Assessment Report

Total Page:16

File Type:pdf, Size:1020Kb

Assessment Report 31 May 2018 EMA/556923/2018 Committee for Medicinal Products for Human Use (CHMP) Assessment report RXULTI International non-proprietary name: brexpiprazole Procedure No. EMEA/H/C/003841/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 8 1.1. Submission of the dossier ..................................................................................... 8 1.2. Steps taken for the assessment of the product ........................................................ 9 2. Scientific discussion .............................................................................. 10 2.1. Problem statement ............................................................................................. 10 2.1.1. Disease or condition ........................................................................................ 10 2.1.2. Epidemiology and risk factors, screening tools/prevention .................................... 10 2.1.3. Biologic features, aetiology and pathogenesis ..................................................... 10 2.1.4. Clinical presentation, diagnosis and stage/prognosis ............................................ 11 2.1.5. Management .................................................................................................. 11 2.2. Quality aspects .................................................................................................. 15 2.2.1. Introduction ................................................................................................... 15 2.2.2. Active Substance ............................................................................................. 15 General information .................................................................................................. 15 Manufacture, characterisation and process controls ...................................................... 16 Specification ............................................................................................................ 16 Stability .................................................................................................................. 16 2.2.3. Finished Medicinal Product ................................................................................ 17 Description of the product and Pharmaceutical development .......................................... 17 Manufacture of the product and process controls .......................................................... 17 Product specification ................................................................................................. 17 Stability of the product .............................................................................................. 18 2.2.4. Discussion on chemical, pharmaceutical and biological aspects ............................. 18 2.2.5. Conclusions on the chemical, pharmaceutical and biological aspects ...................... 19 2.2.6. Recommendations for future quality development ............................................... 19 2.3. Non-clinical aspects ............................................................................................ 19 2.3.1. Introduction ................................................................................................... 19 2.3.2. Pharmacology ................................................................................................. 19 2.3.3. Pharmacokinetics ............................................................................................ 28 2.3.4. Toxicology ...................................................................................................... 31 2.3.5. Ecotoxicity/environmental risk assessment ......................................................... 39 2.3.6. Discussion on non-clinical aspects ..................................................................... 42 2.3.7. Conclusion on the non-clinical aspects ............................................................... 49 2.4. Clinical aspects .................................................................................................. 50 2.4.1. Introduction ................................................................................................... 50 2.4.2. Pharmacokinetics ............................................................................................ 51 2.4.3. Pharmacodynamics .......................................................................................... 61 2.4.4. Discussion on clinical pharmacology .................................................................. 63 2.4.5. Conclusions on clinical pharmacology ................................................................. 64 2.5. Clinical efficacy .................................................................................................. 64 Assessment report EMA/556923/2018 Page 2/172 2.5.1. Dose response study(ies) ................................................................................. 64 2.5.2. Main studies ................................................................................................... 69 2.5.3. Discussion on clinical efficacy............................................................................ 84 2.5.4. Conclusions on the clinical efficacy .................................................................... 91 2.1. Clinical safety .................................................................................................... 92 2.1.1. Discussion on clinical safety ............................................................................ 144 2.1.2. Conclusions on the clinical safety .................................................................... 153 2.2. Risk Management Plan ...................................................................................... 154 Use in patients with Insulin dependent diabetes mellitus (IDDM) .................................. 157 2.3. Pharmacovigilance ........................................................................................... 157 2.4. New Active Substance ...................................................................................... 157 2.5. Product information .......................................................................................... 157 2.5.1. User consultation .......................................................................................... 157 2.5.2. Additional monitoring ..................................................................................... 158 3. Benefit-Risk Balance ........................................................................... 