NLRP12/Monarch-1 Suppression of the NLR Gene Blimp-1/PRDM1

Total Page:16

File Type:pdf, Size:1020Kb

NLRP12/Monarch-1 Suppression of the NLR Gene Blimp-1/PRDM1 Blimp-1/PRDM1 Mediates Transcriptional Suppression of the NLR Gene NLRP12/Monarch-1 This information is current as Christopher A. Lord, David Savitsky, Raquel Sitcheran, of September 29, 2021. Kathryn Calame, Jo Rae Wright, Jenny Pan-Yun Ting and Kristi L. Williams J Immunol 2009; 182:2948-2958; ; doi: 10.4049/jimmunol.0801692 http://www.jimmunol.org/content/182/5/2948 Downloaded from References This article cites 78 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/182/5/2948.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Blimp-1/PRDM1 Mediates Transcriptional Suppression of the NLR Gene NLRP12/Monarch-11 Christopher A. Lord,* David Savitsky,2§ Raquel Sitcheran,‡ Kathryn Calame,§ Jo Rae Wright,* Jenny Pan-Yun Ting,‡ and Kristi L. Williams3*† NLR (nucleotide-binding domain, leucine-rich repeat) proteins are intracellular regulators of host defense and immunity. One NLR gene, NLRP12 (NLR family, pyrin domain containing 12)/Monarch-1, has emerged as an important inhibitor of inflammatory gene expression in human myeloid cells. This is supported by genetic analysis linking the loss of a functional NLRP12 protein to hereditary periodic fever. NLRP12 transcription is diminished by specific TLR stimulation and myeloid cell maturation, consistent with its role as a negative regulator of inflammation. The NLRP12 promoter contains a novel Blimp-1 (B lymphocyte-induced maturation protein-1)/PRDM1 (PR domain-containing 1, with ZNF domain) binding site, and Blimp-1 reduces NLRP12 promoter activity, expression, and histone 3 acetylation. Blimp-1 associates with the endogenous NLRP12 promoter in a TLR-inducible Downloaded from manner and mediates the down-regulation of NLRP12 expression by TLR agonists. As expected, the expression of NLRP12 and Blimp-1 is inversely correlated. Analysis of Blimp-1؊/؊ murine myeloid cells provides physiologic evidence that Blimp-1 reduces NLRP12 gene expression during cell differentiation. This demonstrates a novel role for Blimp-1 in the regulation of an NLR gene. The Journal of Immunology, 2009, 182: 2948–2958. he recognition of microbial components during host in- also known as CATERPILLER, NOD-LRR, NACHT-LRR,or http://www.jimmunol.org/ fection is a key step in activating the innate immune re- NOD-like receptor (5–8). Mutations in several NLR genes have T sponse followed by the induction of inflammatory gene been associated with human disease states, including autoimmu- expression. Pattern-recognition receptors exemplified by TLRs are nity and inflammation. Members of the NLR gene family are in- key regulators in host response to bacterial, viral, and fungal com- volved in regulating cellular activation after exposure to specific or ponents (1, 2). Central to this response is the ability to up-regulate multiple pathogen-derived products (9). NOD2 mediates cellular genes involved in host protection, innate and adaptive immune cell responses to peptidoglycan-derived muramyl dipeptide, leading to recruitment, and pathogen clearance. Although the TLR-mediated activation of inflammatory cytokines and the release of antimicro- inflammatory response is critical for providing immune defense bial peptides from cytosolic granules (10–12). Nlrp1b/Nalp1b reg- by guest on September 29, 2021 against pathogens, dysfunctional responses may lead to both acute ulates disease susceptibility of some murine strains to anthrax le- and chronic inflammatory states manifested as sepsis, inflamma- thal toxin (13). NLRC4/IPAF mediates caspase-1 and IL-1 tion, and autoimmunity (3). Therefore, the intensity and duration processing in response to the flagellin of Salmonella typhimurium of TLR responses must be tightly controlled. and Legionella pneumophila (14–16). Naip5 mediates host sus- In addition to TLR, recent research has focused on the discovery ceptibility to the intracellular pathogen Legionella pneumophila and characterization of a new immune gene family, the NLR (nu- (17). NLRP3/cryopyrin/NALP3 mediates caspase-1 and IL-1 pro- 4 cleotide-binding domain, leucine-rich repeat) gene family (4), cessing in response to an array of stimuli (18–21). The more re- cently described NLRX1 gene negatively regulates the intracellular type I IFN signaling pathway in mitochondria (22). Taken to- Departments of *Cell Biology and †Immunology, Duke University Medical Center, gether, these data suggest that the NLR genes are involved in reg- Durham NC 27710; ‡Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and §Departments of Micro- ulating a variety of host defense processes. biology and Biochemistry & Molecular Biophysics, Columbia University College of The relevance of NLR genes is most apparently revealed by the Physicians and Surgeons, New York, NY 10032 genetic analysis of patients suffering from immune and inflamma- Received for publication May 27, 2008. Accepted for publication December 19, 2008. tory disorders. Mutations in CIITA result in the immunodeficiency The costs of publication of this article were defrayed in part by the payment of page type II bare lymphocyte syndrome (group A) (23). NOD2 muta- charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. tions are associated with increased susceptibility to inflammatory 1 This work was supported by National Institutes of Health Grants HL-30923 and Crohn’s disease and to a granulomatous disorder known as Blau HL-084917 (to J.R.W.) and AI057175 and AI063031 (to J.P.T.), as well as a National syndrome (24–26). Hyperactive mutants of the NLRP3 (CIAS1) Research Service Award, University of North Carolina Center for AIDS Research, gene predispose patients to a variety of autoinflammatory disorders Amgen/Federation of Clinical Immunology Societies Fellowship Award, Southeast Regional Center of Excellence for Emerging Infections and Biodefense, and support classified as cryopyrin-associated periodic syndrome, which falls from the American Cancer Society (to K.L.W.). under the general classification of hereditary periodic fever (HPF) 2 Current address: Department of Dermatology, Asahikawa Medical College, Asa- (27–32). Mutations in NLRP1/NALP1 have been genetically linked hikawa, Japan. 3 Address correspondence and reprint requests to Dr. Kristi L. Williams, Department of Cell Biology, Box 3709, Duke University Medical Center, Durham, NC 27710. E-mail address: [email protected] ZNF domain; HKLM, heat-killed Listeria monocytogenes; qPCR, quantitative PCR; 4 Abbreviations used in this paper: NLR, nucleotide-binding domain, leucine-rich DAPA, DNA affinity purification assay; ChIP, chromatin immunoprecipitation; DRB, repeat; HPF, hereditary periodic fever; NLRP12, NLR family, pyrin domain contain- 5,6-dichlororibofuranosyl benzimidazole; GusB, ␤-glucuronidase. ing 12; IRAK, IL-1R-associated kinase; NIK, NF-␬B-inducing kinase; Blimp-1, B lymphocyte-induced maturation protein-1; PRDM1, PR domain-containing 1, with Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00 www.jimmunol.org/cgi/doi/10.4049/jimmunol.0801692 The Journal of Immunology 2949 with autoimmune disease (33), while NLRP7/NALP7 has been as- data provide a new linkage between Blimp-1 and the innate im- sociated with hydatidiform mole (34). These studies underscore mune TLR and NLR pathways. the contention that NLR family members are important players in both the maintenance of normal immune responses and the onset Materials and Methods of inflammatory disorders. Mice We and others have identified an NLR family member Mon- Ϫ ϩ Prdm1flox/flox and prdm1flox/ mice (48) were crossed with Rosa26ERCre/ arch-1/PYPAF7, recently renamed NLRP12 (NLR family, pyrin mice to generate controls (Rosa26ϩ/ϩprdm1flox/flox) and experimental domain containing 12) (35–37). NLRP12 is expressed primarily by (Rosa26ERCre/ϩprdm1flox/flox) mice. Mice were injected with 1.5 ml of 10 cells of the myeloid-monocytic lineage, including monocytes, mg/ml tamoxifen in sunflower seed oil (0.5 ml/day for 3 days) to induce granulocytes, and eosinophils in humans (36). Although it has gene deletion 3 wk before tissue harvest. Mice were housed in the barrier facility of Columbia University (New York, NY). All experiments were been suggested that some NLR proteins are involved in “sensing” approved by the Institutional Animal Care and Use Committee of Colum- microbial components, currently there is no known ligand for NLR bia University. proteins in general and for NLRP12 specifically. In vitro studies in human cells employing both gene transfection and small hetero- Reagents duplex RNA-mediated
