SNARKS Generation, Coverings and Colourings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Brief History of Edge-Colorings — with Personal Reminiscences
Discrete Mathematics Letters Discrete Math. Lett. 6 (2021) 38–46 www.dmlett.com DOI: 10.47443/dml.2021.s105 Review Article A brief history of edge-colorings – with personal reminiscences∗ Bjarne Toft1;y, Robin Wilson2;3 1Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark 2Department of Mathematics and Statistics, Open University, Walton Hall, Milton Keynes, UK 3Department of Mathematics, London School of Economics and Political Science, London, UK (Received: 9 June 2020. Accepted: 27 June 2020. Published online: 11 March 2021.) c 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/). Abstract In this article we survey some important milestones in the history of edge-colorings of graphs, from the earliest contributions of Peter Guthrie Tait and Denes´ Konig¨ to very recent work. Keywords: edge-coloring; graph theory history; Frank Harary. 2020 Mathematics Subject Classification: 01A60, 05-03, 05C15. 1. Introduction We begin with some basic remarks. If G is a graph, then its chromatic index or edge-chromatic number χ0(G) is the smallest number of colors needed to color its edges so that adjacent edges (those with a vertex in common) are colored differently; for 0 0 0 example, if G is an even cycle then χ (G) = 2, and if G is an odd cycle then χ (G) = 3. For complete graphs, χ (Kn) = n−1 if 0 0 n is even and χ (Kn) = n if n is odd, and for complete bipartite graphs, χ (Kr;s) = max(r; s). -
Directed Cycle Double Cover Conjecture: Fork Graphs
Directed Cycle Double Cover Conjecture: Fork Graphs Andrea Jim´enez ∗ Martin Loebl y October 22, 2013 Abstract We explore the well-known Jaeger's directed cycle double cover conjecture which is equiva- lent to the assertion that every cubic bridgeless graph has an embedding on a closed orientable surface with no dual loop. We associate each cubic graph G with a novel object H that we call a hexagon graph; perfect matchings of H describe all embeddings of G on closed orientable surfaces. The study of hexagon graphs leads us to define a new class of graphs that we call lean fork-graphs. Fork graphs are cubic bridgeless graphs obtained from a triangle by sequentially connecting fork-type graphs and performing Y−∆, ∆−Y transformations; lean fork-graphs are fork graphs fulfilling a connectivity property. We prove that Jaeger's conjecture holds for the class of lean fork-graphs. The class of lean fork-graphs is rich; namely, for each cubic bridgeless graph G there is a lean fork-graph containing a subdivision of G as an induced subgraph. Our results establish for the first time, to the best of our knowledge, the validity of Jaeger's conjecture in a broad inductively defined class of graphs. 1 Introduction One of the most challenging open problems in graph theory is the cycle double cover conjecture which was independently posed by Szekeres [14] and Seymour [13] in the seventies. It states that every bridgeless graph has a cycle double cover, that is, a system C of cycles such that each edge of the graph belongs to exactly two cycles of C. -
Strongly Connected Component
Graph IV Ian Things that we would talk about ● DFS ● Tree ● Connectivity Useful website http://codeforces.com/blog/entry/16221 Recommended Practice Sites ● HKOJ ● Codeforces ● Topcoder ● Csacademy ● Atcoder ● USACO ● COCI Term in Directed Tree ● Consider node 4 – Node 2 is its parent – Node 1, 2 is its ancestors – Node 5 is its sibling – Node 6 is its child – Node 6, 7, 8 is its descendants ● Node 1 is the root DFS Forest ● When we do DFS on a graph, we would obtain a DFS forest. Noted that the graph is not necessarily a tree. ● Some of the information we get through the DFS is actually very useful, such as – Starting time of a node – Finishing time of a node – Parent of the node Some Tricks Using DFS Order ● Suppose vertex v is ancestor(not only parent) of u – Starting time of v < starting time of u – Finishing time of v > starting time of u ● st[v] < st[u] <= ft[u] < ft[v] ● O(1) to check if ancestor or not ● Flatten the tree to store subtree information(maybe using segment tree or other data structure to maintain) ● Super useful !!!!!!!!!! Partial Sum on Tree ● Given queries, each time increase all node from node v to node u by 1 ● Assume node v is ancestor of node u ● sum[u]++, sum[par[v]]-- ● Run dfs in root dfs(v) for all child u dfs(u) d[v] = d[v] + d[u] Types of Edges ● Tree edges – Edges that forms a tree ● Forward edges – Edges that go from a node to its descendants but itself is not a tree edge. -
Math 7410 Graph Theory