158 3.1. Therapeutic Context ......................................................................................... 158 3.1.1. Disease or condition ...................................................................................... 158 3.1.2. Available therapies and unmet medical need .................................................... 158 3.1.3. Main clinical studies ....................................................................................... 158 3.2. Favourable effects ............................................................................................ 159 3.3. Uncertainties and limitations about favourable effects .......................................... 160 3.4. Unfavourable effects ......................................................................................... 161 3.5. Uncertainties and limitations about unfavourable effects ....................................... 164 3.6. Effects Table ................................................................................................... 166 3.7. Benefit-risk assessment and discussion............................................................... 170 3.7.1. Importance of favourable and unfavourable effects ........................................... 170 3.7.2. Balance of benefits and risks .......................................................................... 170 3.8. Conclusions ..................................................................................................... 171 4. Recommendations ............................................................................... 171 Assessment report EMA/556923/2018 Page 3/172 List of abbreviations 5-HT Serotonin (5-hyrodoxytryptamine) 5-HT1A/1B/1D Serotonin 5-HT1A/1B/1D 5-HT2A/2B/2C(s23c)/2C(vsv) Serotonin 5-HT2A/2B/2C 5-HT3/5A/6/7/7A Serotonin 5-HT3/5A/6/7/7A ADR Adverse drug reaction AE Adverse event AIMS Abnormal Involuntary Movement Scale ALT Alanine aminotrasferase APO Apomorphine ARI Aripiprazole ASMF Active Substance Master File AST Aspartate aminotransferase AUC Area under the concentration-time curve AUC∞/AUCinf Area under the concentration-time curve from time zero to infinity (inf= ∞) AUCt Area under the concentration-time curve calculated to the last observable concentration at time t AUCtau Area under the plasma concentration-time curve during a dosing interval (tau [τ]) BARS Barnes Akathisia Rating Scale BE Bioequivalence BREX Brexpiprazole CAR Cariprazine or conditioned avoidance response CDP Clinical development program CGI Clinical
Recommended publications
  • Treatment of Psychosis: 30 Years of Progress
    Journal of Clinical Pharmacy and Therapeutics (2006) 31, 523–534 REVIEW ARTICLE Treatment of psychosis: 30 years of progress I. R. De Oliveira* MD PhD andM.F.Juruena MD *Department of Neuropsychiatry, School of Medicine, Federal University of Bahia, Salvador, BA, Brazil and Department of Psychological Medicine, Institute of Psychiatry, King’s College, University of London, London, UK phrenia. Thirty years ago, psychiatrists had few SUMMARY neuroleptics available to them. These were all Background: Thirty years ago, psychiatrists had compounds, today known as conventional anti- only a few choices of old neuroleptics available to psychotics, and all were liable to cause severe extra them, currently defined as conventional or typical pyramidal side-effects (EPS). Nowadays, new antipsychotics, as a result schizophrenics had to treatments are more ambitious, aiming not only to suffer the severe extra pyramidal side effects. improve psychotic symptoms, but also quality of Nowadays, new treatments are more ambitious, life and social reinsertion. We briefly but critically aiming not only to improve psychotic symptoms, outline the advances in diagnosis and treatment but also quality of life and social reinsertion. Our of schizophrenia, from the mid 1970s up to the objective is to briefly but critically review the present. advances in the treatment of schizophrenia with antipsychotics in the past 30 years. We conclude DIAGNOSIS OF SCHIZOPHRENIA that conventional antipsychotics still have a place when just the cost of treatment, a key factor in Up until the early 1970s, schizophrenia diagnoses poor regions, is considered. The atypical anti- remained debatable. The lack of uniform diagnostic psychotic drugs are a class of agents that have criteria led to relative rates of schizophrenia being become the most widely used to treat a variety of very different, for example, in New York and psychoses because of their superiority with London, as demonstrated in an important study regard to extra pyramidal symptoms.
    [Show full text]
  • Dopamine D2 Receptor Occupancy by Perospirone: a Positron Emission Tomography Study in Patients with Schizophrenia and Healthy Subjects
    Psychopharmacology (2010) 209:285–290 DOI 10.1007/s00213-010-1783-1 ORIGINAL INVESTIGATION Dopamine D2 receptor occupancy by perospirone: a positron emission tomography study in patients with schizophrenia and healthy subjects Ryosuke Arakawa & Hiroshi Ito & Akihiro Takano & Masaki Okumura & Hidehiko Takahashi & Harumasa Takano & Yoshiro Okubo & Tetsuya Suhara Received: 3 September 2009 /Accepted: 18 January 2010 /Published online: 27 March 2010 # Springer-Verlag 2010 Abstract striatum of healthy subjects was 74.8% at 1.5 h, 60.1% at Rationale Perospirone is a novel second-generation antipsy- 8 h, and 31.9% at 25.5 h after administration. chotic drug with high affinity to dopamine D2 receptor and Conclusion Sixteen milligrams of perospirone caused over short half-life of plasma concentration. There has been no 70% dopamine D2 receptor occupancy near its peak level, investigation of dopamine D2 receptor occupancy in patients and then occupancy dropped to about half after 22 h. The with schizophrenia and the time course of occupancy by time courses of receptor occupancy and plasma concentra- antipsychotics with perospirone-like properties. tion were quite different. This single dosage may be Objective We investigated dopamine D2 receptor occupan- sufficient for the treatment of schizophrenia and might be cy by perospirone in patients with schizophrenia and the useful as a new dosing schedule choice. time course of occupancy in healthy subjects. Materials and methods Six patients with schizophrenia Keywords Dopamine D2 receptor occupancy. taking 16–48 mg/day of perospirone participated. Positron Perospirone . Positron emission tomography . emission tomography (PET) scans using [11C]FLB457 were Schizophrenia . Time course performed on each subject, and dopamine D2 receptor occupancies were calculated.
