Hortonworks Data Platform Data Access (August 29, 2016)

Total Page:16

File Type:pdf, Size:1020Kb

Hortonworks Data Platform Data Access (August 29, 2016) Hortonworks Data Platform Data Access (August 29, 2016) docs.cloudera.com HDP Data Access Guide August 29, 2016 Hortonworks Data Platform: Data Access Copyright © 2012-2016 Hortonworks, Inc. Some rights reserved. The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open source platform for storing, processing and analyzing large volumes of data. It is designed to deal with data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks Data Platform consists of the essential set of Apache Hadoop projects including YARN, Hadoop Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the major contributor of code and patches to many of these projects. These projects have been integrated and tested as part of the Hortonworks Data Platform release process and installation and configuration tools have also been included. Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and completely open source. We sell only expert technical support, training and partner-enablement services. All of our technology is, and will remain, free and open source. Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For more information on Hortonworks services, please visit either the Support or Training page. Feel free to Contact Us directly to discuss your specific needs. Except where otherwise noted, this document is licensed under Creative Commons Attribution ShareAlike 4.0 License. http://creativecommons.org/licenses/by-sa/4.0/legalcode ii HDP Data Access Guide August 29, 2016 Table of Contents 1. What's New ................................................................................................................. 1 1.1. Apache Hive ...................................................................................................... 1 1.2. Apache HBase ................................................................................................... 2 1.3. Apache Phoenix ................................................................................................ 2 1.4. Content Updates ............................................................................................... 3 2. Data Warehousing with Apache Hive ........................................................................... 4 2.1. Content Roadmap ............................................................................................. 4 2.2. Features Overview ............................................................................................ 6 2.2.1. Temporary Tables ................................................................................... 6 2.2.2. Optimized Row Columnar (ORC) Format ................................................ 7 2.2.3. SQL Optimization ................................................................................... 7 2.2.4. SQL Compliance ................................................................................... 10 2.2.5. Streaming Data Ingestion ..................................................................... 21 2.2.6. Query Vectorization ............................................................................. 21 2.2.7. Beeline versus Hive CLI ......................................................................... 23 2.2.8. Hive JDBC and ODBC Drivers ................................................................ 26 2.3. Moving Data into Apache Hive ....................................................................... 29 2.3.1. Using an External Table ........................................................................ 29 2.3.2. Using Sqoop ......................................................................................... 31 2.3.3. Incrementally Updating a Table ............................................................ 35 2.4. Enabling security through Row-Level Filtering and Column Masking ................. 39 2.5. Configuring HiveServer2 .................................................................................. 39 2.5.1. Configuring HiveServer2 for Transactions (ACID Support) ...................... 40 2.5.2. Configuring HiveServer2 for LDAP and for LDAP over SSL ...................... 41 2.6. Managing and Using Hive ............................................................................... 45 2.6.1. Configuring SQL Standard-based Authorization .................................... 47 2.6.2. Required Privileges for Hive Operations ................................................ 48 2.6.3. Configuring SQL Standard-Based Authorization .................................... 50 2.6.4. Storage-Based Authorization ................................................................ 51 2.6.5. Configuring Storage-based Authorization ............................................. 51 2.7. Configuring authorization for Apache Hive using Apache Ranger ..................... 53 2.7.1. Permissions for Apache Hive Operations ............................................... 54 2.8. Troubleshooting .............................................................................................. 54 2.8.1. JIRAs .................................................................................................... 56 3. Enabling Efficient Execution with Apache Pig and Apache Tez .................................... 57 4. Managing Metadata Services with Apache HCatalog .................................................. 59 4.1. HCatalog Community Information ................................................................... 59 4.2. WebHCat Community Information .................................................................. 