The RDF Layer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Semantics Developer's Guide
MarkLogic Server Semantic Graph Developer’s Guide 2 MarkLogic 10 May, 2019 Last Revised: 10.0-8, October, 2021 Copyright © 2021 MarkLogic Corporation. All rights reserved. MarkLogic Server MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 2 MarkLogic Server Table of Contents Table of Contents Semantic Graph Developer’s Guide 1.0 Introduction to Semantic Graphs in MarkLogic ..........................................11 1.1 Terminology ..........................................................................................................12 1.2 Linked Open Data .................................................................................................13 1.3 RDF Implementation in MarkLogic .....................................................................14 1.3.1 Using RDF in MarkLogic .........................................................................15 1.3.1.1 Storing RDF Triples in MarkLogic ...........................................17 1.3.1.2 Querying Triples .......................................................................18 1.3.2 RDF Data Model .......................................................................................20 1.3.3 Blank Node Identifiers ..............................................................................21 1.3.4 RDF Datatypes ..........................................................................................21 1.3.5 IRIs and Prefixes .......................................................................................22 1.3.5.1 IRIs ............................................................................................22 -
PDF Formats; the XHTML Version Has Active Links That You Can Follow
Semantic Web @ W3C: Activities, Recommendations and State of Adoption Athens, GA, USA, 2006-11-09 Ivan Herman, W3C Ivan Herman, W3C RDF(S), tools We have a solid specification since 2004: well defined (formal) semantics, clear RDF/XML syntax Lots of tools are available. Are listed on W3C’s wiki: RDF programming environment for 14+ languages, including C, C++, Python, Java, Javascript, Ruby, PHP,… (no Cobol or Ada yet ) 13+ Triple Stores, ie, database systems to store datasets 16+ general development tools (specialized editors, application builders, …) etc Ivan Herman, W3C RDF(S), tools (cont.) Note the large number of large corporations among the tool developers: Adobe, IBM, Software AG, Oracle, HP, Northrop Grumman, … …but the small companies and independent developers also play a major role! Some of the tools are Open Source, some are not; some are very mature, some are not : it is the usual picture of software tools, nothing special any more! Anybody can start developing RDF-based applications today Ivan Herman, W3C RDF(S), tools (cont.) There are lots of tutorials, overviews, or books around the wiki page on books lists 20+ (English) textbooks; 19+ proceedings for 2005 & 2006 alone… again, some of them good, some of them bad, just as with any other areas… Active developers’ communities Ivan Herman, W3C Large datasets are accumulating IngentaConnect bibliographic metadata storage: over 200 million triplets UniProt Protein Database: 262 million triplets RDF version of Wikipedia: more than 47 million triplets RDFS/OWL Representation -
Rdfa in XHTML: Syntax and Processing Rdfa in XHTML: Syntax and Processing
RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing A collection of attributes and processing rules for extending XHTML to support RDF W3C Recommendation 14 October 2008 This version: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014 Latest version: http://www.w3.org/TR/rdfa-syntax Previous version: http://www.w3.org/TR/2008/PR-rdfa-syntax-20080904 Diff from previous version: rdfa-syntax-diff.html Editors: Ben Adida, Creative Commons [email protected] Mark Birbeck, webBackplane [email protected] Shane McCarron, Applied Testing and Technology, Inc. [email protected] Steven Pemberton, CWI Please refer to the errata for this document, which may include some normative corrections. This document is also available in these non-normative formats: PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive. The English version of this specification is the only normative version. Non-normative translations may also be available. Copyright © 2007-2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The current Web is primarily made up of an enormous number of documents that have been created using HTML. These documents contain significant amounts of structured data, which is largely unavailable to tools and applications. When publishers can express this data more completely, and when tools can read it, a new world of user functionality becomes available, letting users transfer structured data between applications and web sites, and allowing browsing applications to improve the user experience: an event on a web page can be directly imported - 1 - How to Read this Document RDFa in XHTML: Syntax and Processing into a user’s desktop calendar; a license on a document can be detected so that users can be informed of their rights automatically; a photo’s creator, camera setting information, resolution, location and topic can be published as easily as the original photo itself, enabling structured search and sharing. -