    [Show full text]
  • Revision of Precautions Asenapine Maleate, Aripiprazole, Olanzapine
    Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Revision of Precautions Asenapine maleate, aripiprazole, olanzapine, quetiapine fumarate, clocapramine hydrochloride hydrate, chlorpromazine hydrochloride, chlorpromazine hydrochloride/promethazine hydrochloride/phenobarbital, chlorpromazine phenolphthalinate, spiperone, zotepine, timiperone, haloperidol, paliperidone, pipamperone hydrochloride, fluphenazine decanoate, fluphenazine maleate, brexpiprazole, prochlorperazine maleate, prochlorperazine mesilate, Pharmaceuticals and Medical Devices Agency Office of Safety I 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013 Japan E-mail: [email protected] Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. propericiazine, bromperidol, perphenazine, perphenazine hydrochloride, perphenazine fendizoate, perphenazine maleate, perospirone hydrochloride hydrate, mosapramine hydrochloride, risperidone (oral drug), levomepromazine hydrochloride, levomepromazine maleate March 27, 2018 Non-proprietary name Asenapine maleate,
    [Show full text]
  • Monoamine Depletion in Psychiatric and Healthy Populations
    Molecular Psychiatry (2003) 8, 951–973 & 2003 Nature Publishing Group All rights reserved 1359-4184/03 $25.00 www.nature.com/mp FEATURE REVIEW Monoamine depletion in psychiatric and healthy populations: review L Booij1, AJW Van der Does1,2 and WJ Riedel3,4,5 1Department of Psychology, Leiden University, Leiden 2333 AK, The Netherlands; 2Department of Psychiatry, Leiden University, Leiden 2333 AK, The Netherlands; 3GlaxoSmithKline, Translational Medicine & Technology, Cambridge, UK; 4Department of Psychiatry, University of Cambridge, UK; 5Faculty of Psychology, Maastricht University, The Netherlands A number of techniques temporarily lower the functioning of monoamines: acute tryptophan depletion (ATD), alpha-methyl-para-tyrosine (AMPT) and acute phenylalanine/tyrosine deple- tion (APTD). This paper reviews the results of monoamine depletion studies in humans for the period 1966 until December 2002. The evidence suggests that all three interventions are specific, in terms of their short-term effects on one or two neurotransmitter systems, rather than on brain protein metabolism in general. The AMPT procedure is somewhat less specific, affecting both the dopamine and norepinephrine systems. The behavioral effects of ATD and AMPT are remarkably similar. Neither procedure has an immediate effect on the symptoms of depressed patients; however, both induce transient depressive symptoms in some remitted depressed patients. The magnitude of the effects, response rate and quality of response are also comparable. APTD has not been studied in recovered major depressive patients. Despite the similarities, the effects are distinctive in that ATD affects a subgroup of recently remitted patients treated with serotonergic medications, whereas AMPT affects recently remitted patients treated with noradrenergic medications.
    [Show full text]
  • The Effects of Clonidine and Idazoxan on Cerebral Blood Flow in Rats Studied by Arterial Spin Labeling Magnetic Resonance Perfusion Imaging
    The Effects of Clonidine and Idazoxan on Cerebral Blood Flow in Rats Studied by Arterial Spin Labeling Magnetic Resonance Perfusion Imaging X. Du1, H. Lei1 1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics & Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China, People's Republic of Introduction Agonists of α2-adrenoceptors are known to produce many central and peripheral effects. For example, xylazine, a selective α2-adrenoceptors agonist, has been shown to cause region-dependent CBF decreases in rat [1]. Clonidine, an agonist for both α2-adrenergic receptor and imidazoline receptor, is a widely used drug for treating hypertension. Its effect on CBF, however, is not well understood. In this study, continuous arterial labeling (CASL) MR perfusion imaging was used to investigate the effects of clonidine and idazoxan, an antagonist for α2-adrenergic and imidazoline receptors, on CBF in rats. Materials and Methods Twelve male Sprague-Dawley rats, weighting 250-320 g, were used. After intubation, the rats were anesthetized by 1.0-1.5% isoflurane in a 70:30 N2O/O2 gas mixture. For each rat, bilateral femoral arteries and the right femoral vein were catheterized for monitoring blood gases and blood pressure, and for delivering drugs. Rectal temperature was maintained at 37.0-37.5 oC using a warm water pad. After measuring baseline CBF, the rats were divided into two groups. In the first group (n=7), clonidine (10 µg/kg, i.v.) was injected first, followed by idazoxan injection (300 µg/kg, i.v.) at 30 minutes later. Perfusion maps were obtained after administration of each drug.