60 4.3. Security for WebHCat ...................................................................................... 61 5. Persistent Read/Write Data Access with Apache HBase .............................................. 62 5.1. Content Roadmap ........................................................................................... 62 5.2. Deploying Apache HBase ................................................................................ 64 5.2.1. Installation and Setup .......................................................................... 65 5.2.2. Cluster Capacity and Region Sizing ....................................................... 65 5.2.3. Enabling Multitenancy with Namepaces ............................................... 70 5.2.4. Security Features Available in Technical Preview .................................... 72 5.3. Managing Apache HBase Clusters ................................................................... 72 5.3.1. Monitoring Apache HBase Clusters ....................................................... 72 iii HDP Data Access Guide August 29, 2016 5.3.2. Optimizing Apache HBase I/O .............................................................. 72 5.3.3. Importing Data into HBase with Bulk Load ........................................... 81 5.3.4. Using Snapshots ................................................................................... 82 5.4. Backing up and Restoring Apache HBase Datasets ........................................... 84 5.4.1. Planning a Backup-and-Restore Strategy for Your Environment ............. 84 5.4.2. Best Practices for Backup-and-Restore ................................................... 86 5.4.3. Running the Backup-and-Restore Utility ................................................ 87 5.5. Medium Object (MOB) Storage Support in Apache HBase ............................... 95 5.5.1. Enabling MOB Storage Support ............................................................ 95 5.5.2. Testing the MOB Storage Support Configuration .................................. 96 5.5.3. Tuning MOB Storage Cache Properties ................................................. 96 6. Orchestrating SQL and APIs with Apache Phoenix ...................................................... 98 6.1. Enabling Phoenix and Interdependent Components ........................................ 98 6.2. Thin Client Connectivity with Phoenix Query Server ......................................... 98 6.2.1. Securing Authentication on the Phoenix Query Server ........................... 99 6.3. Selecting and Obtaining a Client Driver ........................................................... 99 6.4. Mapping Phoenix Schemas to HBase Namespaces .......................................... 100 6.4.1. Enabling Namespace Mapping ............................................................ 100 6.4.2. Creating New Schemas and Tables with Namespace Mapping ............. 101 6.4.3. Associating Tables of a Schema to a Namespace ................................. 101 iv HDP Data Access Guide August 29, 2016 List of Figures 2.1. Example: Moving .CSV Data into Hive ..................................................................... 29 2.2. Using Sqoop to Move Data into Hive ...................................................................... 32 2.3. Data Ingestion Lifecycle .......................................................................................... 35 2.4. Dataset after the UNION ALL Command Is Run ....................................................... 37 2.5. Dataset in the View ................................................................................................ 37 5.1. HBase Read/Write Operations ................................................................................
Recommended publications
  • Introduction to Hbase Schema Design
    Introduction to HBase Schema Design AmANDeeP KHURANA Amandeep Khurana is The number of applications that are being developed to work with large amounts a Solutions Architect at of data has been growing rapidly in the recent past . To support this new breed of Cloudera and works on applications, as well as scaling up old applications, several new data management building solutions using the systems have been developed . Some call this the big data revolution . A lot of these Hadoop stack. He is also a co-author of HBase new systems that are being developed are open source and community driven, in Action. Prior to Cloudera, Amandeep worked deployed at several large companies . Apache HBase [2] is one such system . It is at Amazon Web Services, where he was part an open source distributed database, modeled around Google Bigtable [5] and is of the Elastic MapReduce team and built the becoming an increasingly popular database choice for applications that need fast initial versions of their hosted HBase product. random access to large amounts of data . It is built atop Apache Hadoop [1] and is [email protected] tightly integrated with it . HBase is very different from traditional relational databases like MySQL, Post- greSQL, Oracle, etc . in how it’s architected and the features that it provides to the applications using it . HBase trades off some of these features for scalability and a flexible schema . This also translates into HBase having a very different data model . Designing HBase tables is a different ballgame as compared to relational database systems . I will introduce you to the basics of HBase table design by explaining the data model and build on that by going into the various concepts at play in designing HBase tables through an example .