Recommended publications
  • Golgi Phosphoprotein 3 Promotes the Proliferation of Gallbladder Carcinoma Cells Via Regulation of the NLRP3 Inflammasome
    ONCOLOGY REPORTS 45: 113, 2021 Golgi phosphoprotein 3 promotes the proliferation of gallbladder carcinoma cells via regulation of the NLRP3 inflammasome ZHENCHENG ZHU1,2*, QINGZHOU ZHU1,2*, DONGPING CAI3, LIANG CHEN4, WEIXUAN XIE2, YANG BAI2 and KUNLUN LUO1,2 1Anhui Medical University, Hefei, Anhui 230032; Departments of 2Hepatobiliary Surgery, 3Laboratory and 4Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China Received January 18, 2021; Accepted April 2, 2021 DOI: 10.3892/or.2021.8064 Abstract. Golgi phosphoprotein 3 (GOLPH3) has been Introduction demonstrated to promote tumor progression in various gastro‑ intestinal malignancies. However, its effects in gallbladder Gallbladder carcinoma (GBC) is a highly malignant tumor carcinoma (GBC) remain unknown. In the present study, the of the biliary system with a median survival time of only expression levels of GOLPH3 and nucleotide‑binding domain 6 months (1‑3). The primary pathological type of GBC leucine‑rich repeat and pyrin domain containing receptor 3 observed in patients is adenocarcinoma. The effects of current (NLRP3) in human GBC tissues were detected by immuno‑ chemotherapeutic regimens are not sufficient for GBC due histochemistry, and the clinical data and survival of these to the lack of effective drugs, making it particularly difficult patients were analyzed. Next, whether GOLPH3 could affect to control the mortality rate of GBC (3,4). Due to the close tumor proliferation via regulation of the NLRP3 inflamma‑ relationship between inflammation and GBC, investigation of some was investigated in vitro. The results demonstrated that inflammatory‑related molecular mechanisms may highlight GOLPH3 could promote GBC cell proliferation, and that it novel specific targets for the treatment of GBC (4).
    [Show full text]
  • NOD-Like Receptors in the Eye: Uncovering Its Role in Diabetic Retinopathy
    International Journal of Molecular Sciences Review NOD-like Receptors in the Eye: Uncovering Its Role in Diabetic Retinopathy Rayne R. Lim 1,2,3, Margaret E. Wieser 1, Rama R. Ganga 4, Veluchamy A. Barathi 5, Rajamani Lakshminarayanan 5 , Rajiv R. Mohan 1,2,3,6, Dean P. Hainsworth 6 and Shyam S. Chaurasia 1,2,3,* 1 Ocular Immunology and Angiogenesis Lab, University of Missouri, Columbia, MO 652011, USA; [email protected] (R.R.L.); [email protected] (M.E.W.); [email protected] (R.R.M.) 2 Department of Biomedical Sciences, University of Missouri, Columbia, MO 652011, USA 3 Ophthalmology, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 652011, USA 4 Surgery, University of Missouri, Columbia, MO 652011, USA; [email protected] 5 Singapore Eye Research Institute, Singapore 169856, Singapore; [email protected] (V.A.B.); [email protected] (R.L.) 6 Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 652011, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-573-882-3207 Received: 9 December 2019; Accepted: 27 January 2020; Published: 30 January 2020 Abstract: Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM). International Diabetic Federations (IDF) estimates up to 629 million people with DM by the year 2045 worldwide. Nearly 50% of DM patients will show evidence of diabetic-related eye problems. Therapeutic interventions for DR are limited and mostly involve surgical intervention at the late-stages of the disease. The lack of early-stage diagnostic tools and therapies, especially in DR, demands a better understanding of the biological processes involved in the etiology of disease progression.
    [Show full text]
  • ATP-Binding and Hydrolysis in Inflammasome Activation
    molecules Review ATP-Binding and Hydrolysis in Inflammasome Activation Christina F. Sandall, Bjoern K. Ziehr and Justin A. MacDonald * Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; [email protected] (C.F.S.); [email protected] (B.K.Z.) * Correspondence: [email protected]; Tel.: +1-403-210-8433 Academic Editor: Massimo Bertinaria Received: 15 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure.