    [Show full text]
  • Drug Repurposing for the Management of Depression: Where Do We Stand Currently?
    life Review Drug Repurposing for the Management of Depression: Where Do We Stand Currently? Hosna Mohammad Sadeghi 1,†, Ida Adeli 1,† , Taraneh Mousavi 1,2, Marzieh Daniali 1,2, Shekoufeh Nikfar 3,4,5 and Mohammad Abdollahi 1,2,* 1 Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] (H.M.S.); [email protected] (I.A.); [email protected] (T.M.); [email protected] (M.D.) 2 Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran 3 Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran 1417614411, Iran; [email protected] 4 Pharmaceutical Sciences Research Center (PSRC) and the Pharmaceutical Management and Economics Research Center (PMERC), Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran 5 Department of Pharmacoeconomics and Pharmaceutical Administration, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran * Correspondence: [email protected] † Equally contributed as first authors. Citation: Mohammad Sadeghi, H.; Abstract: A slow rate of new drug discovery and higher costs of new drug development attracted Adeli, I.; Mousavi, T.; Daniali, M.; the attention of scientists and physicians for the repurposing and repositioning of old medications. Nikfar, S.; Abdollahi, M. Drug Experimental studies and off-label use of drugs have helped drive data for further studies of ap- Repurposing for the Management of proving these medications.
    [Show full text]
  • Antipsychotics
    The Fut ure of Antipsychotic Therapy (page 7 in syllabus) Stepp,,hen M. Stahl, MD, PhD Adjunct Professor, Department of Psychiatry Universityyg of California, San Diego School of Medicine Honorary Visiting Senior Fellow, Cambridge University, UK Sppyonsored by the Neuroscience Education Institute Additionally sponsored by the American Society for the Advancement of Pharmacotherapy This activity is supported by an educational grant from Sunovion Pharmaceuticals Inc. Copyright © 2011 Neuroscience Education Institute. All rights reserved. Individual Disclosure Statement Faculty Editor / Presenter Stephen M. Stahl, MD, PhD, is an adjunct professor in the department of psychiatry at the University of California, San Diego School of Medicine, and an honorary visiting senior fellow at the University of Cambridge in the UK. Grant/Research: AstraZeneca, BioMarin, Dainippon Sumitomo, Dey, Forest, Genomind, Lilly, Merck, Pamlab, Pfizer, PGxHealth/Trovis, Schering-Plough, Sepracor/Sunovion, Servier, Shire, Torrent Consultant/Advisor: Advent, Alkermes, Arena, AstraZeneca, AVANIR, BioMarin, Biovail, Boehringer Ingelheim, Bristol-Myers Squibb, CeNeRx, Cypress, Dainippon Sumitomo, Dey, Forest, Genomind, Janssen, Jazz, Labopharm, Lilly, Lundbeck, Merck, Neuronetics, Novartis, Ono, Orexigen, Otsuka, Pamlab, Pfizer, PGxHealth/Trovis, Rexahn, Roche, Royalty, Schering-Plough, Servier, Shire, Solvay/Abbott, Sunovion/Sepracor, Valeant, VIVUS, Speakers Bureau: Dainippon Sumitomo, Forest, Lilly, Merck, Pamlab, Pfizer, Sepracor/Sunovion, Servier, Wyeth Copyright © 2011 Neuroscience Education Institute. All rights reserved. Learninggj Objectives • Differentiate antipsychotic drugs from each other on the basis of their pharmacological mechanisms and their associated therapeutic and side effects • Integrate novel treatment approaches into clinical practice according to best practices guidelines • Identify novel therapeutic options currently being researched for the treatment of schizophrenia Copyright © 2011 Neuroscience Education Institute.