Math 7410 Graph Theory Bogdan Oporowski Department of Mathematics Louisiana State University April 14, 2021 Definition of a graph Definition 1.1 A graph G is a triple (V,E, I) where ◮ V (or V (G)) is a finite set whose elements are called vertices; ◮ E (or E(G)) is a finite set disjoint from V whose elements are called edges; and ◮ I, called the incidence relation, is a subset of V E in which each edge is × in relation with exactly one or two vertices. v2 e1 v1 Example 1.2 ◮ V = v1, v2, v3, v4 e5 { } e2 e4 ◮ E = e1,e2,e3,e4,e5,e6,e7 { } e6 ◮ I = (v1,e1), (v1,e4), (v1,e5), (v1,e6), { v4 (v2,e1), (v2,e2), (v3,e2), (v3,e3), (v3,e5), e7 v3 e3 (v3,e6), (v4,e3), (v4,e4), (v4,e7) } Simple graphs Definition 1.3 ◮ Edges incident with just one vertex are loops. ◮ Edges incident with the same pair of vertices are parallel. ◮ Graphs with no parallel edges and no loops are called simple. v2 e1 v1 e5 e2 e4 e6 v4 e7 v3 e3 Edges of a simple graph can be described as v e1 v 2 1 two-element subsets of the vertex set. Example 1.4 e5 e2 e4 E = v1, v2 , v2, v3 , v3, v4 , e6 {{ } { } { } v1, v4 , v1, v3 . v4 { } { }} v e7 3 e3 Note 1.5 Graph Terminology Definition 1.6 ◮ The graph G is empty if V = , and is trivial if E = . ∅ ∅ ◮ The cardinality of the vertex-set of a graph G is called the order of G and denoted G . -
CLRS B.4 Graph Theory Definitions Unit 1: DFS Informally, a Graph
CLRS B.4 Graph Theory Definitions Unit 1: DFS informally, a graph consists of “vertices” joined together by “edges,” e.g.,: example graph G0: 1 ···················•······························· ····························· ····························· ························· ···· ···· ························· ························· ···· ···· ························· ························· ···· ···· ························· ························· ···· ···· ························· ············· ···· ···· ·············· 2•···· ···· ···· ··· •· 3 ···· ···· ···· ···· ···· ··· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ······· ······· ······· ······· ···· ···· ···· ··· ···· ···· ···· ···· ···· ··· ···· ···· ···· ···· ···· ···· ···· ···· ···· ···· ··············· ···· ···· ··············· 4•························· ···· ···· ························· • 5 ························· ···· ···· ························· ························· ···· ···· ························· ························· ···· ···· ························· ····························· ····························· ···················•································ 6 formally a graph is a pair (V, E) where V is a finite set of elements, called vertices E is a finite set of pairs of vertices, called edges if H is a graph, we can denote its vertex & edge sets as V (H) & E(H) respectively if the pairs of E are unordered, the graph is undirected if the pairs of E are ordered the graph is directed, or a digraph two vertices joined by an edge -
On the Cycle Double Cover Problem
On The Cycle Double Cover Problem Ali Ghassâb1 Dedicated to Prof. E.S. Mahmoodian Abstract In this paper, for each graph , a free edge set is defined. To study the existence of cycle double cover, the naïve cycle double cover of have been defined and studied. In the main theorem, the paper, based on the Kuratowski minor properties, presents a condition to guarantee the existence of a naïve cycle double cover for couple . As a result, the cycle double cover conjecture has been concluded. Moreover, Goddyn’s conjecture - asserting if is a cycle in bridgeless graph , there is a cycle double cover of containing - will have been proved. 1 Ph.D. student at Sharif University of Technology e-mail: [email protected] Faculty of Math, Sharif University of Technology, Tehran, Iran 1 Cycle Double Cover: History, Trends, Advantages A cycle double cover of a graph is a collection of its cycles covering each edge of the graph exactly twice. G. Szekeres in 1973 and, independently, P. Seymour in 1979 conjectured: Conjecture (cycle double cover). Every bridgeless graph has a cycle double cover. Yielded next data are just a glimpse review of the history, trend, and advantages of the research. There are three extremely helpful references: F. Jaeger’s survey article as the oldest one, and M. Chan’s survey article as the newest one. Moreover, C.Q. Zhang’s book as a complete reference illustrating the relative problems and rather new researches on the conjecture. A number of attacks, to prove the conjecture, have been happened. Some of them have built new approaches and trends to study. -
Graph Theory