    [Show full text]
  • Inflammasome Activation and Regulation
    Zheng et al. Cell Discovery (2020) 6:36 Cell Discovery https://doi.org/10.1038/s41421-020-0167-x www.nature.com/celldisc REVIEW ARTICLE Open Access Inflammasome activation and regulation: toward a better understanding of complex mechanisms Danping Zheng1,2,TimurLiwinski1,3 and Eran Elinav 1,4 Abstract Inflammasomes are cytoplasmic multiprotein complexes comprising a sensor protein, inflammatory caspases, and in some but not all cases an adapter protein connecting the two. They can be activated by a repertoire of endogenous and exogenous stimuli, leading to enzymatic activation of canonical caspase-1, noncanonical caspase-11 (or the equivalent caspase-4 and caspase-5 in humans) or caspase-8, resulting in secretion of IL-1β and IL-18, as well as apoptotic and pyroptotic cell death. Appropriate inflammasome activation is vital for the host to cope with foreign pathogens or tissue damage, while aberrant inflammasome activation can cause uncontrolled tissue responses that may contribute to various diseases, including autoinflammatory disorders, cardiometabolic diseases, cancer and neurodegenerative diseases. Therefore, it is imperative to maintain a fine balance between inflammasome activation and inhibition, which requires a fine-tuned regulation of inflammasome assembly and effector function. Recently, a growing body of studies have been focusing on delineating the structural and molecular mechanisms underlying the regulation of inflammasome signaling. In the present review, we summarize the most recent advances and remaining challenges in understanding the ordered inflammasome assembly and activation upon sensing of diverse stimuli, as well as the tight regulations of these processes. Furthermore, we review recent progress and challenges in translating inflammasome research into therapeutic tools, aimed at modifying inflammasome-regulated human diseases.
    [Show full text]
  • Functional Screening of ¢Ve PYPAF Family Members Identi¢Es PYPAF5 As a Novel Regulator of NF-UB and Caspase-1
    FEBS 26602 FEBS Letters 530 (2002) 73^78 Functional screening of ¢ve PYPAF family members identi¢es PYPAF5 as a novel regulator of NF-UB and caspase-1 Jill M.Grenier 1, Lin Wang1, Gulam A.Manji 2, Waan-Jeng Huang, Amal Al-Garawi, Roxanne Kelly, Adam Carlson, Sarah Merriam, Jose M.Lora, Michael Briskin, Peter S.DiStefano 3, John Bertinà Millennium Pharmaceuticals Inc., 75 Sidney Street, Cambridge, MA 02139, USA Received 22 August 2002; accepted 28 August 2002 First published online 26 September 2002 Edited by Veli-Pekka Lehto activates pro-caspase-9.Apaf-1 has a tripartite domain struc- Abstract PYRIN-containing Apaf-1-like proteins (PYPAFs) are a recently identi¢ed family of proteins thought to function ture consisting of an N-terminal caspase-recruitment domain in apoptotic and in£ammatory signaling pathways. PYPAF1 (CARD) that mediates recruitment of pro-caspase-9 to the and PYPAF7 proteins have been found to assemble with the apoptosome, a central nucleotide-binding site (NBS) domain, PYRIN^CARD protein ASC and coordinate the activation of and a C-terminal domain comprised of WD-40 repeats.The NF-UB and pro-caspase-1. To determine if other PYPAF family NBS domain mediates Apaf-1 oligomerization in the presence members function in pro-in£ammatory signaling pathways, we of dATP, whereas the WD-40 repeats function as binding sites screened ¢ve other PYPAF proteins (PYPAF2, PYPAF3, PY- for cytochrome c.Thus, Apaf-1 functions as a sensor-like PAF4, PYPAF5 and PYPAF6) for their ability to activate NF- molecule that signals apoptosis in response to the release of U B and pro-caspase-1.
    [Show full text]
  • Coincidental Loss of DOCK8 Function in NLRP10-Deficient and C3H/Hej Mice Results in Defective Dendritic Cell Migration
    Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration Jayendra Kumar Krishnaswamya,b,1, Arpita Singha,b,1, Uthaman Gowthamana,b, Renee Wua,b, Pavane Gorrepatia,b, Manuela Sales Nascimentoa,b, Antonia Gallmana,b, Dong Liua,b, Anne Marie Rhebergenb, Samuele Calabroa,b, Lan Xua,b, Patricia Ranneya,b, Anuj Srivastavac, Matthew Ransond, James D. Gorhamd, Zachary McCawe, Steven R. Kleebergere, Leonhard X. Heinzf, André C. Müllerf, Keiryn L. Bennettf, Giulio Superti-Furgaf, Jorge Henao-Mejiag, Fayyaz S. Sutterwalah, Adam Williamsi, Richard A. Flavellb,j,2, and Stephanie C. Eisenbartha,b,2 Departments of aLaboratory Medicine and bImmunobiology and jHoward Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520; cComputational Sciences, The Jackson Laboratory, Bar Harbor, ME 04609; dDepartment of Pathology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755; eNational Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; fCeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; gInstitute for Immunology, Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; hInflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA 52241; and iThe Jackson Laboratory for Genomic Medicine, Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032 Contributed by Richard A. Flavell, January 28, 2015 (sent for review December 23, 2014; reviewed by Matthew L. Albert and Thirumala-Devi Kanneganti) Dendritic cells (DCs) are the primary leukocytes responsible for NLRP10 is the only NOD-like receptor (NLR) without a leu- priming T cells.