Semantic Gadgets: Pervasive Computing Meets the Semantic Web
Semantic Gadgets: Pervasive Computing Meets the Semantic Web Ora Lassila Research Fellow Agent Technology Group, Nokia Research Center October 2002 1 © NOKIA 2002-10-01 - Ora Lassila Mobility Makes Things Different • Device location is a new dimension • more information about the user and the usage context available • new applications & services are possible • Devices are different • reduced capabilities: smaller screens, slow input devices, lower bandwidth, higher latency, worse reliability, … • trusted device: always with you & has access to your private data • Usage contexts and needs are different • awkward usage situations (e.g., in the car while driving) • specific needs (“surfing” unlikely) • you are always “on” (= connected) • Dilemma: • the Internet - by design - represents a departure from physical reality but mobility grounds services & users to the physical world 2 © NOKIA 2002-10-01 - Ora Lassila 1 Some Enablers of Mobile Internet • Access to services from handheld terminals • Dynamic synthesis of content • Context-sensitivity • location is one dimension of a “context”, but there are others • New Technologies • Artificial Intelligence • machine learning: automatic customization and adaptation • automated planning: autonomous operation • “Semantic Web” • intelligent synthesis of content from multiple sources (ad hoc & on demand) • explicit representation of semantics of data & services • Ubiquitous (aka Pervasive) Computing • (a paradigm shift in personal computing) 3 © NOKIA 2002-10-01 - Ora Lassila Semantic Web: Motivation -
Using Shape Expressions (Shex) to Share RDF Data Models and to Guide Curation with Rigorous Validation B Katherine Thornton1( ), Harold Solbrig2, Gregory S
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional de la Universidad de Oviedo Using Shape Expressions (ShEx) to Share RDF Data Models and to Guide Curation with Rigorous Validation B Katherine Thornton1( ), Harold Solbrig2, Gregory S. Stupp3, Jose Emilio Labra Gayo4, Daniel Mietchen5, Eric Prud’hommeaux6, and Andra Waagmeester7 1 Yale University, New Haven, CT, USA [email protected] 2 Johns Hopkins University, Baltimore, MD, USA [email protected] 3 The Scripps Research Institute, San Diego, CA, USA [email protected] 4 University of Oviedo, Oviedo, Spain [email protected] 5 Data Science Institute, University of Virginia, Charlottesville, VA, USA [email protected] 6 World Wide Web Consortium (W3C), MIT, Cambridge, MA, USA [email protected] 7 Micelio, Antwerpen, Belgium [email protected] Abstract. We discuss Shape Expressions (ShEx), a concise, formal, modeling and validation language for RDF structures. For instance, a Shape Expression could prescribe that subjects in a given RDF graph that fall into the shape “Paper” are expected to have a section called “Abstract”, and any ShEx implementation can confirm whether that is indeed the case for all such subjects within a given graph or subgraph. There are currently five actively maintained ShEx implementations. We discuss how we use the JavaScript, Scala and Python implementa- tions in RDF data validation workflows in distinct, applied contexts. We present examples of how ShEx can be used to model and validate data from two different sources, the domain-specific Fast Healthcare Interop- erability Resources (FHIR) and the domain-generic Wikidata knowledge base, which is the linked database built and maintained by the Wikimedia Foundation as a sister project to Wikipedia. -
Enhancing JSON to RDF Data Conversion with Entity Type Recognition
Enhancing JSON to RDF Data Conversion with Entity Type Recognition Fellipe Freire, Crishane Freire and Damires Souza Academic Unit of Informatics, Federal Institute of Education, Science and Technology of Paraiba, João Pessoa, Brazil Keywords: RDF Data Conversion, Entity Type Recognition, Semi-Structured Data, JSON Documents, Semantics Usage. Abstract: Nowadays, many Web data sources and APIs make their data available on the Web in semi-structured formats such as JSON. However, JSON data cannot be directly used in the Web of data, where principles such as URIs and semantically named links are essential. Thus it is necessary to convert JSON data into RDF data. To this end, we have to consider semantics in order to provide data reference according to domain vocabularies. To help matters, we present an approach which identifies JSON metadata, aligns them with domain vocabulary terms and converts data into RDF. In addition, along with the data conversion process, we provide the identification of the semantically most appropriate entity types to the JSON objects. We present the definitions underlying our approach and results obtained with the evaluation. 1 INTRODUCTION principles of this work is using semantics provided by the knowledge domain of the data to enhance The Web has evolved into an interactive information their conversion to RDF data. To this end, we use network, allowing users and applications to share recommended open vocabularies which are data on a massive scale. To help matters, the Linked composed by a set of terms, i.e., classes and Data principles define a set of practices for properties useful to describe specific types of things publishing structured data on the Web aiming to (LOV Documentation, 2016). -
Browsing the Semantic Web
