Cryptocurrencies Without Proof of Work

Total Page:16

File Type:pdf, Size:1020Kb

Cryptocurrencies Without Proof of Work Cryptocurrencies without Proof of Work Iddo Bentov1, Ariel Gabizon2, and Alex Mizrahi3 1 Department of Computer Science, Technion, [email protected] 2 Department of Computer Science, Technion, [email protected] 3 chromaway.com, [email protected] Abstract. We study decentralized cryptocurrency protocols in which the participants do not deplete physical scarce resources. Such protocols commonly rely on Proof of Stake, i.e., on mechanisms that extend voting power to the stakeholders of the system. We offer analysis of existing protocols that have a substantial amount of popularity. We then present our novel pure Proof of Stake protocols, and argue that they help in mitigating problems that the existing protocols exhibit. 1 Introductiony The decentralized nature of Bitcoin [7, 12] means that anyone can become a \miner" at any point in time, and thus participate in the security maintenance of the Bitcoin system and be compensated for this work. The miners continuously perform Proof of Work (PoW) computations, meaning that they attempt to solve difficult computational tasks. The purpose of the PoW element in the Bitcoin system is to reach consensus regarding the ledger history, thereby synchronizing the transactions and making the users secure against double-spending attacks. The miners who carry out PoW computations can be viewed as entities who vote on blocks of transactions that the users recently broadcasted to the network, so that the decision-making power of each miner is in proportion to the amount of computational power that she has. Thus, an individual miner who has a fraction p of the total mining power can create each new block with probability p, though other factors such as “selfish mining" [1,5,6] can influence p. ≈ Under the assumption that the majority of the PoW mining power follows the Bitcoin protocol, the users can become increasingly confident that the payment transactions that they receive will not be reversed [7, 12, 15]. By means of the PoW mechanism, each miner depletes physical scarce re- sources in the form of electricity and mining equipment erosion, and thereby earns cryptographic scarce resources in the form of coins that can be spent within the Bitcoin system. Hence the following question is of interest: can a decentralized cryptocurrency system be as secure as Bitcoin even if the entities who maintain its security do not deplete physical scarce resources? y The full version of this work includes extra material such as a section on the initial issuance of the money supply, and is available at http://arxiv.org/abs/1406.5694. Cryptocurrency protocols that attempt to avoid wasting physical scarce re- sources commonly rely on Proof of Stake, i.e., on mechanisms that give the decision-making power regarding the continuation of the ledger history to enti- ties who possess coins within the system. The rationale behind Proof of Stake is that entities who hold stake in the system are well-suited to maintain its security, since their stake will diminish in value when the security of the system erodes. Therefore, in an analogous manner to Bitcoin, an individual stakeholder who possesses p fraction of the total amount of coins in circulation becomes eligible to create the next extension of the ledger with probability p. ≈ We use the terminology \pure" Proof of Stake to refer to a cryptocurrency system that relies on Proof of Stake and does not make any use of PoW. To the best of our knowledge, the idea of Proof of Stake in the context of cryptocur- rencies was first introduced in [17], though that discussion focused on non-pure Proof of Stake variants (cf. [3]). PoW based cryptocurrencies become insecure when a significant enough por- tion of the total mining power colludes in an attack. Likewise, the security of pure Proof of Stake cryptocurrencies deteriorates when enough stakeholders wish to collude in an attack. If the majority of the stake wishes to participate in at- tacks on a pure Proof of Stake system, it can be argued that there is no longer enough interest that this system should continue to exist, hence assuming that the majority of the stake will not participate in an (overt) attack is sensible. The same does not necessarily hold in a PoW based system, i.e., the majority of the mining power might be under the control of an external adversary during some time period, while the majority of the participants in this system still wish for it to remain sound. See [3] and Section3 for additional considerations. 