    [Show full text]
  • Administration and Configuration Guide
    Red Hat JBoss Data Virtualization 6.4 Administration and Configuration Guide This guide is for administrators. Last Updated: 2018-09-26 Red Hat JBoss Data Virtualization 6.4 Administration and Configuration Guide This guide is for administrators. Red Hat Customer Content Services Legal Notice Copyright © 2018 Red Hat, Inc. This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
    [Show full text]
  • Synthesis and Development of a Big Data Architecture for the Management of Radar Measurement Data
    1 Faculty of Electrical Engineering, Mathematics & Computer Science Synthesis and Development of a Big Data architecture for the management of radar measurement data Alex Aalbertsberg Master of Science Thesis November 2018 Supervisors: dr. ir. Maurice van Keulen (University of Twente) prof. dr. ir. Mehmet Aks¸it (University of Twente) dr. Doina Bucur (University of Twente) ir. Ronny Harmanny (Thales) University of Twente P.O. Box 217 7500 AE Enschede The Netherlands Approval Internship report/Thesis of: …………………………………………………………………………………………………………Alexander P. Aalbertsberg Title: …………………………………………………………………………………………Synthesis and Development of a Big Data architecture for the management of radar measurement data Educational institution: ………………………………………………………………………………..University of Twente Internship/Graduation period:…………………………………………………………………………..2017-2018 Location/Department:.…………………………………………………………………………………435 Advanced Development, Delft Thales Supervisor:……………………………………………………………………………R. I. A. Harmanny This report (both the paper and electronic version) has been read and commented on by the supervisor of Thales Netherlands B.V. In doing so, the supervisor has reviewed the contents and considering their sensitivity, also information included therein such as floor plans, technical specifications, commercial confidential information and organizational charts that contain names. Based on this, the supervisor has decided the following: o This report is publicly available (Open). Any defence may take place publicly and the report may be included in public libraries and/or published in knowledge bases. • o This report and/or a summary thereof is publicly available to a limited extent (Thales Group Internal). tors . It will be read and reviewed exclusively by teachers and if necessary by members of the examination board or review ? committee. The content will be kept confidential and not disseminated through publication or inclusion in public libraries and/or knowledge bases.
    [Show full text]
  • Apache Hbase, the Scaling Machine Jean-Daniel Cryans Software Engineer at Cloudera @Jdcryans
    Apache HBase, the Scaling Machine Jean-Daniel Cryans Software Engineer at Cloudera @jdcryans Tuesday, June 18, 13 Agenda • Introduction to Apache HBase • HBase at StumbleUpon • Overview of other use cases 2 Tuesday, June 18, 13 About le Moi • At Cloudera since October 2012. • At StumbleUpon for 3 years before that. • Committer and PMC member for Apache HBase since 2008. • Living in San Francisco. • From Québec, Canada. 3 Tuesday, June 18, 13 4 Tuesday, June 18, 13 What is Apache HBase Apache HBase is an open source distributed scalable consistent low latency random access non-relational database built on Apache Hadoop 5 Tuesday, June 18, 13 Inspiration: Google BigTable (2006) • Goal: Low latency, consistent, random read/ write access to massive amounts of structured data. • It was the data store for Google’s crawler web table, gmail, analytics, earth, blogger, … 6 Tuesday, June 18, 13 HBase is in Production • Inbox • Storage • Web • Search • Analytics • Monitoring 7 Tuesday, June 18, 13 HBase is in Production • Inbox • Storage • Web • Search • Analytics • Monitoring 7 Tuesday, June 18, 13 HBase is in Production • Inbox • Storage • Web • Search • Analytics • Monitoring 7 Tuesday, June 18, 13 HBase is in Production • Inbox • Storage • Web • Search • Analytics • Monitoring 7 Tuesday, June 18, 13 HBase is Open Source • Apache 2.0 License • A Community project with committers and contributors from diverse organizations: • Facebook, Cloudera, Salesforce.com, Huawei, eBay, HortonWorks, Intel, Twitter … • Code license means anyone can modify and use the code. 8 Tuesday, June 18, 13 So why use HBase? 9 Tuesday, June 18, 13 10 Tuesday, June 18, 13 Old School Scaling => • Find a scaling problem.
    [Show full text]
  • Final Report CS 5604: Information Storage and Retrieval
    Final Report CS 5604: Information Storage and Retrieval Solr Team Abhinav Kumar, Anand Bangad, Jeff Robertson, Mohit Garg, Shreyas Ramesh, Siyu Mi, Xinyue Wang, Yu Wang January 16, 2018 Instructed by Professor Edward A. Fox Virginia Polytechnic Institute and State University Blacksburg, VA 24061 1 Abstract The Digital Library Research Laboratory (DLRL) has collected over 1.5 billion tweets and millions of webpages for the Integrated Digital Event Archiving and Library (IDEAL) and Global Event Trend Archive Research (GETAR) projects [6]. We are using a 21 node Cloudera Hadoop cluster to store and retrieve this information. One goal of this project is to expand the data collection to include more web archives and geospatial data beyond what previously had been collected. Another important part in this project is optimizing the current system to analyze and allow access to the new data. To accomplish these goals, this project is separated into 6 parts with corresponding teams: Classification (CLA), Collection Management Tweets (CMT), Collection Management Webpages (CMW), Clustering and Topic Analysis (CTA), Front-end (FE), and SOLR. This report describes the work completed by the SOLR team which improves the current searching and storage system. We include the general architecture and an overview of the current system. We present the part that Solr plays within the whole system with more detail. We talk about our goals, procedures, and conclusions on the improvements we made to the current Solr system. This report also describes how we coordinate with other teams to accomplish the project at a higher level. Additionally, we provide manuals for future readers who might need to replicate our experiments.