Browsing the Semantic Web Ora Lassila Nokia Research Center Cambridge Cambridge, MA 02142, USA Abstract lution. Enabling browsing is further encouraged by the fact that, despite its simple data model, users and developers are Presenting RDF graphs to the end user as hypertext enables often put off by RDF’s cryptic XML-based syntax. interactive exploration and inquiry of “semantic” data. In Many tools have been constructed for searching, ex- this paper we present a tool that allows users to “see” their ploring and querying complex information spaces such as RDF data, without having to decipher syntactic represen- semistructured data representations or collections with rich tations that are typically not human-friendly. The tool is metadata. These tools often offer a mixture of features such part of a broader architecture designed for viewing many as faceted search, clustering of search results, etc. Exam- different types of data in Semantic Web formalisms, for ples of such systems include Lore [7, 8], Flamenco [26], experimenting with the caching of dynamically changing and others. More specifically, recent years have also seen a data, and for exploring the possible ad hoc integration of number of “Semantic Web browsers” emerge; examples of data from multiple sources. Additionally, this tool enables this type of software include mSpace [16], Haystack [18], browsing of semantic data on a mobile device, by adapting Magnet [23], DBin [25], semantExplorer [21], and others. the hypertext generation to better suit small screens. These systems allow the browsing of Semantic Web data and provide various ways of searching and visualizing this data. Many of them combine semantic data with “classi- 1. -
An Introduction to RDF
An Introduction to RDF Knowledge Technologies 1 Manolis Koubarakis Acknowledgement • This presentation is based on the excellent RDF primer by the W3C available at http://www.w3.org/TR/rdf-primer/ and http://www.w3.org/2007/02/turtle/primer/ . • Much of the material in this presentation is verbatim from the above Web site. Knowledge Technologies 2 Manolis Koubarakis Presentation Outline • Basic concepts of RDF • Serialization of RDF graphs: XML/RDF and Turtle • Other Features of RDF (Containers, Collections and Reification). Knowledge Technologies 3 Manolis Koubarakis What is RDF? •TheResource Description Framework (RDF) is a data model for representing information (especially metadata) about resources in the Web. • RDF can also be used to represent information about things that can be identified on the Web, even when they cannot be directly retrieved on the Web (e.g., a book or a person). • RDF is intended for situations in which information about Web resources needs to be processed by applications, rather than being only displayed to people. Knowledge Technologies 4 Manolis Koubarakis Some History • RDF draws upon ideas from knowledge representation, artificial intelligence, and data management, including: – Semantic networks –Frames – Conceptual graphs – Logic-based knowledge representation – Relational databases • Shameless self-promotion : The closest to RDF, pre-Web knowledge representation language is Telos: John Mylopoulos, Alexander Borgida, Matthias Jarke, Manolis Koubarakis: Telos: Representing Knowledge About Information Systems. ACM Trans. Inf. Syst. 8(4): 325-362 (1990). Knowledge Technologies 5 Manolis Koubarakis The Semantic Web “Layer Cake” Knowledge Technologies 6 Manolis Koubarakis RDF Basics • RDF is based on the idea of identifying resources using Web identifiers and describing resources in terms of simple properties and property values. -
Linked Data Schemata: Fixing Unsound Foundations
Linked data schemata: fixing unsound foundations. Kevin Feeney, Gavin Mendel Gleason, Rob Brennan Knowledge and Data Engineering Group & ADAPT Centre, School of Computer Science & Statistics, Trinity College Dublin, Ireland Abstract. This paper describes an analysis, and the tools and methods used to produce it, of the practical and logical implications of unifying common linked data vocabularies into a single logical model. In order to support any type of reasoning or even just simple type-checking, the vocabularies that are referenced by linked data statements need to be unified into a complete model wherever they reference or reuse terms that have been defined in other linked data vocabularies. Strong interdependencies between vocabularies are common and a large number of logical and practical problems make this unification inconsistent and messy. However, the situation is far from hopeless. We identify a minimal set of necessary fixes that can be carried out to make a large number of widely-deployed vocabularies mutually compatible, and a set of wider-ranging recommendations for linked data ontology design best practice to help alleviate the problem in future. Finally we make some suggestions for improving OWL’s support for distributed authoring and ontology reuse in the wild. Keywords: Linked Data, Reasoning, Data Quality 1. Introduction One of the central tenets of the Linked Data movement is the reuse of terms from existing well- known vocabularies [Bizer09] when developing new schemata or datasets. The semantic web infrastructure, and the RDF, RDFS and OWL languages, support this with their inherently distributed and modular nature. In practice, through vocabulary reuse, linked data schemata adopt knowledge models that are based on multiple, independently devised ontologies that often exhibit varying definitional semantics [Hogan12]. -