2 Pure Proof of Stake There are two apparent hurdles with decentralized pure Proof of Stake systems: fair initial distribution of the money supply to the interested parties, and network fragility if the nodes are rational rather than altruistic. PoW offers an elegant solution to the first hurdle, by converting physical scarce resources into coins in the system. We provide here an analysis of the second hurdle in an existing pure Proof of Stake system, and also describe our novel CoA and Dense-CoA pure Proof of Stake systems that seek to mitigate this problem. Let us note this second hurdle is less severe in PoW systems, though bribe attacks on Bitcoin have indeed been considered, for example in [16]. 2.1 The PPCoin system PPCoin is a pure Proof of Stake system, in the sense that PoW is used only5 for distributing the initial money supply. Stakeholders in the PPCoin network can 5 See http://peercoin.net/assets/paper/peercoin-paper.pdf. create the next block according to the following type of condition: hash(prev blocks data; time in seconds; txoutA) ≤ d0 · coins(txoutA) · timeweight(txoutA) (*) In the inequality (*), time in seconds should correspond to the current time (with some leniency bounds), thus restricting hash attempts to 1 per second and preventing PoW use at creating the next block, because nodes will regard a new block as invalid unless the difference between its time and their local time is within the bounds. The notation coins(txoutA) refers to the amount of coins of some unspent transaction output txoutA, hence if stakeholder A has the private key skA that controls txoutA then she can create a valid block by signing the block with skA and attaching the signature as evidence that condition (*) holds. This means that a stakeholder who controls an output of e.g. 50 coins is 10 times more likely to create a block than a stakeholder who controls an output of 5 coins. See regarding timeweight(txoutA), and Section 2.1.3 regarding y prev blocks data. The constant d0 is readjusted according to a protocol rule that dictates that blocks should be created in intervals of 10 minutes on average, i.e., if fewer stakeholders are online during a certain time period then d0 gets increased. The winning blockchain is the one with the largest cumulative stake, i.e., the blockchain with the most blocks such that stake blocks are weighted according to their d0 difficulties, and PoW blocks have a negligible weight. Although the PPCoin cryptocurrency had a market cap of over $100 million in 2014, the PPCoin protocol has the following problems: 2.1.1 Rational forks 1 On every second we have that Pr[ some block is solved ] 600 , therefore mul- tiple blocks will be solved simultaneouslyf every 360000g ≈ seconds 4 days. Rational stakeholders can increase their expected≈ reward by maintaining≈ and trying to solve blocks on the multiple forked chains that were transmitted to them, which would lead to a divergent network. An individual stakeholder can either tie her hands behind her back by ignoring all the forked chains except for one, or opt to gain more rewards by keeping all the forked chains, which may render her entire stake worthless in case the network becomes divergent. The strategy of tying your hands behind your back is not a Nash equilibrium: if all the stakeholders follow this strategy then it is better for an individual stakeholder to deviate and maintain all the forked chains, as her influence on the overall convergence of the network is minor. Network propagation lag im- plies an even greater frequency of forks, as a stakeholder will get competing blocks sent to her even if those blocks were honestly solved a few seconds apart from one another. Worse still, when a rational stakeholder who currently tries to extend the block Bi receives Bi+1 from her peers, she may opt to increase her expected reward by attempting to extend both the chain :::;Bi;Bi+1 and the chain :::;Bi simultaneously. Rational stakeholders may thus prefer to reject blocks whose timestamp is later than another block that they currently try to extend, though an attempt to extend both :::;Bi;Bi+1 and :::;Bi can still be possible if the rule that the stakeholders deploy does not retrace to an earlier chain that is received late due to propagation lag. 2.1.2 Bribe attacks on PPCoin An attacker can double-spend quite easily. After the merchant waits for e.g. 6 block confirmations and sends the goods, the attacker can publicly announce her intent to create a fork that reverses the last 6 blocks, and offer bribes to stakeholders who would sign blocks of her competing branch that starts 6 blocks earlier. The attacker may offer a larger bribe to stakeholders who sign only her branch, and may commit to giving bribes even after her competing branch wins, to encourage more stakeholders to participate in the attack. Notice that the stakeholders who collude with the attacker will not lose anything in case the attack fails. As long as the value of the goods is greater than the total value of the bribes, this attack will be profitable.