    [Show full text]
  • Characterization of Its Binding to Hematopoietic Cell Kinase Yue Zhang and Curtis T
    Int. J. Biol. Sci. 2020, Vol. 16 1507 Ivyspring International Publisher International Journal of Biological Sciences 2020; 16(9): 1507-1525. doi: 10.7150/ijbs.41798 Research Paper Nucleotide binding domain and leucine-rich repeat pyrin domain-containing protein 12: characterization of its binding to hematopoietic cell kinase Yue Zhang and Curtis T. Okamoto Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, USA 90089-9121 Corresponding author: Yue Zhang, [email protected] © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.11.04; Accepted: 2020.02.13; Published: 2020.03.05 Abstract Protein-protein interactions are key to define the function of nucleotide binding domain (NBD) and leucine-rich repeat (LRR) family, pyrin domain (PYD)-containing protein 12 (NLRP12). cDNA encoding the human PYD + NBD of NLRP12 was used as bait in a yeast two-hybrid screen with a human leukocyte cDNA library as prey. Hematopoiesis cell kinase (HCK), a member of the c-SRC family of non-receptor tyrosine kinases, was among the top hits. The C-terminal 40 amino acids of HCK selectively bound to NLRP12’s PYD + NBD, but not to that of NLRP3 and NLRP8. Amino acids F503, I506, Q507, L510, and D511 of HCK are critical for the binding of HCK’s C-terminal 40 amino acids to NLRP12’s PYD + NBD. Additionally, the C-terminal 30 amino acids of HCK are sufficient to bind to NLRP12’s PYD + NBD, but not to its PYD alone nor to its NBD alone.
    [Show full text]
  • NLR Members in Inflammation-Associated
    Cellular & Molecular Immunology (2017) 14, 403–405 & 2017 CSI and USTC All rights reserved 2042-0226/17 $32.00 www.nature.com/cmi RESEARCH HIGHTLIGHT NLR members in inflammation-associated carcinogenesis Ha Zhu1,2 and Xuetao Cao1,2,3 Cellular & Molecular Immunology (2017) 14, 403–405; doi:10.1038/cmi.2017.14; published online 3 April 2017 hronic inflammation is regarded as an impor- nucleotide-binding and oligomerization domain IL-2,8 and NAIP was found to regulate the STAT3 Ctant factor in cancer progression. In addition (NOD)-like receptors (NLRs). TLRs and CLRs are pathway independent of inflammasome formation.9 to the immune surveillance function in the early located in the plasma membranes, whereas RLRs, The AOM/DSS model is the most popular model stage of tumorigenesis, inflammation is also known ALRs and NLRs are intracellular PRRs.3 Unlike used to study the function of NLRs in fl fl as one of the hallmarks of cancer and can supply other families that have been shown to bind their in ammation-associated carcinogenesis. In amma- the tumor microenvironment with bioactive mole- specific cognate ligands, the distinct ligands for somes initiated by NLRs or AIM2 have been widely cules and favor the development of other hallmarks NLRs are still unknown. In fact, mounting evidence reported to participate in the maintenance of 10,11 Nlrp3 Nlrp6 of cancer, such as genetic instability and angiogen- suggests that NLRs function as cytoplasmic sensors intestinal homeostasis. -/-, -/-, Nlrc4 Nlrp1 Nlrx1 Nlrp12 esis. Moreover, inflammation contributes to the and participate in modulating TLR, RLR and CLR -/-, -/-, -/- and -/- mice are 4 more susceptible to AOM/DSS-induced colorectal changing tumor microenvironment by altering signaling pathways.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • AIM2 and NLRC4 Inflammasomes Contribute with ASC to Acute Brain Injury Independently of NLRP3
    AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3 Adam Denesa,b,1, Graham Couttsb, Nikolett Lénárta, Sheena M. Cruickshankb, Pablo Pelegrinb,c, Joanne Skinnerb, Nancy Rothwellb, Stuart M. Allanb, and David Broughb,1 aLaboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, 1083, Hungary; bFaculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom; and cInflammation and Experimental Surgery Unit, CIBERehd (Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas), Murcia Biohealth Research Institute–Arrixaca, University Hospital Virgen de la Arrixaca, 30120 Murcia, Spain Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved February 19, 2015 (received for review November 18, 2014) Inflammation that contributes to acute cerebrovascular disease is or DAMPs, it recruits ASC, which in turn recruits caspase-1, driven by the