Building Linked Data for Both Humans and Machines∗
Building Linked Data For Both Humans and Machines∗ y z x Wolfgang Halb Yves Raimond Michael Hausenblas Institute of Information Centre for Digital Music Institute of Information Systems & Information London, UK Systems & Information Management Management Graz, Austria Graz, Austria ABSTRACT Existing linked datasets such as [3] are slanted towards ma- In this paper we describe our experience with building the chines as the consumer. Although there are exceptions to riese dataset, an interlinked, RDF-based version of the Eu- this machine-first approach (cf. [13]), we strongly believe rostat data, containing statistical data about the European that satisfying both humans and machines from a single Union. The riese dataset (http://riese.joanneum.at), aims source is a necessary path to follow. at serving roughly 3 billion RDF triples, along with mil- lions of high-quality interlinks. Our contribution is twofold: We subscribe to the view that every LOD dataset can be Firstly, we suggest using RDFa as the main deployment understood as a Semantic Web application. Every Semantic mechanism, hence serving both humans and machines to Web application in turn is a Web application in the sense effectively and efficiently explore and use the dataset. Sec- that it should support a certain task for a human user. With- ondly, we introduce a new way of enriching the dataset out offering a state-of-the-art Web user interface, potential with high-quality links: the User Contributed Interlinking, end-users are scared away. Hence a Semantic Web applica- a Wiki-style way of adding semantic links to data pages. tion needs to have a nice outfit, as well. -
Linked Data Schemata: Fixing Unsound Foundations
Linked data schemata: fixing unsound foundations Editor(s): Amrapali Zaveri, Stanford University, USA; Dimitris Kontokostas, Universität Leipzig, Germany; Sebastian Hellmann, Universität Leipzig, Germany; Jürgen Umbrich, Wirtschaftsuniversität Wien, Austria Solicited review(s): Mathieu d’Aquin, The Open University, UK; Peter F. Patel-Schneider, Nuance Communications, USA; John McCrae, Insight Centre for Data Analytics, Ireland; One anonymous reviewer Kevin Chekov Feeney, Gavin Mendel Gleason, and Rob Brennan Knowledge and Data Engineering Group & ADAPT Centre, School of Computer Science & Statistics, Trinity College Dublin, Ireland Corresponding author’s e-mail: [email protected] Abstract. This paper describes our tools and method for an evaluation of the practical and logical implications of combining common linked data vocabularies into a single local logical model for the purpose of reasoning or performing quality evalua- tions. These vocabularies need to be unified to form a combined model because they reference or reuse terms from other linked data vocabularies and thus the definitions of those terms must be imported. We found that strong interdependencies between vocabularies are common and that a significant number of logical and practical problems make this model unification inconsistent. In addition to identifying problems, this paper suggests a set of recommendations for linked data ontology design best practice. Finally we make some suggestions for improving OWL’s support for distributed authoring and ontology reuse. Keywords: Linked Data, Reasoning, Data Quality 1. Introduction In order to validate any dataset which uses the adms:Asset term we must combine the adms ontolo- One of the central tenets of the linked data move- gy and the dcat ontology in order to ensure that ment is the reuse of terms from existing well-known dcat:Dataset is a valid class. -
Slideshare.Net/Scorlosquet/Drupal-As-A-Semantic-Web-Platform
Linked Data Publishing with Drupal Joachim Neubert ZBW – German National Library of Economics Leibniz Information Centre for Economics SWIB13 Workshop Hamburg, Germany 25.11.2013 ZBW is member of the Leibniz Association My background • Scientific software developer at ZBW – German National Library for Economics, mainly concerned with Linked Open Data and knowledge organization systems and services • Published 20th Century Press Archives in 2010, with some 100,000 digitized newspaper articles in dossiers (http://zbw.eu/beta/p20, custom application written in Perl) • Published a repository of ZBW Labs projects recently – basicly project descriptions and a blog (http://zbw.eu/labs, Drupal based) Page 2 Workshop Agenda – Part 1 1) Drupal 7 as a Content Management System: Linked Data by Default Hands-on: Get familiar with Drupal and it‘s default RDF mappings 2) Using Drupal 7as a Framework for Content Management Hands-on: Create a custom content type and map it to RDF Page 3 Workshop Agenda – Part 2 Produce other RDF Serialization Formats: RDF/XML, Turtle, Ntriples, JSON-LD Create a SPARQL Endpoint from your Drupal Site Cool URIs Create Out-Links with Web Taxonomy Current limitations of RDF/LD support in Drupal 7 Outlook on Drupal 8 Page 4 Drupal as a CMS (Content Management System) ready for RDF and Linked Data Page 5 Why at all linked data enhanced publishing? • Differentiate the subjects of your web pages and their attributes • Thus, foster data reuse in 3rd party services and applications • Mashups • Search engines • Create meaningful