Recommended publications
  • Examining the Lightning Network on a Protocol Level
    Examining the Lightning network on a protocol level Rene Pickhardt (Data Science Consultant) https://www.rene-pickhardt.de & https://twitter.com/renepickhardt München 19.7.2018 I've been told I should start any talk with something everybody in the audience should know A standard Bitcoin Transaction has 6 data fields ( The following is a brief summary of https://en.bitcoin.it/wiki/Transaction#Input ) ● Version number (4 Bytes) ● In-Counter (1-9 Bytes) ● List of inputs (depending on the Value of <In-Counter>) ● Out-Counter (1-9 Bytes) ● List of Outputs (depending on the Value of <Out-Counter>) ● Lock_time (4 Bytes) ( Bitcoin Transaction with 3 inputs and 2 outputs Data consists mainly of executable scripts! A chain of Bitcoin Transactions with 3 UTXO ● Outputs are references by the inputs ● The Script in the output defines how the transaction can be spent ● Owning Bitcoins means being able to spend the output of an unspent transaction ○ Provide an input script ○ Concatenate it with with some outputscript of an unspent transaction ○ The combined Script needs to evaluate to True Spending a Pay-to-PubkeyHash (standard TX) ● ScriptPubKey (aka the Output Script) ○ OP_DUP OP_HASH160 <pubKeyHash> OP_EQUALVERIFY OP_CHECKSIG ● ScriptSig: (aka the Input Script) ○ <sig> <pubKey> ● Explainations ○ OP_CODES are the instructions of the script language within Bitcoin ○ <data> is depicted like html tags with lesser than and greater than signs ○ The complete script is concatenated as Input || Output and then being executed on a Stack machine <sig> <pubKey>
    [Show full text]
  • Asymmetric Proof-Of-Work Based on the Generalized Birthday Problem
    Equihash: Asymmetric Proof-of-Work Based on the Generalized Birthday Problem Alex Biryukov Dmitry Khovratovich University of Luxembourg University of Luxembourg [email protected] [email protected] Abstract—The proof-of-work is a central concept in modern Long before the rise of Bitcoin it was realized [20] that cryptocurrencies and denial-of-service protection tools, but the the dedicated hardware can produce a proof-of-work much requirement for fast verification so far made it an easy prey for faster and cheaper than a regular desktop or laptop. Thus the GPU-, ASIC-, and botnet-equipped users. The attempts to rely on users equipped with such hardware have an advantage over memory-intensive computations in order to remedy the disparity others, which eventually led the Bitcoin mining to concentrate between architectures have resulted in slow or broken schemes. in a few hardware farms of enormous size and high electricity In this paper we solve this open problem and show how to consumption. An advantage of the same order of magnitude construct an asymmetric proof-of-work (PoW) based on a compu- is given to “owners” of large botnets, which nowadays often tationally hard problem, which requires a lot of memory to gen- accommodate hundreds of thousands of machines. For prac- erate a proof (called ”memory-hardness” feature) but is instant tical DoS protection, this means that the early TLS puzzle to verify. Our primary proposal Equihash is a PoW based on the schemes [8], [17] are no longer effective against the most generalized birthday problem and enhanced Wagner’s algorithm powerful adversaries.
    [Show full text]
  • Deviant Decentralized Exchange
    DDEEVVXX Deviant Decentralized Exchange A hybrid exchange leveraging Smartcoins on the Bitshares (BTS) blockchain. CONTENTS 03 What is the current landscape for trading crypto assets? 05 Centralized Exchanges 08 Decentralized Exchanges 11 Hybrid Exchanges 13 DEVX Platform 14 Platform Overview 16 DEVX Smart Coin 17 DEVX off-chain engine - The DEVX Transient Protocol (DEVTP) 19 Trading Process 25 What is the status of development / roadmap for these innovations? 26 DEVX Team 03 Crypto assets are here to stay. According to Apple co-founder Steve Wozniak, Bitcoin and WHAT IS THE blockchain will be the next major IT revolution, and will achieve full CURRENT potential in a decade. According to LANDSCAPE FOR Paypal co-founder Peter Thiel, Bitcoin is the next Digital Gold. TRADING CRYPTO Since Bitcoin’s release in 2009, 1,622 altcoin variants have been issued. ASSETS? 2018 has already broken all records with 345 Initial Coin Offerings, and over US$ 7.7 billion of capital raised. DEVX the next revolution 04 Growth in the number of crypto assets has also driven an increase in crypto asset trading, in order to satisfy the requirements of the increasingly numerous universe of holders, investors, arbitrageurs, market makers, speculators and hedgers. There are presently more than 500 crypto asset exchanges to bring together buyers and sellers, where crypto assets are traded for either different digital currencies, or for other assets such as conventional fiat money. These exchanges operate mostly outside Western countries, and range from fully-online platforms to bricks-and-mortar businesses. Currently, almost two thirds of all daily global crypto asset trading volume results from activity on just ten of these exchanges.