    [Show full text]
  • Apache Hbase: the Hadoop Database Yuanru Qian, Andrew Sharp, Jiuling Wang
    Apache HBase: the Hadoop Database Yuanru Qian, Andrew Sharp, Jiuling Wang 1 Agenda ● Motivation ● Data Model ● The HBase Distributed System ● Data Operations ● Access APIs ● Architecture 2 Motivation ● Hadoop is a framework that supports operations on a large amount of data. ● Hadoop includes the Hadoop Distributed File System (HDFS) ● HDFS does a good job of storing large amounts of data, but lacks quick random read/write capability. ● That’s where Apache HBase comes in. 3 Introduction ● HBase is an open source, sparse, consistent distributed, sorted map modeled after Google’s BigTable. ● Began as a project by Powerset to process massive amounts of data for natural language processing. ● Developed as part of Apache’s Hadoop project and runs on top of Hadoop Distributed File System. 4 Big Picture MapReduce Thrift/REST Your Java Hive/Pig Gateway Application Java Client ZooKeeper HBase HDFS 5 An Example Operation The Job: The Table: A MapReduce job row key column 1 column 2 needs to operate on a series of webpages “com.cnn.world” 13 4.5 matching *.cnn.com “com.cnn.tech” 46 7.8 “com.cnn.money” 44 1.2 6 The HBase Data Model 7 Data Model, Groups of Tables RDBMS Apache HBase database namespace table table 8 Data Model, Single Table RDBMS table col1 col2 col3 col4 row1 row2 row3 9 Data Model, Single Table Apache HBase columns are table fam1 fam2 grouped into fam1:col1 fam1:col2 fam2:col1 fam2:col2 Column Families row1 row2 row3 10 Sparse example Row Key fam1:contents fam1:anchor “com.cnn.www” contents:html = “<html>...” contents:html = “<html>...”
    [Show full text]
  • Using Apache Phoenix to Store and Access Data Date Published: 2020-02-29 Date Modified: 2020-07-28
    Cloudera Runtime 7.2.1 Using Apache Phoenix to Store and Access Data Date published: 2020-02-29 Date modified: 2020-07-28 https://docs.cloudera.com/ Legal Notice © Cloudera Inc. 2021. All rights reserved. The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property rights. No license under copyright or any other intellectual property right is granted herein. Copyright information for Cloudera software may be found within the documentation accompanying each component in a particular release. Cloudera software includes software from various open source or other third party projects, and may be released under the Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms. Other software included may be released under the terms of alternative open source licenses. Please review the license and notice files accompanying the software for additional licensing information. Please visit the Cloudera software product page for more information on Cloudera software. For more information on Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your specific needs. Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor liability arising from the use of products, except as expressly agreed to in writing by Cloudera. Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered trademarks in the United States and other countries. All other trademarks are the property of their respective owners. Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA, CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH.
    [Show full text]
  • HDP 3.1.4 Release Notes Date of Publish: 2019-08-26
    Release Notes 3 HDP 3.1.4 Release Notes Date of Publish: 2019-08-26 https://docs.hortonworks.com Release Notes | Contents | ii Contents HDP 3.1.4 Release Notes..........................................................................................4 Component Versions.................................................................................................4 Descriptions of New Features..................................................................................5 Deprecation Notices.................................................................................................. 6 Terminology.......................................................................................................................................................... 6 Removed Components and Product Capabilities.................................................................................................6 Testing Unsupported Features................................................................................ 6 Descriptions of the Latest Technical Preview Features.......................................................................................7 Upgrading to HDP 3.1.4...........................................................................................7 Behavioral Changes.................................................................................................. 7 Apache Patch Information.....................................................................................11 Accumulo...........................................................................................................................................................