1 Graph Theory “Begin at the beginning,” the King said, gravely, “and go on till you come to the end; then stop.” — Lewis Carroll, Alice in Wonderland The Pregolya River passes through a city once known as K¨onigsberg. In the 1700s seven bridges were situated across this river in a manner similar to what you see in Figure 1.1. The city’s residents enjoyed strolling on these bridges, but, as hard as they tried, no residentof the city was ever able to walk a route that crossed each of these bridges exactly once. The Swiss mathematician Leonhard Euler learned of this frustrating phenomenon, and in 1736 he wrote an article [98] about it. His work on the “K¨onigsberg Bridge Problem” is considered by many to be the beginning of the field of graph theory. FIGURE 1.1. The bridges in K¨onigsberg. J.M. Harris et al., Combinatorics and Graph Theory , DOI: 10.1007/978-0-387-79711-3 1, °c Springer Science+Business Media, LLC 2008 2 1. Graph Theory At first, the usefulness of Euler’s ideas and of “graph theory” itself was found only in solving puzzles and in analyzing games and other recreations. In the mid 1800s, however, people began to realize that graphs could be used to model many things that were of interest in society. For instance, the “Four Color Map Conjec- ture,” introduced by DeMorgan in 1852, was a famous problem that was seem- ingly unrelated to graph theory. The conjecture stated that four is the maximum number of colors required to color any map where bordering regions are colored differently. -
An Exploration of Late Twentieth and Twenty-First Century Clarinet Repertoire
Southern Illinois University Carbondale OpenSIUC Research Papers Graduate School Spring 2021 An Exploration of Late Twentieth and Twenty-First Century Clarinet Repertoire Grace Talaski [email protected] Follow this and additional works at: https://opensiuc.lib.siu.edu/gs_rp Recommended Citation Talaski, Grace. "An Exploration of Late Twentieth and Twenty-First Century Clarinet Repertoire." (Spring 2021). This Article is brought to you for free and open access by the Graduate School at OpenSIUC. It has been accepted for inclusion in Research Papers by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. AN EXPLORATION OF LATE TWENTIETH AND TWENTY-FIRST CENTURY CLARINET REPERTOIRE by Grace Talaski B.A., Albion College, 2017 A Research Paper Submitted in Partial Fulfillment of the Requirements for the Master of Music School of Music in the Graduate School Southern Illinois University Carbondale April 2, 2021 Copyright by Grace Talaski, 2021 All Rights Reserved RESEARCH PAPER APPROVAL AN EXPLORATION OF LATE TWENTIETH AND TWENTY-FIRST CENTURY CLARINET REPERTOIRE by Grace Talaski A Research Paper Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Music in the field of Music Approved by: Dr. Eric Mandat, Chair Dr. Christopher Walczak Dr. Douglas Worthen Graduate School Southern Illinois University Carbondale April 2, 2021 AN ABSTRACT OF THE RESEARCH PAPER OF Grace Talaski, for the Master of Music degree in Performance, presented on April 2, 2021, at Southern Illinois University Carbondale. TITLE: AN EXPLORATION OF LATE TWENTIETH AND TWENTY-FIRST CENTURY CLARINET REPERTOIRE MAJOR PROFESSOR: Dr. Eric Mandat This is an extended program note discussing a selection of compositions featuring the clarinet from the mid-1980s through the present. -
Closed 2-Cell Embeddings of Graphs with No V8-Minors
Discrete Mathematics 230 (2001) 207–213 www.elsevier.com/locate/disc Closed 2-cell embeddings of graphs with no V8-minors Neil Robertsona;∗;1, Xiaoya Zhab;2 aDepartment of Mathematics, Ohio State University, Columbus, OH 43210, USA bDepartment of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA Received 12 July 1996; revised 30 June 1997; accepted 14 October 1999 Abstract A closed 2-cell embedding of a graph embedded in some surface is an embedding such that each face is bounded by a cycle in the graph. The strong embedding conjecture says that every 2-connected graph has a closed 2-cell embedding in some surface. In this paper, we prove that any 2-connected graph without V8 (the Mobius 4-ladder) as a minor has a closed 2-cell embedding in some surface. As a corollary, such a graph has a cycle double cover. The proof uses a classiÿcation of internally-4-connected graphs with no V8-minor (due to Kelmans and independently Robertson), and the proof depends heavily on such a characterization. c 2001 Elsevier Science B.V. All rights reserved. Keywords: Embedding; Strong embedding conjecture; V8 minor; Cycle double cover; Closed 2-cell embedding 1. Introduction The closed 2-cell embedding (called strong embedding in [2,4], and circular em- bedding in [6]) conjecture says that every 2-connected graph G has a closed 2-cell embedding in some surface, that is, an embedding in a compact closed 2-manifold in which each face is simply connected and the boundary of each face is a cycle in the graph (no repeated vertices or edges on the face boundary). -