    [Show full text]
  • Initial Coin Offerings: Financing Growth with Cryptocurrency Token
    Initial Coin Offerings: Financing Growth with Cryptocurrency Token Sales Sabrina T. Howell, Marina Niessner, and David Yermack⇤ June 21, 2018 Abstract Initial coin offerings (ICOs) are sales of blockchain-based digital tokens associated with specific platforms or assets. Since 2014 ICOs have emerged as a new financing instrument, with some parallels to IPOs, venture capital, and pre-sale crowdfunding. We examine the relationship between issuer characteristics and measures of success, with a focus on liquidity, using 453 ICOs that collectively raise $5.7 billion. We also employ propriety transaction data in a case study of Filecoin, one of the most successful ICOs. We find that liquidity and trading volume are higher when issuers offer voluntary disclosure, credibly commit to the project, and signal quality. s s ss s ss ss ss s ⇤NYU Stern and NBER; Yale SOM; NYU Stern, ECGI and NBER. Email: [email protected]. For helpful comments, we are grateful to Bruno Biais, Darrell Duffie, seminar participants at the OECD Paris Workshop on Digital Financial Assets, Erasmus University, and the Swedish House of Finance. We thank Protocol Labs and particularly Evan Miyazono and Juan Benet for providing data. Sabrina Howell thanks the Kauffman Foundation for financial support. We are also grateful to all of our research assistants, especially Jae Hyung (Fred) Kim. Part of this paper was written while David Yermack was a visiting professor at Erasmus University Rotterdam. 1Introduction Initial coin offerings (ICOs) may be a significant innovation in entrepreneurial finance. In an ICO, a blockchain-based venture raises capital by selling cryptographically secured digital assets, usually called “tokens.” These ventures often resemble the startups that conventionally finance themselves with angel or venture capital (VC) investment, though there are many scams, jokes, and tokens that have nothing to do with a new product or business.
    [Show full text]
  • Piecework: Generalized Outsourcing Control for Proofs of Work
    (Short Paper): PieceWork: Generalized Outsourcing Control for Proofs of Work Philip Daian1, Ittay Eyal1, Ari Juels2, and Emin G¨unSirer1 1 Department of Computer Science, Cornell University, [email protected],[email protected],[email protected] 2 Jacobs Technion-Cornell Institute, Cornell Tech [email protected] Abstract. Most prominent cryptocurrencies utilize proof of work (PoW) to secure their operation, yet PoW suffers from two key undesirable prop- erties. First, the work done is generally wasted, not useful for anything but the gleaned security of the cryptocurrency. Second, PoW is natu- rally outsourceable, leading to inegalitarian concentration of power in the hands of few so-called pools that command large portions of the system's computation power. We introduce a general approach to constructing PoW called PieceWork that tackles both issues. In essence, PieceWork allows for a configurable fraction of PoW computation to be outsourced to workers. Its controlled outsourcing allows for reusing the work towards additional goals such as spam prevention and DoS mitigation, thereby reducing PoW waste. Meanwhile, PieceWork can be tuned to prevent excessive outsourcing. Doing so causes pool operation to be significantly more costly than today. This disincentivizes aggregation of work in mining pools. 1 Introduction Distributed cryptocurrencies such as Bitcoin [18] rely on the equivalence \com- putation = money." To generate a batch of coins, clients in a distributed cryp- tocurrency system perform an operation called mining. Mining requires solving a computationally intensive problem involving repeated cryptographic hashing. Such problem and its solution is called a Proof of Work (PoW) [11]. As currently designed, nearly all PoWs suffer from one of two drawbacks (or both, as in Bitcoin).