    [Show full text]
  • Apache Hadoop Goes Realtime at Facebook
    Apache Hadoop Goes Realtime at Facebook Dhruba Borthakur Joydeep Sen Sarma Jonathan Gray Kannan Muthukkaruppan Nicolas Spiegelberg Hairong Kuang Karthik Ranganathan Dmytro Molkov Aravind Menon Samuel Rash Rodrigo Schmidt Amitanand Aiyer Facebook {dhruba,jssarma,jgray,kannan, nicolas,hairong,kranganathan,dms, aravind.menon,rash,rodrigo, amitanand.s}@fb.com ABSTRACT 1. INTRODUCTION Facebook recently deployed Facebook Messages, its first ever Apache Hadoop [1] is a top-level Apache project that includes user-facing application built on the Apache Hadoop platform. open source implementations of a distributed file system [2] and Apache HBase is a database-like layer built on Hadoop designed MapReduce that were inspired by Googles GFS [5] and to support billions of messages per day. This paper describes the MapReduce [6] projects. The Hadoop ecosystem also includes reasons why Facebook chose Hadoop and HBase over other projects like Apache HBase [4] which is inspired by Googles systems such as Apache Cassandra and Voldemort and discusses BigTable, Apache Hive [3], a data warehouse built on top of the applications requirements for consistency, availability, Hadoop, and Apache ZooKeeper [8], a coordination service for partition tolerance, data model and scalability. We explore the distributed systems. enhancements made to Hadoop to make it a more effective realtime system, the tradeoffs we made while configuring the At Facebook, Hadoop has traditionally been used in conjunction system, and how this solution has significant advantages over the with Hive for storage and analysis of large data sets. Most of this sharded MySQL database scheme used in other applications at analysis occurs in offline batch jobs and the emphasis has been on Facebook and many other web-scale companies.
    [Show full text]
  • Hbase: the Definitive Guide
    HBase: The Definitive Guide HBase: The Definitive Guide Lars George Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo HBase: The Definitive Guide by Lars George Copyright © 2011 Lars George. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or [email protected]. Editors: Mike Loukides and Julie Steele Indexer: Angela Howard Production Editor: Jasmine Perez Cover Designer: Karen Montgomery Copyeditor: Audrey Doyle Interior Designer: David Futato Proofreader: Jasmine Perez Illustrator: Robert Romano Printing History: September 2011: First Edition. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. HBase: The Definitive Guide, the image of a Clydesdale horse, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information con- tained herein. ISBN: 978-1-449-39610-7 [LSI] 1314323116 For my wife Katja, my daughter Laura, and son Leon.
    [Show full text]
  • Apache Hbase. | 1
    apache hbase. | 1 how hbase works *this is a study guide that was created from lecture videos and is used to help you gain an understanding of how hbase works. HBase Foundations Yahoo released the Hadoop data storage system and Google added HDFS programming interface. HDFS stands for Hadoop Distributed File System and it spreads data across what are called nodes in it’s cluster. The data does not have a schema as it is just document/files. HDFS is schemaless, distributed and fault tolerant. MapReduce is focused on data processing and jobs to write to MapReduce are in Java. The operations of a MapReduce job is to find the data and list tasks that it needs to execute and then execute them. The action of executing is called reducers. A downside is that it is batch oriented, which means you would have to read the entire file of data even if you would like to read a small portion of data. Batch oriented is slow. Hadoop is semistructured data and unstructured data, there is no random access for Hadoop and no transaction support. HBase is also called the Hadoop database and unlike Hadoop or HDFS, it has a schema. There is an in-memory feature that gives you the ability to read information quickly. You can isolate the data you want to analyze. HBase is random access. HBase allows for CRUD, which is Creating a new document, Reading the information into an application or process, Update which will allow you to change the value and Delete where mind movement machine.
    [Show full text]
  • TR-4744: Secure Hadoop Using Apache Ranger with Netapp In
    Technical Report Secure Hadoop using Apache Ranger with NetApp In-Place Analytics Module Deployment Guide Karthikeyan Nagalingam, NetApp February 2019 | TR-4744 Abstract This document introduces the NetApp® In-Place Analytics Module for Apache Hadoop and Spark with Ranger. The topics covered in this report include the Ranger configuration, underlying architecture, integration with Hadoop, and benefits of Ranger with NetApp In-Place Analytics Module using Hadoop with NetApp ONTAP® data management software. TABLE OF CONTENTS 1 Introduction ........................................................................................................................................... 4 1.1 Overview .........................................................................................................................................................4 1.2 Deployment Options .......................................................................................................................................5 1.3 NetApp In-Place Analytics Module 3.0.1 Features ..........................................................................................5 2 Ranger ................................................................................................................................................... 6 2.1 Components Validated with Ranger ................................................................................................................6 3 NetApp In-Place Analytics Module Design with Ranger..................................................................
    [Show full text]