Vizing's Theorem and Edge-Chromatic Graph
VIZING'S THEOREM AND EDGE-CHROMATIC GRAPH THEORY ROBERT GREEN Abstract. This paper is an expository piece on edge-chromatic graph theory. The central theorem in this subject is that of Vizing. We shall then explore the properties of graphs where Vizing's upper bound on the chromatic index is tight, and graphs where the lower bound is tight. Finally, we will look at a few generalizations of Vizing's Theorem, as well as some related conjectures. Contents 1. Introduction & Some Basic Definitions 1 2. Vizing's Theorem 2 3. General Properties of Class One and Class Two Graphs 3 4. The Petersen Graph and Other Snarks 4 5. Generalizations and Conjectures Regarding Vizing's Theorem 6 Acknowledgments 8 References 8 1. Introduction & Some Basic Definitions Definition 1.1. An edge colouring of a graph G = (V; E) is a map C : E ! S, where S is a set of colours, such that for all e; f 2 E, if e and f share a vertex, then C(e) 6= C(f). Definition 1.2. The chromatic index of a graph χ0(G) is the minimum number of colours needed for a proper colouring of G. Definition 1.3. The degree of a vertex v, denoted by d(v), is the number of edges of G which have v as a vertex. The maximum degree of a graph is denoted by ∆(G) and the minimum degree of a graph is denoted by δ(G). Vizing's Theorem is the central theorem of edge-chromatic graph theory, since it provides an upper and lower bound for the chromatic index χ0(G) of any graph G. -
The Travelling Salesman Problem in Bounded Degree Graphs*
The Travelling Salesman Problem in Bounded Degree Graphs? Andreas Bj¨orklund1, Thore Husfeldt1, Petteri Kaski2, and Mikko Koivisto2 1 Lund University, Department of Computer Science, P.O.Box 118, SE-22100 Lund, Sweden, e-mail: [email protected], [email protected] 2 Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, P.O.Box 68, FI-00014 University of Helsinki, Finland, e-mail: [email protected], Abstract. We show that the travelling salesman problem in bounded- degree graphs can be solved in time O((2 − )n), where > 0 depends only on the degree bound but not on the number of cities, n. The algo- rithm is a variant of the classical dynamic programming solution due to Bellman, and, independently, Held and Karp. In the case of bounded in- teger weights on the edges, we also present a polynomial-space algorithm with running time O((2 − )n) on bounded-degree graphs. 1 Introduction There is no faster algorithm known for the travelling salesman problem than the classical dynamic programming solution from the early 1960s, discovered by Bellman [2, 3], and, independently, Held and Karp [9]. It runs in time within a polynomial factor of 2n, where n is the number of cities. Despite the half a cen- tury of algorithmic development that has followed, it remains an open problem whether the travelling salesman problem can be solved in time O(1.999n) [15]. In this paper we provide such an upper bound for graphs with bounded maximum vertex degree. For this restricted graph class, previous attemps have succeeded to prove such bounds when the degree bound, ∆, is three or four. -
Superposition and Constructions of Graphs Without Nowhere-Zero K-flows
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Europ. J. Combinatorics (2002) 23, 281–306 doi:10.1006/eujc.2001.0563 Available online at http://www.idealibrary.com on Superposition and Constructions of Graphs Without Nowhere-zero k-flows M ARTIN KOCHOL Using multi-terminal networks we build methods on constructing graphs without nowhere-zero group- and integer-valued flows. In this way we unify known constructions of snarks (nontrivial cubic graphs without edge-3-colorings, or equivalently, without nowhere-zero 4-flows) and provide new ones in the same process. Our methods also imply new complexity results about nowhere-zero flows in graphs and state equivalences of Tutte’s 3- and 5-flow conjectures with formally weaker statements. c 2002 Elsevier Science Ltd. All rights reserved. 1. INTRODUCTION Nowhere-zero flows in graphs have been introduced by Tutte [38–40]. Primarily he showed that a planar graph is face-k-colorable if and only if it admits a nowhere-zero k-flow (its edges can be oriented and assigned values ±1,..., ±(k − 1) so that the sum of the incoming values equals the sum of the outcoming ones for every vertex of the graph). Tutte also proved the classical equivalence result that a graph admits a nowhere-zero k-flow if and only if it admits a flow whose values are the nonzero elements of a finite abelian group of order k. Seymour [35] has proved that every bridgeless graph admits a nowhere-zero 6-flow, thereby improving the 8-flow theorem of Jaeger [16] and Kilpatrick [20].