    [Show full text]
  • Consent Order: HDR Global Trading Limited, Et Al
    Case 1:20-cv-08132-MKV Document 62 Filed 08/10/21 Page 1 of 22 UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF NEW YORK USDC SDNY DOCUMENT ELECTRONICALLY FILED COMMODITY FUTURES TRADING DOC #: COMMISSION, DATE FILED: 8/10/2021 Plaintiff v. Case No. 1:20-cv-08132 HDR GLOBAL TRADING LIMITED, 100x Hon. Mary Kay Vyskocil HOLDINGS LIMITED, ABS GLOBAL TRADING LIMITED, SHINE EFFORT INC LIMITED, HDR GLOBAL SERVICES (BERMUDA) LIMITED, ARTHUR HAYES, BENJAMIN DELO, and SAMUEL REED, Defendants CONSENT ORDER FOR PERMANENT INJUNCTION, CIVIL MONETARY PENALTY, AND OTHER EQUITABLE RELIEF AGAINST DEFENDANTS HDR GLOBAL TRADING LIMITED, 100x HOLDINGS LIMITED, SHINE EFFORT INC LIMITED, and HDR GLOBAL SERVICES (BERMUDA) LIMITED I. INTRODUCTION On October 1, 2020, Plaintiff Commodity Futures Trading Commission (“Commission” or “CFTC”) filed a Complaint against Defendants HDR Global Trading Limited (“HDR”), 100x Holdings Limited (100x”), ABS Global Trading Limited (“ABS”), Shine Effort Inc Limited (“Shine”), and HDR Global Services (Bermuda) Limited (“HDR Services”), all doing business as “BitMEX” (collectively “BitMEX”) as well as BitMEX’s co-founders Arthur Hayes (“Hayes”), Benjamin Delo (“Delo”), and Samuel Reed (“Reed”), (collectively “Defendants”), seeking injunctive and other equitable relief, as well as the imposition of civil penalties, for violations of the Commodity Exchange Act (“Act”), 7 U.S.C. §§ 1–26 (2018), and the Case 1:20-cv-08132-MKV Document 62 Filed 08/10/21 Page 2 of 22 Commission’s Regulations (“Regulations”) promulgated thereunder, 17 C.F.R. pts. 1–190 (2020). (“Complaint,” ECF No. 1.)1 II. CONSENTS AND AGREEMENTS To effect settlement of all charges alleged in the Complaint against Defendants HDR, 100x, ABS, Shine, and HDR Services (“Settling Defendants”) without a trial on the merits or any further judicial proceedings, Settling Defendants: 1.
    [Show full text]
  • Cryptocurrency: the Economics of Money and Selected Policy Issues
    Cryptocurrency: The Economics of Money and Selected Policy Issues Updated April 9, 2020 Congressional Research Service https://crsreports.congress.gov R45427 SUMMARY R45427 Cryptocurrency: The Economics of Money and April 9, 2020 Selected Policy Issues David W. Perkins Cryptocurrencies are digital money in electronic payment systems that generally do not require Specialist in government backing or the involvement of an intermediary, such as a bank. Instead, users of the Macroeconomic Policy system validate payments using certain protocols. Since the 2008 invention of the first cryptocurrency, Bitcoin, cryptocurrencies have proliferated. In recent years, they experienced a rapid increase and subsequent decrease in value. One estimate found that, as of March 2020, there were more than 5,100 different cryptocurrencies worth about $231 billion. Given this rapid growth and volatility, cryptocurrencies have drawn the attention of the public and policymakers. A particularly notable feature of cryptocurrencies is their potential to act as an alternative form of money. Historically, money has either had intrinsic value or derived value from government decree. Using money electronically generally has involved using the private ledgers and systems of at least one trusted intermediary. Cryptocurrencies, by contrast, generally employ user agreement, a network of users, and cryptographic protocols to achieve valid transfers of value. Cryptocurrency users typically use a pseudonymous address to identify each other and a passcode or private key to make changes to a public ledger in order to transfer value between accounts. Other computers in the network validate these transfers. Through this use of blockchain technology, cryptocurrency systems protect their public ledgers of accounts against manipulation, so that users can only send cryptocurrency to which they have access, thus allowing users to make valid transfers without a centralized, trusted intermediary.