    [Show full text]
  • Dopamine D2 Receptors in the Cerebral Cortex
    Proc. Nati. Acad. Sci. USA Vol. 86, pp. 6412-6416, August 1989 Neurobiology Dopamine D2 receptors in the cerebral cortex: Distribution and pharmacological characterization with [3Hlraclopride (raclopride binding/neostriatum/rat/monkey) MICHAEL S. LIDOW*t, PATRICIA S. GOLDMAN-RAKIC*, PASKO RAKIC*, AND ROBERT B. INNIS*f Section of *Neuroanatomy and tDepartment of Psychiatry, Yale University, School of Medicine, New Haven, CT 06510 Contributed by Pasko Rakic, May 17, 1989 ABSTRACT An apparent involvement of dopamine in the MATERIALS AND METHODS regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have fo- Tissue was obtained from three adult rhesus monkeys cused attention on the identity of cortical dopamine receptors. (Macaca mulatta): one male and two females. The animals However, only the presence and distribution of dopamine DI were anesthesized with sodium pentobarbital (40 mg/kg) and receptors in the cortex have been well documented. Compa- perfused with ice-cold phosphate-buffered saline followed by rable information on cortical D2 sites is lacking. We report here 0.1% paraformaldehyde (9; 15). The cerebral cortex and the results of binding studies in the cortex and neostriatum of neostriatum were rapidly removed and immersed in isopen- rat and monkey using the D2 selective antagonist [3H]raclo- tane at -700C for 5 min before storing at -800C until use. For pride. In both structures [3H]raclopride bound in a sodium- competition studies tissue was pooled from several neocor- dependent and saturable manner to a single population of sites tical areas. However, saturation studies were conducted on with pharmacological profiles of dopamine D2 receptors.
    [Show full text]
  • Psychosis and Schizophrenia in Clinical Practice Psychosis in Practice
    11/1/2017 Psychosis and Schizophrenia in Clinical Practice David Pickar, MD Adjunct Professor Johns Hopkins USUHS Psychosis in Practice • Schizophrenia • Mania • Depression • Brief Psychotic Episodes • Substance Abuse • FASD and other Neurodevelopment Disorders 1 11/1/2017 Schizophrenia • Late Adolescent/Early Adult Age of Onset • Life-Long Condition and Chronic Medication – Typical Antipsychotic drugs – introduced in 50’s -60’s – Atypical Antipsychotic drugs – introduced in later 80’s 90’s – Clozapine is the only ADP with demonstrated superiority – Market For Antipsychotic Drugs : Peak $16B /year US • 1% of World Population • Common “Complex” Disorder – Pathophysiology – Genetics – Variable Phenotype • Positive and Negative Symptoms and Cognitive Deficits • 10% Completed Suicide Prevalence and Treatment Rates • 8.1 million adults with schizophrenia or bipolar disorder mental illness (3.3% of the population)+ • 5.4 million – approximate number with severe bipolar disorder (2.2% of the population), 51% untreated+ • 2.7 million – approximate number with schizophrenia (1.1% of the population), 40% untreated+ • 3.9 million – approximate number untreated seriously mentally ill patients in any given year (1.6% of the population)+ 2 11/1/2017 Positive and Negative Symptom Scale (PANSS) Positive Symptoms • 7 Items, (minimum score = 7, maximum score = 49) • Delusions • Conceptual disorganization • Hallucinations • Excitement • Grandiosity • Suspiciousness/persecution • Hostility 3 11/1/2017 PANSS Negative Symptoms • 7 Items, (minimum score = 7,
    [Show full text]
  • Prolactin Levels in Schizophrenic Patients Receiving Perospirone in Comparison to Risperidone
    J Pharmacol Sci 91, 259 – 262 (2003) Journal of Pharmacological Sciences ©2003 The Japanese Pharmacological Society Short Communication Prolactin Levels in Schizophrenic Patients Receiving Perospirone in Comparison to Risperidone Takashi Togo1,2,*, Eizo Iseki2, Mika Shoji1, Ikuo Oyama1, Akihiko Kase1, Hirotake Uchikado2, Omi Katsuse2 and Kenji Kosaka2 1Yokohama Maioka Hospital, Yokohama 244-0813, Japan 2Department of Psychiatry, Yokohama City University School of Medicine, Yokohama 236-0004, Japan Received November 21, 2002; Accepted January 9, 2003 Abstract. Serum prolactin levels were investigated in 41 patients with schizophrenia who were receiving clinically effective doses of perospirone or risperidone for more than 4 weeks. In order to determine baseline prolactin levels, blood samples were obtained in the morning, 10 – 14 h after antipsychotic medication. Median levels were within normal limits in both female and male patients receiving perospirone, while risperidone induced significant elevation. These results suggest that in contrast to risperidone, where baseline prolactin levels were elevated 5.3-fold in female and 4.2-fold in male patients, baseline prolactin levels are not elevated after treatment with perospirone. However, these results should be cautiously interpreted, because drug-by-time interaction has previously been reported in antipsychotic-induced hyperprolactinemia. Keywords: prolactin, perospirone, schizophrenia Hyperprolactinemia is a common side effect that may well as the adverse effects of perospirone have not been arise from the use of antipsychotic agents (1, 2). Before fully investigated. In the present study, we have investi- the introduction of clozapine, it was assumed that all gated the baseline serum prolactin levels in patients antipsychotics cause extrapyramidal side effects and treated with clinically effective doses of perospirone in elevate prolactin levels by antagonizing dopamine D2 comparison to risperidone.
