (NBD) • Clustered filesystems also exist, where multiple servers work in conjunction. -
How to Create a Custom Live CD for Secure Remote Incident Handling in the Enterprise
How to Create a Custom Live CD for Secure Remote Incident Handling in the Enterprise Abstract This paper will document a process to create a custom Live CD for secure remote incident handling on Windows and Linux systems. The process will include how to configure SSH for remote access to the Live CD even when running behind a NAT device. The combination of customization and secure remote access will make this process valuable to incident handlers working in enterprise environments with limited remote IT support. Bert Hayes, [email protected] How to Create a Custom Live CD for Remote Incident Handling 2 Table of Contents Abstract ...........................................................................................................................................1 1. Introduction ............................................................................................................................5 2. Making Your Own Customized Debian GNU/Linux Based System........................................7 2.1. The Development Environment ......................................................................................7 2.2. Making Your Dream Incident Handling System...............................................................9 2.3. Hardening the Base Install.............................................................................................11 2.3.1. Managing Root Access with Sudo..........................................................................11 2.4. Randomizing the Handler Password at Boot Time ........................................................12 -
11.7 the Windows 2000 File System
830 CASE STUDY 2: WINDOWS 2000 CHAP. 11 11.7 THE WINDOWS 2000 FILE SYSTEM Windows 2000 supports several file systems, the most important of which are FAT-16, FAT-32, and NTFS (NT File System). FAT-16 is the old MS-DOS file system. It uses 16-bit disk addresses, which limits it to disk partitions no larger than 2 GB. FAT-32 uses 32-bit disk addresses and supports disk partitions up to 2 TB. NTFS is a new file system developed specifically for Windows NT and car- ried over to Windows 2000. It uses 64-bit disk addresses and can (theoretically) support disk partitions up to 264 bytes, although other considerations limit it to smaller sizes. Windows 2000 also supports read-only file systems for CD-ROMs and DVDs. It is possible (even common) to have the same running system have access to multiple file system types available at the same time. In this chapter we will treat the NTFS file system because it is a modern file system unencumbered by the need to be fully compatible with the MS-DOS file system, which was based on the CP/M file system designed for 8-inch floppy disks more than 20 years ago. Times have changed and 8-inch floppy disks are not quite state of the art any more. Neither are their file systems. Also, NTFS differs both in user interface and implementation in a number of ways from the UNIX file system, which makes it a good second example to study. NTFS is a large and complex system and space limitations prevent us from covering all of its features, but the material presented below should give a reasonable impression of it. -
In Search of the Ideal Storage Configuration for Docker Containers
In Search of the Ideal Storage Configuration for Docker Containers Vasily Tarasov1, Lukas Rupprecht1, Dimitris Skourtis1, Amit Warke1, Dean Hildebrand1 Mohamed Mohamed1, Nagapramod Mandagere1, Wenji Li2, Raju Rangaswami3, Ming Zhao2 1IBM Research—Almaden 2Arizona State University 3Florida International University Abstract—Containers are a widely successful technology today every running container. This would cause a great burden on popularized by Docker. Containers improve system utilization by the I/O subsystem and make container start time unacceptably increasing workload density. Docker containers enable seamless high for many workloads. As a result, copy-on-write (CoW) deployment of workloads across development, test, and produc- tion environments. Docker’s unique approach to data manage- storage and storage snapshots are popularly used and images ment, which involves frequent snapshot creation and removal, are structured in layers. A layer consists of a set of files and presents a new set of exciting challenges for storage systems. At layers with the same content can be shared across images, the same time, storage management for Docker containers has reducing the amount of storage required to run containers. remained largely unexplored with a dizzying array of solution With Docker, one can choose Aufs [6], Overlay2 [7], choices and configuration options. In this paper we unravel the multi-faceted nature of Docker storage and demonstrate its Btrfs [8], or device-mapper (dm) [9] as storage drivers which impact on system and workload performance. As we uncover provide the required snapshotting and CoW capabilities for new properties of the popular Docker storage drivers, this is a images. None of these solutions, however, were designed with sobering reminder that widespread use of new technologies can Docker in mind and their effectiveness for Docker has not been often precede their careful evaluation. -
File System Design Approaches
File System Design Approaches Dr. Brijender Kahanwal Department of Computer Science & Engineering Galaxy Global Group of Institutions Dinarpur, Ambala, Haryana, INDIA [email protected] Abstract—In this article, the file system development design The experience with file system development is limited approaches are discussed. The selection of the file system so the research served to identify the different techniques design approach is done according to the needs of the that can be used. The variety of file systems encountered developers what are the needed requirements and show what an active area of research file system specifications for the new design. It allowed us to identify development is. The file systems researched fell into one of where our proposal fitted in with relation to current and past file system development. Our experience with file system the following four categories: development is limited so the research served to identify the 1. The file system is developed in user space and runs as a different techniques that can be used. The variety of file user process. systems encountered show what an active area of research file 2. The file system is developed in the user space using system development is. The file systems may be from one of the FUSE (File system in USEr space) kernel module and two fundamental categories. In one category, the file system is runs as a user process. developed in user space and runs as a user process. Another 3. The file system is developed in the kernel and runs as a file system may be developed in the kernel space and runs as a privileged process. -
Synchronizing Threads with POSIX Semaphores
3/17/2016 POSIX Semaphores Synchronizing Threads with POSIX Semaphores 1. Why semaphores? 2. Posix semaphores are easy to use sem_init sem_wait sem_post sem_getvalue sem_destroy 3. Activities 1 2 Now it is time to take a look at some code that does something a little unexpected. The program badcnt.c creates two new threads, both of which increment a global variable called cnt exactly NITER, with NITER = 1,000,000. But the program produces unexpected results. Activity 1. Create a directory called posixsem in your class Unix directory. Download in this directory the code badcnt.c and compile it using gcc badcnt.c -o badcnt -lpthread Run the executable badcnt and observe the ouput. Try it on both tanner and felix. Quite unexpected! Since cnt starts at 0, and both threads increment it NITER times, we should see cnt equal to 2*NITER at the end of the program. What happens? Threads can greatly simplify writing elegant and efficient programs. However, there are problems when multiple threads share a common address space, like the variable cnt in our earlier example. To understand what might happen, let us analyze this simple piece of code: THREAD 1 THREAD 2 a = data; b = data; a++; b--; data = a; data = b; Now if this code is executed serially (for instance, THREAD 1 first and then THREAD 2), there are no problems. However threads execute in an arbitrary order, so consider the following situation: Thread 1 Thread 2 data a = data; --- 0 a = a+1; --- 0 --- b = data; // 0 0 --- b = b + 1; 0 data = a; // 1 --- 1 --- data = b; // 1 1 So data could end up +1, 0, -1, and there is NO WAY to know which value! It is completely non- deterministic! http://www.csc.villanova.edu/~mdamian/threads/posixsem.html 1/4 3/17/2016 POSIX Semaphores The solution to this is to provide functions that will block a thread if another thread is accessing data that it is using.