    [Show full text]
  • Blocksci: Design and Applications of a Blockchain Analysis Platform
    BlockSci: Design and applications of a blockchain analysis platform Harry Kalodner Steven Goldfeder Alishah Chator [email protected] [email protected] [email protected] Princeton University Princeton University Johns Hopkins University Malte Möser Arvind Narayanan [email protected] [email protected] Princeton University Princeton University ABSTRACT to partition eectively. In fact, we conjecture that the use of a tra- Analysis of blockchain data is useful for both scientic research ditional, distributed transactional database for blockchain analysis and commercial applications. We present BlockSci, an open-source has innite COST [5], in the sense that no level of parallelism can software platform for blockchain analysis. BlockSci is versatile in outperform an optimized single-threaded implementation. its support for dierent blockchains and analysis tasks. It incorpo- BlockSci comes with batteries included. First, it is not limited rates an in-memory, analytical (rather than transactional) database, to Bitcoin: a parsing step converts a variety of blockchains into making it several hundred times faster than existing tools. We a common, compact format. Currently supported blockchains in- describe BlockSci’s design and present four analyses that illustrate clude Bitcoin, Litecoin, Namecoin, and Zcash (Section 2.1). Smart its capabilities. contract platforms such as Ethereum are outside our scope. Second, This is a working paper that accompanies the rst public release BlockSci includes a library of useful analytic and visualization tools, of BlockSci, available at github.com/citp/BlockSci. We seek input such as identifying special transactions (e.g., CoinJoin) and linking from the community to further develop the software and explore addresses to each other based on well-known heuristics (Section other potential applications.
    [Show full text]
  • Short Selling Attack: a Self-Destructive but Profitable 51% Attack on Pos Blockchains
    Short Selling Attack: A Self-Destructive But Profitable 51% Attack On PoS Blockchains Suhyeon Lee and Seungjoo Kim CIST (Center for Information Security Technologies), Korea University, Korea Abstract—There have been several 51% attacks on Proof-of- With a PoS, the attacker needs to obtain 51% of the Work (PoW) blockchains recently, including Verge and Game- cryptocurrency to carry out a 51% attack. But unlike PoW, Credits, but the most noteworthy has been the attack that saw attacker in a PoS system is highly discouraged from launching hackers make off with up to $18 million after a successful double spend was executed on the Bitcoin Gold network. For this reason, 51% attack because he would have to risk of depreciation the Proof-of-Stake (PoS) algorithm, which already has advantages of his entire stake amount to do so. In comparison, bad of energy efficiency and throughput, is attracting attention as an actor in a PoW system will not lose their expensive alternative to the PoW algorithm. With a PoS, the attacker needs mining equipment if he launch a 51% attack. Moreover, to obtain 51% of the cryptocurrency to carry out a 51% attack. even if a 51% attack succeeds, the value of PoS-based But unlike PoW, attacker in a PoS system is highly discouraged from launching 51% attack because he would have to risk losing cryptocurrency will fall, and the attacker with the most stake his entire stake amount to do so. Moreover, even if a 51% attack will eventually lose the most. For these reasons, those who succeeds, the value of PoS-based cryptocurrency will fall, and attempt to attack 51% of the PoS blockchain will not be the attacker with the most stake will eventually lose the most.