proinflammatory cytokine interleukin-1 and is known causing its activation. Caspase-1 then processes pro–IL-1β to a to exacerbate resulting injury. The activity of interleukin-1 is regu- mature form that is rapidly secreted from the cell (5). The ac- lated by multimolecular protein complexes called inflammasomes. tivation of caspase-1 can also cause cell death (6). There are multiple potential inflammasomes activated in diverse A number of inflammasome-forming PRRs have been iden- diseases, yet the nature of the inflammasomes involved in brain tified, including NLR family, pyrin domain containing 1 (NLRP1); injury is currently unknown. Here, using a rodent model of stroke, NLRP3; NLRP6; NLRP7; NLRP12; NLR family, CARD domain we show that the NLRC4 (NLR family, CARD domain containing 4) containing 4 (NLRC4); AIM 2 (absent in melanoma 2); IFI16; and AIM2 (absent in melanoma 2) inflammasomes contribute to and RIG-I (5).
    [Show full text]
  • Exploring the Role of a PYHIN Protein and Involvement of Caspase-8 in the Regulation and Activation of Inflammasomes
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2017-09-12 Different Journeys, Same Destination: Exploring the Role of a PYHIN Protein and Involvement of Caspase-8 in the Regulation and Activation of Inflammasomes Sreya Ghosh University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Immunity Commons, Immunology of Infectious Disease Commons, and the Microbiology Commons Repository Citation Ghosh S. (2017). Different Journeys, Same Destination: Exploring the Role of a PYHIN Protein and Involvement of Caspase-8 in the Regulation and Activation of Inflammasomes. GSBS Dissertations and Theses. https://doi.org/10.13028/M2CD6Z. Retrieved from https://escholarship.umassmed.edu/ gsbs_diss/928 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Different Journeys, Same Destination: Exploring the Role of a PYHIN Protein and Involvement of Caspase-8 in the Regulation and Activation of Inflammasomes A Dissertation Presented By Sreya Ghosh Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 12, 2017 Immunology and Microbiology Program Different Journeys, Same Destination: Exploring the Role of a PYHIN Protein and Involvement of Caspase-8 in the Regulation and Activation of Inflammasomes A Dissertation Presented By Sreya Ghosh The signatures of the Dissertation Defense Committee signify Completion and approval as to style and content of the Dissertation ____________________________________________ Katherine A.
    [Show full text]
  • Criteria for CAPS, Is It All in the Name? Markers, Urticaria-Like Rash and Arthralgia) Would Perform Well with These Four FCAS, but Only FCAS1 Is a CAPS
    ARD Online First, published on November 16, 2016 as 10.1136/annrheumdis-2016-210681 Ann Rheum Dis: first published as 10.1136/annrheumdis-2016-210681 on 16 November 2016. Downloaded from Correspondence Criteria for CAPS, is it all in the name? markers, urticaria-like rash and arthralgia) would perform well with these four FCAS, but only FCAS1 is a CAPS. The authors ‘ This paper1 describes an original work conducted by an fairly admitted that the number of CAPS cases and controls was International team of 16 recognised clinical experts in the field limited and not all possible differential diagnoses of CAPS may of autoinflammatory diseases. The aim of this consortium was have been included, potentially leading to an overestimation of fi ’ to develop diagnostic criteria for cryopyrin-associated periodic the speci city of the proposed model . fl syndrome (CAPS). They resulted in a model that indisputably is The issue of the disease name, re ecting either the main relevant to describe these rare and heterogeneous diseases symptoms or the molecular mechanisms of the condition, has fl among other autoinflammatory diseases. Their proposed CAPS been raised many times in the autoin ammatory diseases com- fi diagnosis criteria are primarily clinical. munity, and propositions for re ned taxonomy will shortly We would like to comment on the pathophysiological mech- emerge. The debate is not just semantic as differential thera- anism underlying ‘CAPS’. The NLRP3 gene encodes cryopyrin, peutic approaches can be taken according to the molecular the historical name of the NLRP3 protein, a key component of defect in cause in the condition presented by the patient.
    [Show full text]