    [Show full text]
  • Medication Adherence Failure in Schizophrenia: a Forensic Review of Rates, Reasons, Treatments, and Prospects
    Medication Adherence Failure in Schizophrenia: A Forensic Review of Rates, Reasons, Treatments, and Prospects John L. Young, MD, Reuben T. Spitz, PhD, Marc Hillbrand, PhD, and George Daneri, MSN Forensic patients with schizophrenia who fail to adhere to prescribed antipsy- chotic medication risk recidivism, which continues to be a serious concern. It affects all stages of trial proceedings and impacts on the treaters' liability. Al- though much remains unchanged since the authors reviewed the subject in 1986, significant advances have occurred. A patient's insight can be assessed with greater precision. Risks posed by past noncompliance, substance abuse, and a dysphoric response to medication are more clearly documented. Clinical and laboratory methods for assessing compliance have improved. Major advances in the effective amelioration of adverse effects can be applied to promote adherence. New augmentation strategies enable adequate treatment at lower doses. The development of atypical antipsychotic agents makes compliance easier to achieve and maintain. Other advances apply to the containment of relapse when it does occur. This review organizes the literature documenting these trends for use in both treatment and consultation. Recent advances in the treatment of schizo- with its potential for relapse and recidivism phrenia have so far not improved adherence has not changed over the 12 years since this to treatment nor have they decreased the subject was updated under a forensic codi- public's concern about the violence of some fication.' At the same - time, notable patients with this disorder. In fact, the re- progress in the understanding and treatment ported risk of medication noncompliance of schizophrenia has produced develop- ments hlghly relevant to the problems of The authors are affiliated with the Whiting Forensic Division of Connecticut Valley Hospital, Middletown, noncompliance and relapse.
    [Show full text]
  • Efficacy and Tolerability of Aripiprazole Versus D2 Antagonists in the Early
    www.nature.com/npjschz REVIEW ARTICLE OPEN Efficacy and tolerability of aripiprazole versus D2 antagonists in the early course of schizophrenia: a systematic review and meta-analysis David D. Kim1,2, Alasdair M. Barr1,2, Lulu Lian1, Jessica W. Y. Yuen1, Diane Fredrikson3, William G. Honer2,3, Allen E. Thornton2,4 and ✉ Ric M. Procyshyn 2,3 Early intervention is essential for favorable long-term outcomes in schizophrenia. However, there is limited guidance in the scientific literature on how best to choose between dopamine D2 receptor (D2R) partial agonists and D2R antagonists in early stages of schizophrenia. The aim of this meta-analysis was to directly compare D2R partial agonists with D2R antagonists for efficacy and tolerability, using randomized controlled trials (RCTs) that involved participants diagnosed with first-episode psychosis, schizophrenia, or related psychotic disorders with a duration of illness ≤5 years. Fourteen RCTs, involving 2494 patients, were included in the meta-analysis. Aripiprazole was the only identified D2R partial agonist, and was not significantly different from pooled D2R antagonists for overall symptom reduction or all-cause discontinuation. However, aripiprazole was more favorable than pooled D2R antagonists for depressive symptoms, prolactin levels, and triglyceride levels. Specifically, aripiprazole was more favorable than paliperidone for triglyceride levels and more favorable than risperidone and olanzapine, but less favorable than ziprasidone, for weight gain. In addition, aripiprazole was less favorable for akathisia compared with second-generation D2R 1234567890():,; antagonists, in particular olanzapine and quetiapine, and less favorable for discontinuation due to inefficacy than risperidone. Lastly, aripiprazole was more favorable than haloperidol for various efficacy and tolerability outcomes.
    [Show full text]