    [Show full text]
  • Accounting for and Auditing of Digital Assets Digital Assets Working Group
    Practice aid Accounting for and auditing of digital assets Digital Assets Working Group Accounting Subgroup Matthew Schell, Chair Kevin Jackson Mark Murray Crowe LLP PwC RSM US LLP Michael Bingham Jin Koo Amy Park US Government Accountability BDO USA LLP Deloitte & Touche LLP Office Corey McLaughlin Beth Paul Brian Fields Cohen & Company PwC KPMG LLP Lan Ming Aleks Zabreyko Rahul Gupta Ernst & Young LLP Connor Group Grant Thornton LLP Christopher Moore Crowe LLP Auditing Subgroup Amy Steele, Chair Angie Hipsher-Williams Shelby Murphy Deloitte & Touche LLP Crowe LLP Deloitte & Touche LLP Michael Bingham Michael Kornstein Christian Randall US Government Accountability Office Ernst & Young LLP Cohen & Company Jay Brodish Sara Krople Jay Schulman PwC Crowe LLP RSM US LLP Damon Busse Bryan Martin Robert Sledge Baker Tilly Virchow Krause, LLP BDO USA LLP KPMG LLP Mary Grace Davenport Dylan McDermott Jagruti Solanki PwC Coinbase Aprio Jeremy Goss Grant Thornton LLP AICPA Senior Committees Financial Reporting Executive Committee Angela Newell, Chair Mark Crowley Jeff Sisk Kelly Ardrey Jr. Sean Lager Dusty Stallings Michelle Avery Mark Northan Lynne Triplett Lee Campbell Bill Schneider Mike Winterscheidt Cathy Clarke Rachel Simons Aleks Zabreyko Assurance Services Executive Committee Jim Burton, Chair Mary Grace Davenport Brad Muniz Christine Anderson Chris Halterman Dyan Rohol Daniel Balla Elaine Howle Kimberly Ellison-Taylor Jennifer Burns Bryan Martin Miklos Vasarhelyi Auditing Standards Board Tracy Harding, Chair AICPA staff Diana Krupica,
    [Show full text]
  • Blockchain & Cryptocurrency Regulation
    Blockchain & Cryptocurrency Regulation Third Edition Contributing Editor: Josias N. Dewey Global Legal Insights Blockchain & Cryptocurrency Regulation 2021, Third Edition Contributing Editor: Josias N. Dewey Published by Global Legal Group GLOBAL LEGAL INSIGHTS – BLOCKCHAIN & CRYPTOCURRENCY REGULATION 2021, THIRD EDITION Contributing Editor Josias N. Dewey, Holland & Knight LLP Head of Production Suzie Levy Senior Editor Sam Friend Sub Editor Megan Hylton Consulting Group Publisher Rory Smith Chief Media Officer Fraser Allan We are extremely grateful for all contributions to this edition. Special thanks are reserved for Josias N. Dewey of Holland & Knight LLP for all of his assistance. Published by Global Legal Group Ltd. 59 Tanner Street, London SE1 3PL, United Kingdom Tel: +44 207 367 0720 / URL: www.glgroup.co.uk Copyright © 2020 Global Legal Group Ltd. All rights reserved No photocopying ISBN 978-1-83918-077-4 ISSN 2631-2999 This publication is for general information purposes only. It does not purport to provide comprehensive full legal or other advice. Global Legal Group Ltd. and the contributors accept no responsibility for losses that may arise from reliance upon information contained in this publication. This publication is intended to give an indication of legal issues upon which you may need advice. Full legal advice should be taken from a qualified professional when dealing with specific situations. The information contained herein is accurate as of the date of publication. Printed and bound by TJ International, Trecerus Industrial Estate, Padstow, Cornwall, PL28 8RW October 2020 PREFACE nother year has passed and virtual currency and other blockchain-based digital assets continue to attract the attention of policymakers across the globe.
    [Show full text]
  • Blockchain and Cryptocurrency in Africa a Comparative Summary of the Reception and Regulation of Blockchain and Cryptocurrency in Africa
    Blockchain and Cryptocurrency in Africa A comparative summary of the reception and regulation of Blockchain and Cryptocurrency in Africa 2018 Baker McKenzie, Johannesburg IMPORTANT DISCLAIMER: The material in this report is of the nature of general comment only. It is not offered as legal advice on any specific issue or matter and should not be taken as such. Readers should refrain from acting on the basis of any discussion contained in this report without obtaining specific legal advice on the particular facts and circumstances at issue. While the authors have made every effort to provide accurate and up-to-date information on laws and policy, these matters are continuously subject to change. Furthermore, the application of these laws depends on the particular facts and circumstances of each situation, and therefore readers should consult their lawyer before taking any action. Information contained herein is as at November 2018. CONTENTS PREFACE ............................................................................................................................................1 GEOGRAPHICAL OVERVIEW ....................................................................................................... 2 COUNTRY PROFILES ..................................................................................................................... 3 1. Botswana ................................................................................................................................................................... 3 2. Ghana .........................................................................................................................................................................4
    [Show full text]